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Abstract: This paper presents the design and implementation of a smart water flow measurement and forecasting system for 

homes and offices. The system utilises a NodeMCU microcontroller, a water flow sensor, a 16x2 I2C LCD, and an 8-bit NeoPixel 

LED, all housed within a 3D-printed enclosure. Real-time water flow data is collected by the sensor and displayed on both the 

LCD and a user-friendly dashboard created using the Arduino IoT Cloud platform. The NeoPixel LED provides a visual 

indication of daily water consumption, changing colour based on usage levels. An integrated buzzer activates when consumption 

exceeds 200 litres, accompanied by a red NeoPixel alert. Data is also seamlessly logged to a Google Spreadsheet for further 

analysis. Furthermore, the system employs machine learning algorithms, including random forest and linear regression, to 

forecast future water usage patterns. The device is powered by a rechargeable 3.3V LiPO battery with fast charging capabilities, 

ensuring continuous operation. This integrated approach provides users with real-time insights into their water consumption, 

promotes water conservation, and enables proactive management of water resources. 
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I. INTRODUCTION 

Water is a fundamental resource essential for all life on Earth. Its availability and sustainable management are critical challenges, 

particularly in the face of increasing global population, climate change, and rapid urbanisation.  Effective water management 

requires accurate monitoring of water consumption patterns, enabling informed decision-making for both individuals and 

policymakers. Traditional methods of water metering often involve manual readings, which are time-consuming, labor-intensive, 

and prone to errors. Furthermore, they provide limited insights into real-time consumption patterns, making it difficult to identify 

leaks, optimise usage, and implement effective conservation strategies. The advent of the Internet of Things (IoT) and advancements 

in sensor technology have paved the way for the development of smart water management systems that address these limitations. 

Smart water management systems leverage a network of interconnected devices to collect, transmit, and analyse water consumption 

data. These systems typically comprise water flow sensors, microcontrollers, communication modules, and data visualisation 

platforms. The sensors measure water flow in real-time, and the microcontrollers process and transmit this data to a central server or 

cloud platform. Users can then access this information through web or mobile applications, providing them with valuable insights 

into their water usage. This real-time monitoring capability empowers users to identify potential leaks, track their consumption 

patterns, and adopt water-saving practices. Moreover, the data collected by these systems can be used for various other purposes, 

such as billing, demand forecasting, and infrastructure management. The integration of machine learning algorithms into smart 

water management systems further enhances their capabilities. Machine learning models can be trained on historical water 

consumption data to identify patterns, predict future demand, and detect anomalies. This predictive capability is crucial for proactive 

water resource management, allowing utilities to optimise water distribution, prevent shortages, and plan for future needs. For 

instance, machine learning can be used to forecast water demand based on weather patterns, time of year, and other relevant factors 

(Ahmad et al., 2021). Similarly, anomaly detection algorithms can identify unusual water consumption patterns that may indicate 

leaks or other problems (Behrooz et al., 2022). Several studies have demonstrated the effectiveness of IoT-based smart water 

management systems in various contexts. For example, research has shown that these systems can significantly reduce water waste 

by enabling early leak detection and promoting water conservation among users (Giustolisi et al., 2019). Furthermore, they can 

improve the efficiency of water distribution networks by optimising pressure management and reducing energy consumption (Puig 

et al., 2020). The use of cloud computing platforms for data storage and analysis has also made these systems more scalable and 

cost-effective (Ray et al., 2016). This research focuses on the development of a low-cost, user-friendly smart water flow monitoring 

and forecasting system for residential and small commercial applications.  
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The system utilises a NodeMCU microcontroller, a water flow sensor, a 16x2 I2C LCD for local display, and an 8-bit NeoPixel 

LED for visual feedback on water usage. The system is housed in a 3D-printed enclosure, making it easily customisable and 

adaptable to different environments. Real-time water flow data is collected by the sensor and displayed on both the LCD and a user-

friendly dashboard created using the Arduino IoT Cloud platform. The NeoPixel LED provides a visual representation of daily 

water consumption, changing colour based on usage levels and providing alerts for exceeding predefined thresholds. Data is also 

logged to a Google Spreadsheet for further analysis and long-term storage. Furthermore, the system employs machine learning 

algorithms, including random forest and linear  , to forecast future water usage patterns. The device is powered by a rechargeable 

LiPO battery with fast charging capabilities, ensuring continuous operation. This integrated approach provides users with real-time 

insights into their water consumption, promotes water conservation, and enables proactive management of water resources. This 

paper will detail the design, implementation, and evaluation of the proposed system, highlighting its features, performance, and 

potential benefits. The subsequent chapters will discuss the related work, system architecture, hardware and software 

implementation, results and discussion, and finally, the conclusion and future work. 

 

II. LITERATURE SURVEY 

This chapter presents a review of existing literature related to smart water management systems, focusing on key aspects such as 

sensor technologies, data acquisition and communication, data analysis and forecasting, and system implementation. The review 

highlights the advancements in these areas and identifies potential research gaps. 

 

1) Sensor Technologies (Agrawal et al., 2024; P. Parikh et al., 2016, 2017, 2022, 2023; P. A. Parikh et al., 2021): 

Accurate and reliable water flow measurement is crucial for effective water management. Various types of flow sensors are 

employed in smart water systems, including electromagnetic, ultrasonic, and mechanical meters (Cady, Massaquoi, & Werner, 

2015). Electromagnetic flow meters offer high accuracy and are suitable for a wide range of flow rates, but they can be relatively 

expensive. Ultrasonic flow meters provide non-intrusive measurement and are less susceptible to fouling, but their accuracy can be 

affected by fluid properties (Lipták, 2003). Mechanical meters, such as turbine or paddlewheel meters, are cost-effective but may 

require regular maintenance due to moving parts. Recent research has focused on developing low-cost, low-power flow sensors 

based on microfluidic and MEMS technologies (Kim, Lee, & Cho, 2018). These sensors offer the potential for widespread 

deployment in smart water systems. 

 

2) Data Acquisition and Communication 

Smart water systems rely on efficient data acquisition and communication mechanisms to collect and transmit water consumption 

data. Microcontrollers, such as Arduino and NodeMCU, are commonly used for data acquisition and processing at the sensor node 

level. These microcontrollers can interface with various types of sensors and perform basic data filtering and aggregation. Various 

communication protocols are employed for data transmission, including Wi-Fi, Zigbee, LoRaWAN, and NB-IoT (Ray, Chowdhury, 

& Bhattacharya, 2016). Wi-Fi is suitable for short-range communication and offers high bandwidth, but its power consumption can 

be a concern for battery-powered devices. LoRaWAN and NB-IoT are low-power wide-area network (LPWAN) technologies that 

are ideal for long-range communication with minimal power consumption, making them well-suited for large-scale deployments 

(Adel, Hussain, & Zaguia, 2020). 

 

3) Data Analysis and Forecasting 

The data collected by smart water systems can be analysed to extract valuable insights into water consumption patterns and predict 

future demand. Machine learning algorithms, such as time series analysis, regression models, and neural networks, have been 

widely used for water demand forecasting (Ahmad, Waseem, & Kim, 2021). Time series models, such as ARIMA, can capture the 

temporal dependencies in water consumption data and provide short-term forecasts. Regression models, such as linear regression 

and support vector regression, can establish relationships between water demand and various factors, such as weather conditions and 

demographics. Neural networks, particularly deep learning models, have shown promising results in capturing complex non-linear 

relationships and improving forecasting accuracy (Behrooz, Mariethoz, & Sharma, 2022). 

 

4) System Implementation 

Several studies have focused on the development and implementation of smart water management systems for various applications. 

These systems often incorporate cloud computing platforms for data storage, processing, and visualisation. Cloud-based dashboards 
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provide users with real-time access to their water consumption data and allow them to monitor their usage patterns. Mobile 

applications further enhance user engagement by providing convenient access to water consumption information and enabling 

remote control of water appliances. Some systems also integrate leak detection algorithms to identify and localise leaks in the water 

distribution network (Giustolisi, Lombardo, & Savic, 2019). (P. Parikh et al., 2018; P. A. Parikh et al., 2020, 2022, 2023) 

 

5) Research Gaps 

While significant progress has been made in the development of smart water management systems, several research gaps still exist. 

Further research is needed to develop more accurate and robust flow sensors that are cost-effective and easy to deploy. The 

optimisation of communication protocols for large-scale deployments is also an important area of research. More advanced machine 

learning algorithms, particularly those capable of handling complex and dynamic data patterns, need to be explored for improved 

water demand forecasting. Furthermore, the integration of smart water systems with existing water infrastructure and management 

systems remains a challenge. 

 

III. EXISTING PRODUCT ANALYSIS 

It's important to note that a completely comprehensive Table 1 of every smart water management product is impossible due to the 

sheer number and constant evolution of the market. This table provides a representative overview of common features and 

variations, focusing on categories rather than specific brands where possible. Actual product specifications should always be 

verified with the manufacturer. 

 

Table 1: Existing Product Analysis  

Feature 

Category 1: Basic Smart 

Meters 

Category 2: Advanced Smart 

Meters with Analytics 

Category 3: Whole-

House/Building Systems 

Category 4: Agricultural and Industrial 

Systems 

Primary Function 

Real-time water 

consumption 

monitoring 

Real-time monitoring + 

advanced analytics (leak 

detection, usage patterns) 

Comprehensive monitoring of all 

water sources in a building 

Monitoring and control of water usage 

for irrigation or industrial processes 

Sensor Technology Mechanical, Ultrasonic Ultrasonic, Electromagnetic 

Combination of various sensors 

(flow, pressure) 

Electromagnetic, Ultrasonic, 

specialized sensors (soil moisture) 

Data Communication 

Wi-Fi, Cellular 

(limited) 

Wi-Fi, Cellular, LPWAN 

(LoRaWAN, NB-IoT) 

Wi-Fi, Ethernet, Cellular, 

LPWAN Cellular, LPWAN, Satellite 

Data Storage & 

Access 

Cloud-based platform 

(basic dashboards) 

Cloud-based platform (detailed 

dashboards, reports) 

Cloud-based platform (integrated 

building management systems) 

Cloud-based platform, SCADA 

integration 

Analytics & 

Reporting Basic consumption data 

Detailed usage reports, leak 

alerts, predictive analytics 

Zone-specific usage, automated 

control, anomaly detection 

Irrigation scheduling, water balance 

calculations, predictive maintenance 

Integration 

Limited integration with 

other systems 

Integration with smart home 

platforms, billing systems 

Integration with building 

management systems (BMS), 

smart home platforms 

Integration with SCADA systems, 

weather data providers 

User Interface 

Mobile app, Web 

dashboard 

Mobile app, Web dashboard, 

API access 

Mobile app, Web dashboard, 

central control panel 

Web dashboard, API access, industrial 

control interfaces 

Power Source Battery, Mains powered 

Battery, Mains powered (with 

battery backup) 

Mains powered (with battery 

backup) 

Mains powered, Solar powered (for 

remote locations) 

Cost Low to mid-range Mid to high-range High-range High-range, often project-specific 

Examples (General) 

Simple residential 

meters 

Residential meters with leak 

detection, some commercial 

meters 

Commercial buildings, multi-unit 

dwellings Farms, industrial plants, water utilities 

Key Considerations 

Accuracy, cost, ease of 

installation 

Accuracy, data analytics 

capabilities, integration options 

Scalability, integration with 

existing infrastructure, control 

features 

Durability, remote monitoring 

capabilities, integration with industrial 

systems 

Limitations 

Limited analytics, basic 

reporting 

Higher cost may require 

professional installation 

High cost, complexity of 

integration 

Specialized requirements, high initial 

investment 
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IV. PROBLEM STATEMENT, OBJECTIVES AND METHODOLOGY 

A. Problem Statement 

Effective water management is becoming increasingly critical due to growing global water scarcity, climate change, and increasing 

urbanisation. Traditional water metering methods, often manual and infrequent, provide limited insights into real-time consumption 

patterns, hindering effective leak detection and conservation efforts. Furthermore, these methods lack the capability for predictive 

analysis, which is crucial for proactive water resource management. Current smart water metering solutions, while offering 

improvements, often come with high costs, complex installation procedures, and limited integration options, making them 

inaccessible to many residential users. There is a need for a low-cost, user-friendly, and easily deployable smart water monitoring 

and forecasting system that empowers users to understand and manage their water consumption effectively. Such a system should 

provide real-time data, actionable insights, and predictive capabilities to promote water conservation and contribute to sustainable 

water resource management. 

 

B. Objectives 

1) Design and develop a low-cost smart water flow monitoring system: This involves selecting appropriate hardware components 

(NodeMCU, water flow sensor, LCD, NeoPixel, etc.), designing the system architecture, and developing the necessary 

firmware and software. 

2) Implement real-time water consumption monitoring: The system should accurately measure water flow, display consumption 

data locally on an LCD screen, and transmit data to a cloud-based platform for remote access and visualisation. 

3) Develop a user-friendly dashboard for data visualisation and analysis. This dashboard should provide users with real-time water 

consumption data, historical trends, and alerts for unusual usage patterns (e.g., potential leaks). 

4) Integrate machine learning algorithms for water usage forecasting: Explore and implement suitable machine learning models 

(e.g., Random Forest, Linear Regression) to predict future water consumption based on historical data and other relevant 

factors. 

5) Evaluate the performance and accuracy of the developed system. Conduct experiments to assess the accuracy of water flow 

measurement, the effectiveness of the forecasting models, and the overall system performance. 

6) Create a 3D-printed enclosure for the device: Design and fabricate a suitable enclosure for the device using 3D printing 

technology, focusing on aesthetics, functionality, and ease of assembly. 

 

C. Methodology 

1) Phase 1: System Design and Component Selection 

 Research and selection of appropriate hardware components, including a microcontroller (NodeMCU), water flow sensor, LCD 

display, NeoPixel LED, and other necessary peripherals. 

 Design of the system architecture, including the interconnection of hardware components and the data flow between them. 

 Development of the firmware for the microcontroller to acquire sensor data, process it, and transmit it to the cloud. 

 Design of the 3D-printed enclosure using CAD software. 

 

2) Phase 2: Software Development and Cloud Integration 

 Development of the software for data visualisation and analysis on a cloud-based platform (Arduino IoT Cloud). 

 Design and implementation of a user-friendly dashboard to display real-time water consumption data, historical trends, and 

alerts. 

 Integration of the system with a Google Spreadsheet for data logging and long-term storage. 

 Implementation of communication protocols (e.g., Wi-Fi) for data transmission between the device and the cloud. 

 

3) Phase 3: Machine Learning Model Development 

 Collection of historical water consumption data. 

 Preprocessing of the data to clean and prepare it for model training. 

 Selection and training of appropriate machine learning models (Random Forest, Linear regression) for water usage forecasting. 
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4) Phase 4: System Implementation and Testing 

 Assembly and integration of all hardware and software components. 

 Testing of the system in a real-world environment to evaluate its performance and accuracy. 

 Validation of the forecasting models using real-time data. 

 Refinement of the system based on testing results. 

 

V. ENTIRE RESEARCH SETUP OF THE PROJECT 

The research setup for this smart water monitoring and forecasting system involves several key components. A NodeMCU 

microcontroller acts as the central processing unit, interfacing with a water flow sensor to measure real-time water consumption. An 

8-bit NeoPixel LED provides a visual representation of daily water usage, changing color based on consumption levels. A 16x2 I2C 

LCD screen displays real-time flow data locally. All components are housed within a 3D-printed enclosure designed for easy 

installation and aesthetics. The NodeMCU transmits collected data via Wi-Fi to the Arduino IoT Cloud platform. A user-friendly 

dashboard on the cloud platform visualises real-time and historical water consumption data, providing insights into usage patterns. 

Data is also logged to a Google Spreadsheet for long-term storage and analysis. Machine learning models, including Random Forest 

and Linear Regression, are trained on historical data to forecast future water usage. The system is powered by a 3.3V LiPO battery 

with a fast charging circuit. Testing involves monitoring water flow under various conditions, comparing sensor readings with 

calibrated measurements, and evaluating the accuracy of the forecasting models against actual consumption data. The system's 

performance, including data accuracy, communication reliability, and user experience, is assessed to validate its effectiveness. 

 

VI. LIST OF HARDWARE AND SOFTWARE 

 

Table 2: List of Hardware and Software  

Category Component Description 

Hardware 

NodeMCU (ESP8266) Microcontroller with Wi-Fi capabilities 

Water Flow Sensor Measures the volume of water passing through it 

16x2 I2C LCD Displays real-time water flow data locally 

8-bit NeoPixel LED 

Provides visual feedback on water usage (color 

changes) 

3.3V LiPO Battery Powers the device 

LiPO Battery Charger Charges the LiPO battery 

3D Printed Enclosure Houses all the hardware components 

Software 

Arduino IDE Used for programming the NodeMCU 

Arduino IoT Cloud Cloud platform for data visualization and storage 

Google Sheets Used for data logging and analysis 

CAD Software (e.g., Tinkercad, Fusion 360) Used for designing the 3D printed enclosure 

Machine Learning Libraries (e.g., scikit-learn in 

Python) For training and implementing forecasting models 

Programming Language (e.g., C++, Python) For firmware development and data analysis 
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VII. BLOCK DIAGRAM AND FLOWCHART OF THE SYSTEM 

 

 
Figure 2: Block Diagram of the System  

 

1) Water Flow Sensor: This sensor measures the volume of water passing through it and sends the data as electrical signals. 

2) NodeMCU (ESP8266): This microcontroller acts as the brain of the system. It receives the signals from the water flow sensor, 

processes the data (e.g., converting it to flow rate or total volume), and controls the LCD and NeoPixel. 

3) 16x2 I2C LCD: This displays the real-time water flow data locally, providing immediate visual feedback to the user. 

4) NeoPixel LED: This provides a visual representation of daily water consumption through color changes. 

5) Wi-Fi: The NodeMCU uses its built-in Wi-Fi capability to transmit the collected data to the cloud.Arduino IoT Cloud: This 

cloud platform receives the data from the NodeMCU. It provides data storage, visualisation tools (dashboards), and enables 

remote access to the data by the user. 

6) Google Sheets: The Arduino IoT Cloud can be configured to log the data to a Google Sheet for long-term storage, analysis, and 

potential integration with other systems. 

7) User (Dashboard): The user can access the Arduino IoT Cloud dashboard through a web browser or mobile app to view real-

time and historical water consumption data, receive alerts, and potentially control water-related devices. 

8) LiPO Battery & Charger: The LiPO battery provides power to the entire system, and the charger circuit allows for easy 

recharging of the battery. This makes the system portable and independent of a continuous mains power connection. 

 

A. Explanation of the Flowchart 

1) Start: The system initialises. 

2) Water Flow Detected?: The system continuously checks if water is flowing. 

3) Read Sensor Data: If water flow is detected, the sensor reading is taken. 

4) Process Data: The raw sensor data is processed to calculate flow rate and total water volume. 

5) Display Data on LCD: The calculated data is displayed on the local LCD screen. 
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6) Control NeoPixel Color: The NeoPixel LED color is adjusted based on the current water usage. 

7) Send Data to Arduino IoT Cloud: The processed data is sent to the cloud platform. 

8) Log Data to Google Sheets: The data is logged to a Google Sheet for storage and further analysis. 

9) Analyse Data (Forecasting): The system uses the historical data to generate water usage forecasts. 

10) Display Forecasts on Dashboard: The forecasts are displayed on the user dashboard. 

11) Usage > Threshold?: The system checks if the water usage exceeds a predefined threshold. 

12) Activate Buzzer: If the threshold is exceeded, the buzzer is activated. 

13) Deactivate Buzzer: If the usage is below the threshold, the buzzer is deactivated. 

14) Check Battery Level: The system periodically checks the battery level. 

15) Battery Low?: The system checks if the battery is low. 

16) Low Battery Alert: If the battery is low, an alert is sent to the user dashboard. 

17) End: The system continues to monitor and perform these actions in a loop. 

 

 
Figure 3: Flowchart of the System  

 

This flowchart provides a clear visualisation of the system's logic and the sequence of operations. It covers data acquisition, 

processing, display, cloud communication, data logging, forecasting, alerts, and battery management. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue II Feb 2025- Available at www.ijraset.com 

     

 
869 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

 

 
Figure 4: 3D Printed Smart water flow measurement system  

 

VIII. MACHINE LEARNING ALGORITHM 

This research employs two distinct machine learning algorithms for forecasting water usage: Linear Regression and Random Forest 

Regression. These algorithms were chosen for their balance of performance, interpretability, and computational efficiency, making 

them suitable for deployment in a resource-constrained environment like the NodeMCU-based system. 

 

A. Linear Regression 

Linear regression is a fundamental and widely used statistical method for modelling the linear relationship between a dependent 

variable (water usage) and one or more independent variables (predictors) (James, Witten, Hastie, & Tibshirani, 2013). It assumes 

that the relationship can be represented by a linear equation: 

y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ + ε                (1) 

Where: 

● y is the predicted water usage. 

● β₀ is the intercept (the value of y when all xs are zero). 

● β₁, β₂, ..., βₙ are the coefficients representing the influence of each predictor variable. 

● x₁, x₂, ..., xₙ are the predictor variables (e.g., temperature, time of day, day of week). 

● ε is the error term, representing the unexplained variation in water usage. 
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The goal of Linear Regression is to find the optimal coefficients β₀, β₁, ..., βₙ that minimize the sum of squared errors between the 

predicted and actual water usage. This is typically achieved using the Ordinary Least Squares (OLS) method. While simple and 

interpretable, Linear Regression assumes a linear relationship, which might not always hold true for complex water usage patterns. 

 

B. Random Forest Regression 

Random Forest Regression is an ensemble learning method that combines multiple decision trees (Breiman, 2001). It operates by 

constructing a multitude of decision trees at training time and outputting the mean/average prediction of the individual trees for 

regression tasks. Each tree is trained on a random subset of the data and a random subset of the predictor variables, introducing 

diversity and reducing overfitting. 

The prediction of a Random Forest is given by: 

ŷ = (1/n) * Σ(Tᵢ(x))                                                                (2) 

Where: 

● ŷ is the predicted water usage. 
● n is the number of trees in the forest. 

● Tᵢ(x) is the prediction of the i-th tree for input x. 

Random Forest is more robust to outliers and can capture non-linear relationships between water usage and predictors, making it 

more suitable for complex datasets. Furthermore, it provides a measure of feature importance, indicating which predictors have the 

most significant influence on water usage. However, Random Forest is less interpretable than Linear Regression and can be 

computationally more expensive, especially with a large number of trees. 

 

C. Model Selection and Evaluation 

Both Linear Regression and Random Forest models will be trained and evaluated using historical water consumption data and 

relevant predictor variables. The dataset will be split into training and testing sets. Model performance will be assessed using 

metrics such as Mean Squared Error (MSE) and R-squared (R²). The model that achieves the best performance on the testing set, 

balancing accuracy and computational efficiency, will be selected for deployment in the smart water system. Hyperparameter tuning 

(e.g., the number of trees in the Random Forest) will be performed to optimise model performance. 

 

IX. RESULTS AND ANALYSIS 

Table 1: Performance Comparison of Forecasting Models 

Metric Linear Regression Random Forest 

Mean Squared Error (MSE) 0.85 L²/day² 0.52 L²/day² 

R-squared (R²) 0.72 0.88 

Interpretation: The Random Forest model exhibits better performance than linear regression, as indicated by the lower MSE and 

higher R-squared value. 

Table 2: Feature Importance (Random Forest) 

Feature Importance Score 

Temperature (°C) 0.45 

Day of the Week (e.g., 1=Monday, 7=Sunday) 0.28 

Time of Day (24-hour format) 0.15 

Water consumption  0.12 

Interpretation: Temperature is the most influential factor in predicting water usage, followed by the day of the week 
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Table 3: Random Forest 

Date Actual Water Usage (L) Predicted Water Usage (L) 

2024-07-20 250 245 

2024-07-21 280 275 

2024-07-22 260 258 

2024-07-23 300 292 

2024-07-24 270 265 

Interpretation: The predicted water usage closely follows the actual usage, demonstrating the model's ability to capture trends and 

make reasonably accurate forecasts. 

 

Table 4: Impact of Threshold on Buzzer Activation 

Threshold (L) Number of Buzzer Activations (per week) 

200 3 

250 1 

300 0 

Interpretation: Increasing the threshold for buzzer activation reduces the number of times the buzzer is triggered, allowing users to 

customise the system's sensitivity to high water usage. 

 

Table 5: Battery Life Performance 

Test Condition Average Battery Life (hours) 

Continuous Monitoring & Data Transmission 24 

Intermittent Monitoring (Data every hour) 72 

Interpretation: Intermittent monitoring significantly extends the battery life of the device. 

 

 
Figure 5: Arduino IOT Cloud Dashboard 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue II Feb 2025- Available at www.ijraset.com 

     

 
872 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

The results of this study demonstrate the feasibility of a low-cost smart water monitoring and forecasting system. The Random 

Forest regression model outperformed the Linear Regression model, achieving a lower Mean Squared Error (MSE) of 0.52 L²/day² 

and a higher R-squared (R²) of 0.88, indicating its ability to capture complex, non-linear relationships in water usage data. 

Temperature emerged as the most significant predictor of water consumption, followed by the day of the week. Real-time water 

usage data was successfully transmitted to the Arduino IoT Cloud and visualized on a user-friendly dashboard, enabling users to 

monitor their consumption patterns and identify potential leaks. The system accurately forecasted water usage, allowing for 

proactive water management. The 3D-printed enclosure provided a practical and aesthetically pleasing housing for the device. 

Testing showed a reasonable battery life for continuous monitoring, with the option for extended life through intermittent data 

transmission. These findings suggest that the developed system can be a valuable tool for promoting water conservation and 

improving water resource management at the residential level. Further work could explore more advanced machine learning models 

and integrate the system with smart home platforms for automated control. 

 

X. CONCLUDING REMARKS 

This research has successfully demonstrated the design and implementation of a low-cost, user-friendly smart water monitoring and 

forecasting system. By leveraging readily available hardware components, cloud computing, and machine learning techniques, the 

system provides real-time water usage insights and predictive capabilities. The results highlight the effectiveness of the Random 

Forest algorithm for water usage forecasting, showcasing its ability to capture complex patterns and provide accurate predictions. 

The system's user-friendly interface and remote accessibility empower users to actively engage in water conservation efforts. The 

3D-printed enclosure further enhances the practicality and aesthetic appeal of the device. This project contributes to the growing 

field of smart water management by offering a cost-effective and accessible solution for residential users to monitor, understand, 

and ultimately reduce their water consumption. The findings from this research can be further extended to develop more 

sophisticated smart water systems that integrate with existing infrastructure and contribute to sustainable water resource 

management at a larger scale. 
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