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Abstract: The early detection and treatment of skin cancer depend on the accurate classification of skin lesions. Using the 
HAM10000 dataset, this paper proposes a deep learning-based system for dividing dermoscopic pictures into malignant and non-
malignant groups. To extract robust and discriminative features from skin lesion images, we use the DINOv2-B vision 
transformer model. These features are subsequently refined for binary classification. The efficacy of the suggested method in 
distinguishing between benign and malignant lesions is demonstrated by its excellent accuracy, precision, recall, and F1-score. 
Along with the classification model, an easily accessible tool for tracking the condition of skin lesions has been created: a web-
based application that enables users to input dermoscopic photos and receive real-time forecasts. A cutting-edge vision 
transformer combined with an interactive platform provides a useful solution for patients and clinicians, encouraging early 
diagnosis and well-informed decision-making while lowering the need for manual evaluation. 
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I. INTRODUCTION 
Skin cancer, one of the most prevalent cancers worldwide, is on the rise as a result of genetic predispositions, environmental factors, 
and prolonged exposure to ultraviolet light [1], [2]. Because malignant lesions can be treated more successfully when discovered 
early, early detection of skin lesions greatly improves prognosis and lowers mortality [3]. A non-invasive imaging method called 
dermoscopy enables doctors to closely inspect pigmented skin lesions, exposing structures and patterns that are not visible to the 
human eye [4], [5]. Manually analyzing dermoscopic images, however, takes a lot of time, calls for specific knowledge, and is 
vulnerable to subjective interpretation, which could result in a misdiagnosis [6], [7]. By automating the categorization process, 
increasing diagnostic accuracy, and producing trustworthy evaluations, deep learning-based computer-aided diagnosis (CAD) 
systems present a viable option [8], [9]. Dermatologists can improve patient care and lower diagnostic errors by utilizing advanced 
models that capture complex picture information [10], [11]. 
Medical image analysis has been transformed by two recent developments in deep learning: convolutional neural networks (CNNs) 
and vision transformers (ViTs) [1], [12]. Because CNNs can automatically learn hierarchical picture characteristics, they have been 
utilized extensively for skin lesion classification with remarkable results [3], [13]. However, because to their inability to capture 
global context and long-range relationships, CNNs frequently have difficulty differentiating visually similar lesions [9], [14]. To 
enable more thorough feature extraction and precise classification, vision transformers, like DINOv2-B, use self-attention 
mechanisms to model relationships throughout the entire image [9], [15]. In self-supervised learning, DINOv2-B in particular has 
shown exceptional performance, producing discriminative and generalizable picture representations without requiring a significant 
amount of labelled data [9]. In order to distinguish between malignant and non-malignant lesions, this research will refine DINOv2-
B on dermoscopic pictures from the HAM10000 dataset, a sizable publically accessible dataset that includes a variety of skin lesion 
types [2], [8]. Using cutting-edge transformer designs in conjunction with domain-specific medical data, this method improves 
automated skin lesion identification accuracy. 
In orde r to bridge the gap between research and clinical application, a web-based platform is created for practical implementation 
that enables users to upload dermoscopic images and receive real-time malignancy forecasts. [7], [11]. Effective lesion progression 
monitoring is made possible by the user-friendly interface, and more individualized therapy may be provided by integrating patient 
history. The approach encourages early diagnosis, ongoing monitoring, and better dermatological results by fusing the potent feature 
extraction capabilities of DINOv2-B with an interactive web application [9], [15]. 
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II. METHODOLOGY 
The proposed skin lesion categorisation approach uses the HAM10000 dataset, which includes 10,015 high-quality dermoscopic 
images showing seven types of skin lesions, both benign and malignant. To ensure optimal model performance—improving 
generalisation and reducing overfitting—all images undergo a preprocessing pipeline that includes scaling, normalisation, and data 
augmentation techniques like flipping, rotation, and colour jittering. The core of the system, the DINOv2-B Vision Transformer 
model, was chosen because of its exceptional ability to extract rich and discriminative features using self-supervised learning and 
attention techniques. Fig. 1 shows the general workflow of the suggested system. The model is trained using PyTorch, Torchvision, 
and optimisation methods including the AdamW optimiser with cross-entropy loss. It is optimised for binary classification 
(malignant vs. non-malignant). Due to the computational needs of transformer training, large batch sizes and high-dimensional data 
are handled efficiently by high-performance GPUs with substantial memory capacity. The dataset is separated into subsets for 
training, validation, and testing in order to facilitate objective model evaluation utilising metrics such as accuracy, precision, recall, 
and F1-score. The deep learning backend is combined with a web-based application to enable real-time prediction. With the help of 
the frontend, which was developed with HTML, CSS and JS, patients, researchers, or doctors can enter dermoscopic images and 
instantly receive likelihood ratings and malignancy forecasts. The backend handles preprocessing, the trained DINOv2-B model is 
used for inference, and the outcomes are clear and understandable. This integrated platform combines robust GPU-based model 
training, Python-driven deep learning processes, and user-friendly web programming to close the gap between cutting-edge AI 
research and practical dermatological application. The result is a clinically useful, scientifically sound, and efficient system for 
continuous skin lesion monitoring and classification. 
Additionally, the modular architecture of the system guarantees scalability and flexibility for upcoming developments in 
dermatological AI research. To improve classification robustness and variety, more lesion classes and datasets can be easily 
incorporated. Over time, diagnostic accuracy is further increased by continuously fine-tuning the model using freshly obtained 
clinical images. By incorporating explainable AI methods, such Grad-CAM visualisations, the model's decision-making process can 
be interpreted by physicians, promoting openness and confidence. In both clinical and teledermatology contexts, this thorough 
combination of machine learning, medical imaging, and web-based deployment lays the groundwork for intelligent, easily 
accessible, and real-time skin lesion assessment. 

 
Fig. 1. Flow Diagram 
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III. PREPROCESSING 
Dermoscopic image preprocessing is an essential step to improve model performance and guarantee reliable input for the DINOv2-
B classifier. The HAM10000 dataset's photos are first scaled to a fixed resolution in order to preserve consistency and suitability for 
the model's input specifications. This downsizing lessens the computational strain while assisting the model in concentrating on 
pertinent lesion traits. In order to stabilize training by avoiding significant intensity fluctuations and guarantee that the model learns 
significant patterns rather than being skewed by variations in brightness or contrast, pictures are also normalized by scaling pixel 
values. 
Techniques for data augmentation are used to decrease overfitting and artificially boost the training dataset's diversity. In order to 
make the model invariant to the orientation or position of lesions, common augmentations include random rotations, flipping in both 
the horizontal and vertical directions, and modest translations. Additionally, colour jittering and brightness modifications are used to 
mimic lighting variations that are frequently seen in dermoscopic imagery in the actual world. The model gains more robust and 
generalized features by implementing these modifications during training, which enhances its capacity to correctly identify benign 
and malignant skin lesions in unseen photos. 
Following augmentation, photos are transformed into PyTorch-compatible tensor formats, allowing for effective GPU computation. 
By standardizing input statistics, batch-wise normalization speeds up convergence and stabilizes gradient updates throughout 
training. Furthermore, configurable clipping or masking reduces superfluous backdrops or artefacts, enabling the model to 
concentrate on lesion-specific characteristics. Image weighting is carefully considered: heavy-weighted images retain more detail 
but demand more processing power, whereas light-weighted images may impair feature richness and classification accuracy. By 
ensuring that the DINOv2-B vision transformer harvests discriminative features efficiently, this balanced preprocessing enhances 
overall performance and dependability. 
 

IV. PROCESS FLOW 
The first step is to obtain dermoscopic images from the HAM10000 collection, which includes high-resolution pictures of different 
kinds of skin lesions. Clinical diagnosis determines whether an image is classified as benign or malignant. In order to ensure that the 
model learns to generalize across various skin kinds, colors, and lesion patterns, this dataset offers a varied range of lesion 
classifications. 
Accurate evaluation during testing and supervised fine-tuning of the DINOv2-B model depend on proper labelling. All photos are 
standardized to a consistent size and format that is DINOv2-B compliant through preprocessing. Rotations, flips, and color changes 
are examples of augmentation techniques used to increase dataset heterogeneity and avoid overfitting. For GPU processing, images 
are transformed into tensor formats and batch-wise normalization is used. To guarantee accurate classification, care is given while 
handling both light-weighted and heavy-weighted images, striking a balance between computational efficiency and feature richness. 
Cropping or masking minimizes irrelevant backdrops. 
The DINOv2-B vision transformer is used to extract high-dimensional, discriminative characteristics from the preprocessed images 
by use of self-attention mechanisms. This model highlights the minor variations between benign and malignant lesions by capturing 
global contextual interactions in the image.  
The network can learn the most crucial traits required for a precise lesion malignancy prediction by using the feature representations 
as the input to a classification head. The classification head is trained using a binary cross-entropy loss function and the retrieved 
features. The AdamW optimizer is used to optimize the model after it has been adjusted on the training set and verified on an 
independent validation set. To avoid overfitting, batch sizes, learning rates, and early stopping criteria are carefully chosen. To 
manage the computational load, high-performance GPUs are used, particularly for high-dimensional transformer features and huge 
image batches. 
The model predicts whether new dermoscopic pictures are benign or malignant after training as shown in    Fig. 2. Accuracy, 
precision, recall and F1-score are used to assess predictions. To comprehend misclassifications, the confusion matrix is examined. 
This assessment guarantees that the model operates consistently across various lesion types and offers information on possible areas 
for development, including managing uncommon lesion classes or differences in imaging conditions. 
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Fig.2. Process Diagram 
 

A web application is used to deploy the trained model. Dermoscopic photos uploaded by users are preprocessed and run through the 
program to provide predictions in real time. The anticipated malignancy status and confidence scores are shown on the interface. By 
effectively tracking lesions, this platform bridges the gap between AI research and clinical practice by offering a readily available 
tool for early detection, ongoing monitoring, and well-informed decision-making for both patients and physicians. 

 
V. DINOv2-B: SELF-SUPERVISED VISION TRANSFORMER FOR FEATURE EXTRACTION 

The self-supervised Vision Transformer (ViT) model DINOv2-B was created to learn visual representations reliably without the 
need for extensive labelled datasets. It is a member of the DINOv2 family, which uses attention-based transformers to learn 
discriminative picture characteristics, improving upon conventional self-distillation techniques. DINOv2-B is very successful at 
downstream tasks including object detection, segmentation, and picture classification because it encodes images into high-
dimensional embeddings that capture both local and global contextual information. 
A multi-layer transformer made up of stacked self-attention blocks processing picture patches forms the core of DINOv2-B. To 
extract hierarchical characteristics, each block uses feed-forward networks, multi-head attention, and layer normalization. DINOv2-
B employs self-distillation without labels, in contrast to fully supervised models, in which a student network learns to mimic the 
output of a teacher network that is updated with momentum. This method preserves high expressivity while encouraging the model 
to learn invariant representations. 
Because of its self-supervised pretraining, DINOv2-B exhibits significant generalization across a variety of datasets, enabling the 
model to learn rich and invariant visual representations without the need for substantial amounts of annotated data. DINOv2-B's 
transformer-based architecture allows it to capture both local and global contextual data, producing highly descriptive embeddings 
that may be applied to a variety of downstream applications. For specialized applications where labelled samples are frequently few, 
like medical image analysis, skin lesion detection, or rare illness classification, this feature allows for smooth integration with 
lightweight classifier heads. Furthermore, the model is especially well-suited for high-precision tasks due to its strong attention-
based feature extraction, which enables it to discern minute variations in visual patterns. Because of its effectiveness and scalability, 
the model can be used in clinical settings and other real-world settings while preserving cutting-edge performance, cutting down on 
annotation expenses, and improving model adaptability across various imaging modalities and domains. 
 

VI. IMAGE ENHANCEMENT AND AUGMENTATION 
Before training, every dermoscopic image is preprocessed to ensure quality and consistency. Each image is reduced to a fixed size 
of 448 by 448 pixels in order to preserve aspect ratio and important lesion characteristics. Normalisation is performed to standardise 
pixel intensity distributions in order to obtain reliable model convergence and consistent feature scaling across datasets. This 
preprocessing phase ensures that the model focusses largely on lesion traits rather than irrelevant background noise by minimising 
variations caused by illumination, camera type, or skin tone. 
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To enhance generalisation and prevent overfitting, extensive data augmentation techniques are employed. Random transformations 
are applied during training, such as horizontal and vertical flips, 45-degree rotations, and colour jitter changes in hue, brightness, 
contrast, and saturation. These augmentations assist the model in gaining more robust features by mimicking real-world variations in 
lesion orientation and image capture conditions. The model artificially increases the sample's variety to improve invariance to 
changes in location and illumination. 

 
Fig. 3. Types of Lesions 

 
The datasets that are used, including HAM10000 and ISIC, have diverse image formats and label systems. To provide consistent 
representation, label encoding converts categorical lesion categories into numeric labels. Automatic mapping and verification of 
image file paths prevents inconsistent or missing entries. Both datasets are combined, and training and validation subsets are created 
to ensure balanced class representation. According to Fig. 3, this well-structured preprocessing pipeline enables precise skin lesion 
classification and efficient feature extraction. 
 

VII. MATHEMATICAL FOUNDATIONS OF THE PROPOSED METHOD 
The suggested DINOv2-B-based framework for classifying skin lesions is based on mathematical formulas. They offer a numerical 
explanation of the model's optimization behavior, performance assessment, and learning dynamics. Three main formulations are 
used in this study: cosine annealing learning rate scheduling, accuracy evaluation, and mix-up regularization. When combined, these 
mathematical ideas help the model avoid overfitting and maximize computational efficiency while achieving steady convergence, 
robust generalization, and increased classification accuracy. 
 
A. Mix-up Regularization Formula 
By using linear interpolation of random picture pairs to create virtual training data, the Mixup technique improves model 
generalization. Considering two samples (xi, yi) as well as (݆ݕ ,݆ݔ)  The fresh mixed sample is calculated as follows: 

xmix=λxi + (1−λ)xj ,ymix= λyi + (1−λ)yj        → (1) 
 
To ensure random mixing between 0 and 1, ߣ is taken from a Beta distribution Beta(ߙ,ߙ). This method enhances resilience against 
noise and adversarial perturbations, decreases overfitting, and smoothes the classifier's decision boundaries. The model gains the 
ability to predict proportionately between mixed classes through training on these interpolated samples, which promotes a more 
linear and generalized relationship in the feature space. As a result, Mix-up is a useful regularization technique for enhancing model 
stability and classification accuracy. 
 
B. Accuracy Evaluation Formula 
During validation, the main statistic used to assess classification performance is model accuracy. It is defined as follows and 
measures the ratio of accurately predicted samples to all tested samples: 

= ݕܿܽݎݑܿܿܣ  ே௨௠௕௘௥ ௢௙ ஼௢௥௥௘௖௧ ௉௥௘ௗ௜௖௧௜௢௡௦
்௢௧௔௟ ே௨௠௕௘௥ ௢௙ ௌ௔௠௣௟௘௦

        → (2)   
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This metric shows how well the model differentiates between various skin lesion classes. The model's decision bounds closely 
match the actual data distribution when the accuracy is higher. Accuracy is calculated for each training epoch by comparing the 
validation dataset's ground truth labels with the predicted class labels. It offers a commonly used and comprehensible performance 
indicator for classification tasks, which aids in tracking model development, adjusting hyperparameters, and determining when 
training reaches a predetermined threshold or converges well. 
 
C. Cosine Annealing Learning Rate Formula 
The speed and smoothness of a model's convergence are directly influenced by its learning rate. To balance exploration and 
convergence, the Cosine Annealing Warm Restarts (CAWR) scheduler dynamically modifies the learning rate based on a cosine 
function. It is said as follows: 

௧ߟ   = ௠௜௡ߟ  + ଵ
ଶ

௠௔௫ߟ) − ௠௜௡)(1ߟ + )ݏ݋ܿ ೎்ೠೝ

೘்ೌೣ
 (3) →         ((ߨ 

Where, 
 ௧ : learning rate at epoch tߟ ●
 ௠௔௫ : initial (maximum) learning rateߟ ●
௠௜௡ߟ ●  : minimum learning rate (final) 
● ௖ܶ௨௥ : current epoch 
● ௠ܶ௔௫ : total number of epochs 

 
VIII.  RESULT 

When compared to conventional CNN-based techniques, the suggested DINOv2-B-based skin lesion classification model 
demonstrated improved accuracy and robustness. The model demonstrated outstanding sensitivity and generalization across all 
lesion types, with an overall classification accuracy of 93% on the HAM10000 dataset. The DINOv2-B's capacity to extract high-
level semantic features via self-supervised pretraining is responsible for this outstanding performance. Furthermore, by stabilizing 
training and improving convergence speed through the use of Mix-up regularization and cosine annealing learning rate scheduling, 
the model was able to significantly beat other benchmark architectures like ResNet50 and EfficientNet. 
The model's excellent capacity to discern minute inter-class differences between lesion types is demonstrated visually via feature 
maps and confusion matrices. Even with intricate or low-contrast dermoscopic images, DINOv2-B was able to acquire structural 
and color texture features with ease. The majority of misclassifications happened between visually comparable groups where lesion 
margins overlap, including melanocytic nevi and melanoma. The model's accurate emphasis on lesion locations rather than 
background artefacts was validated by the attention visualization maps, though. Using test photos that had not yet been seen, the 
trained model's resilience was further confirmed. Under various illumination and scale scenarios, it consistently maintained 
prediction confidence. This qualitative evaluation demonstrates the model's excellent interpretability and demonstrates how well-
suited it is to support dermatologists in clinical decision-making and early diagnosis. 

Fig. 4. Lesion Prediction 
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When compared with state-of-the-art pretrained models like Vision Transformer (ViT-B/16), Swin Transformer, and DenseNet121, 
the proposed DINOv2-B model achieved a higher overall accuracy with faster convergence and reduced validation loss. 
Furthermore, the model exhibited remarkable generalization on external validation datasets such as ISIC 2019, sustaining an 
accuracy 93%. These results affirm that the integration of DINOv2-B’s self-supervised learning capabilities with efficient training 
techniques provides a scalable and high-performing framework for real-world dermatological applications as shown in Fig. 4. 

 
IX.  CONCLUSION 

The suggested DINOv2-B-based skin lesion classification framework, in summary, shows a very reliable and efficient method for 
automated dermatological diagnosis. The model effectively extracts high-level semantic information from dermoscopic pictures by 
utilising DINOv2-B's self-supervised learning capabilities, allowing for precise classification between benign and malignant tumors. 
Combining sophisticated training methods, such as cosine annealing learning rate scheduling and Mix-up regularization, improves 
model generalization, stabilizes convergence, and lowers the chance of overfitting. The model outperforms traditional CNN and 
transformer-based architectures with an overall accuracy of 93%, according to experimental results on the HAM10000 and ISIC 
datasets. Additionally, the model demonstrates outstanding generalization to external datasets, demonstrating its usefulness in actual 
clinical settings. This system is a promising tool for helping dermatologists discover and diagnose skin cancer early because of its 
scalability, interpretability, and strong prediction performance. To further its usefulness in healthcare applications, future research 
might investigate deployment in real-time clinical decision support systems, attention-based interpretability mechanisms, and 
integration with bigger multi-modal datasets. 
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