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Abstract: Warehouse automation demands fast, accurate object detection capable of operating on resource-constrained edge 
devices. In this work, we present SmartNavNet, a purpose-built detection network that synergistically integrates Ghost 
Convolution modules, a CSP-PANet feature aggregation neck, Squeeze-and-Excitation channel attention, and INT8 post-
training quantization. On the LOCO warehouse dataset—comprising 10,000 images of five classes under variable lighting, 
occlusion, and scale—SmartNavNet achieves 62.2% mAP@0.5, 70.2% precision, and 55.7% recall, with a 10 ms average 
inference latency on a Snapdragon 855 and a 3 MB quantized footprint. Compared to YOLOv4-Tiny and YOLOv5n baselines, 
our model offers up to 4.2% mAP improvement while halving model size and reducing latency by 20%, making it uniquely 
suitable for real-time warehouse applications. 
Keywords: warehouse automation; object detection; lightweight neural networks; ghost convolution; CSP-PANet; squeeze-and-
excitation; INT8 quantization. 
 

I. INTRODUCTION 
The rapid growth of e-commerce and just-in-time logistics has placed unprecedented demands on warehouse efficiency and 
accuracy. Modern warehouses leverage autonomous guided vehicles, robotic pick-and-place systems, and real-time inventory 
tracking to maintain operational throughput. At the core of these systems lies object detection: identifying boxes, pallets, forklifts, 
and other key elements in dynamic and cluttered environments. While high-capacity convolutional networks achieve state-of-the-art 
accuracy [1], they require extensive compute and memory, impeding deployment on low-power edge platforms.Lightweight 
detectors like YOLOv4-Tiny [2] and YOLOv5n [3] mitigate this gap by reducing network depth and width but often suffer 
performance degradation in complex warehousing scenes characterized by heavy occlusion, uniform textures, and varying object 
scales. Our goal is to design a compact yet accurate model specifically optimized for warehouse imagery. We propose 
SmartNavNet, in which novel Ghost Convolution modules generate efficient feature maps, a CSP-PANet neck fuses multi-scale 
information, SE blocks provide channel-wise attention, and INT8 quantization further compresses the network for real-time edge 
inference. 

 
II. BASIC CONCEPT 

The design of SmartNavNet is motivated by the need to maximize detection accuracy while minimizing both computational cost and 
model size, enabling real-time inference on resource-constrained hardware. Accordingly, the architecture embodies four 
interdependent innovations: 
 
A. Efficient Feature Generation via Ghost Convolutions 
Traditional 3×3 convolutional layers often produce redundant feature maps, leading to unnecessary computation. Ghost Convolution 
modules address this by first computing a small number of intrinsic feature maps through standard convolutions, and then 
generating additional "ghost" maps via inexpensive linear transformations (e.g., depth wise convolution or linear projection). This 
two-stage process reduces FLOPs by approximately 30% and cuts down on parameter count, while preserving the richness and 
diversity of learned features. Ghost modules are therefore ideal for edge scenarios where every cycle of computation matters [4]. 
 
B. Cross-Stage Partial Multi-Scale Fusion with CSP-PANet 
In complex warehouse scenes, objects appear at a variety of scales—from small barcode labels on boxes to large pallets stacked on 
shelves. To handle this, SmartNavNet employs a CSP-PANet neck that combines the strengths of Cross-Stage Partial (CSP) 
connections with Path Aggregation Network (PANet) fusion. CSP splits feature channels into two pathways, one undergoing further 
transformation and the other bypassing, which reduces computation and mitigates feature duplication.  
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The PANet structure then merges high-resolution spatial features from early layers with semantically rich representations from 
deeper layers through top-down and bottom-up pathways. This design ensures that both fine details and abstract concepts are readily 
available to the detection head [5]. 
 
C. Adaptive Channel Attention through Squeeze-and-Excitation 
Not all feature channels contribute equally to accurate object localization and classification. Squeeze-and-Excitation (SE) blocks 
dynamically reweight channels by first "squeezing" global spatial information into a channel descriptor via global average pooling 
and then "exciting" each channel through a lightweight gating mechanism (two fully-connected layers with a reduction ratio). The 
resulting channel-wise weights are applied multiplicatively, amplifying informative features and suppressing less relevant ones. SE 
blocks introduce negligible overhead yet yield consistent accuracy gains, particularly under challenging lighting and occlusion 
conditions common in warehouse environments [6]. 
 
D. Deployment-Ready Compression with INT8 Quantization 
Even after architectural optimizations, floating-point models can be too large or slow for embedded inference. SmartNavNet 
leverages post-training INT8 quantization using TensorFlow Lite, converting both weights and activations to 8-bit integers. Through 
careful calibration (using a representative subset of 1 000 images), this process reduces the model footprint from ~10 MB to 3 MB 
and speeds up inference by roughly 40% on a Snapdragon 855, with less than 1% drop in mAP. INT8 quantization thus makes 
SmartNavNet practical for continuous, battery-powered warehouse applications [7]. 

 
III. LITERATURE REVIEW 

A. Surveys and Benchmarks 
Mittal [8] provides a comprehensive survey of lightweight detection architectures, categorizing trade-offs in size versus accuracy. 
Nafea et al. [9] review methods for mobile augmented reality, emphasizing pruning and quantization for on-device inference. 
 
B. Architecture Enhancements 
Gong [10] fuses ShuffleNetV2 and Vision Transformer elements into YOLOv7, demonstrating that hybrid features enhance 
detection diversity. Zhang et al. [11] adapt YOLOv5 for unmanned surface vehicles, highlighting the benefits of domain-specific 
anchor and head configurations. Chen et al. [12] propose TinyDet, optimizing neck and head modules for small-object scenarios. 
 
C. Attention and Multiscale Learning 
Sunkara and Luo’s YOGA [13] model integrates multiscale attention to tackle occlusions, while Ji et al.’s YOLO-TLA [14] applies 
lightweight transformers for tiny-object detection, achieving notable gains in mAP on crowded scenes. 
 
D. Small-Object & Anchor Optimization 
Nguyen et al. [15] systematically evaluate feature pyramid networks for small-object detection, and Zhong et al. [16] introduce 
dynamic anchor box optimization through online clustering for improved localization. 
 
E. Edge-Device Deployment 
Moosmann et al. [17] deliver TinyissimoYOLO, a sub-1 MB fully-quantized model for ultra-low-power IoT, and Humes et al. [18] 
develop Squeezed Edge YOLO, attaining sub-10 ms inference on embedded GPUs. Liu et al. [19] present EdgeYOLO, fusing 
quantization-aware training and hardware acceleration. 
 

IV. PROPOSED ARCHITECTURE 
To provide a clear and comprehensive view of SmartNavNet’s inner workings, we detail each component in terms of layer 
configurations, channel dimensions, and operational flow. Fig. 1 illustrates the overall architecture. 
 
A. Backbone: Ghost-MobileNetV3 
The backbone extends MobileNetV3-Small, replacing every standard 3×3 convolution with a Ghost Convolution module. The 
network comprises five stages: 
1) Stage 1 (Input): 640×640×3 image; initial 3×3 conv (stride 2), output 320×320×16. 
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2) Stage 2: Two Ghost modules (kernel 3×3, expansion 1.5×), output 160×160×24. 
3) Stage 3:Four Ghost modules (kernel 5×5, expansion 2×), output 80×80×40. 
4) Stage 4: Five Ghost modules (kernel 3×3, expansion 2.5×), output 40×40×80. 
5) Stage 5: Three Ghost modules (kernel 5×5, expansion 3×), output 20×20×112. 
Each Ghost module uses a 1×1 pointwise conv to compute intrinsic feature maps followed by depth wise conv to generate ghost 
maps, concatenating to the stage output. 
 
B. Neck: CSP-PANet Feature Aggregation 
The neck fuses three feature maps from the backbone: 20×20×112, 40×40×80, and 80×80×40. 
1) CSP Blocks: Each feature map is split 50:50 into a processing path and a skip path. The processing path undergoes two residual 

Ghost modules and a 1×1 conv, then merged with the skip path. 
2) Top-Down Path: The 20×20 map is up sampled to 40×40, concatenated with the 40×40 input, and passed through a CSP block. 
3) Bottom-Up Path: The fused 40×40 map is down sampled to 20×20, concatenated with the original 20×20, and processed by 

another CSP block. 
The 80×80 map is similarly fused with the 40×40 intermediate output using CSP and up/down sampling for three-scale feature 
integration. 
 
C. Attention: Squeeze-and-Excitation Placement 
SE blocks are inserted after each CSP output before up/down sampling: 
1) Squeeze: Global average pooling reduces H×W×C to 1×1×C. 
2) Excitation: Two fully connected layers (C/r → C with r = 4) and ReLU/ sigmoid activation produce channel weights. 
3) Scale: Channel weights multiply the CSP block output, refining feature importance. 
 
D. Head: Multi-Scale Detection 
The detection head operates on three scales: 80×80, 40×40, and 20×20 feature maps. For each: 
1) Channel Reduction:A 1×1 conv reduces channels by 50%. 
2) Spatial Context Extraction:A 3×3 depth wise separable conv extracts spatial context. 
3) Prediction Layer:A final 1×1 conv predicts 3 anchor boxes × (4 box coords + 1 objectness + 5 class scores) = 30 

channels.Anchor boxes (width, height) are derived via k-means clustering on LOCO bounding boxes: [(10,10), (20,20), 
(30,30)] for 80×80; scaled accordingly for 40×40 and 20×20. 

 
Fig.1SmartNavNet architecture: five-stage Ghost-MobileNetV3 backbone, three-scale CSP-PANet neck with SE blocks, and multi-

scale detection head. 
 

V. METHODOLOGY 
In this section, we detail our experimental setup using numbered subsections and topics for clarity. 
A. Dataset and Annotation 
1) Dataset Description: The LOCO dataset contains 10 000 RGB images capturing typical warehouse scenes, each annotated with 

axis-aligned bounding boxes for five object categories: boxes, pallets, conveyor belts, forklifts, and workers. 
2) Data Split: We divide the dataset into 70% training (7 000 images), 15% validation (1 500 images), and 15% test (1 500 

images), ensuring a balanced representation of each class across splits. 
3) Annotation Format: Annotations adhere to the PASCAL VOC standard, with box coordinates normalized by image width and 

height and stored in XML files. 
 
B. Preprocessing and Augmentation 
1) Image Resizing: All images are resized to 640×640 pixels, preserving aspect ratio via zero-padding when necessary. 
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2) Geometric Augmentation: We apply random horizontal flips (p=0.5) and random rotations within ±15° to increase viewpoint 
diversity. 

3) Photometric Augmentation: Brightness and contrast are jittered by ±20% to simulate varying lighting conditions. 
4) Spatial Augmentation: Random cropping removes up to 10% of image area, followed by resizing back to 640×640 to introduce 

scale variation. 
5) Normalization: Channel-wise pixel values are normalized to zero mean and unit variance using statistics computed from the 

training split. 
 
C. Training Setup and Hyperparameters 
1) Framework and Hardware: Model training is implemented in PyTorch 1.12 on an NVIDIA GTX 1080 Ti GPU. 
2) Optimization Parameters: We use SGD with an initial learning rate of 0.01, momentum = 0.9, and weight decay = 5×10⁻⁴. 
3) Batching and Epochs: The model is trained for 100 epochs with a batch size of 16. 
4) Learning Rate Schedule: Cosine annealing schedule with warm restarts every 30 epochs adjusts the learning rate. 
5) Early Stopping: Training terminates early if the validation mAP@0.5 does not improve for 10 consecutive epochs. 

 
D. Loss Functions 
1) Localization Loss (CIoU): We optimize bounding box regression using Complete IoU (CIoU) loss, which accounts for overlap, 

center distance, and aspect ratio consistency. 
2) Classification Loss (Focal BCE): Objectness and class probabilities are learned via focal binary cross-entropy with focusing 

parameter γ = 2.0 to mitigate class imbalance and hard negative examples. 
3) Loss Weighting: Both CIoU and classification losses are weighted equally (λ_loc = λ_obj = λ_cls = 1.0) based on empirical 

validation. 
 
E. Implementation Details 
1) Runtime Environment: Experiments were conducted on Ubuntu Linux 20.04 LTS, with CUDA 11.3 and cuDNN 8.2 supporting 

GPU acceleration. 
2) Software Libraries: The model was implemented using PyTorch 1.12 for training and TensorFlow Lite 2.10 for quantization 

and deployment. Supporting libraries include NumPy, OpenCV for data handling, and Matplotlib for result visualization. 
3) Hardware Configuration: Training was performed on an NVIDIA GTX 1080 Ti with 12 GB VRAM; quantized inference 

benchmarks were run on a Qualcomm Snapdragon 855 Developer Kit. 
4) Experiment Reproducibility: System configuration (OS, driver, library versions) and random seeds (for Python, NumPy, and 

PyTorch) are documented to enable consistent replication of results. 
 
F. Quantization and Edge Deployment 
1) Calibration Dataset: 1 000 representative validation images are used to collect activation statistics for quantization. 
2) Model Conversion: The FP32 model is converted to INT8 using TensorFlow Lite’s post-training quantization API. 
3) Latency Benchmarking: We deploy the quantized model on a Snapdragon 855 via the TensorFlow Lite C++ API, measuring 

average inference time over 1 000 forward passes and recording peak memory usage. 
 
G. Evaluation Metrics 
1) mAP@0.5: Mean Average Precision at Intersection-over-Union threshold 0.5, averaged across classes. 
2) Precision: Ratio of true positive detections to total positive predictions, averaged per class. 
3) Recall: Ratio of true positive detections to total ground-truth boxes, averaged per class. 
4) F1 Score: Harmonic mean of precision and recall, providing a balanced performance measure. 
5) Inference Latency: Measured in milliseconds on the target device. 
6) Model Size: File size of the quantized TFLite model, indicating storage footprint. 
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VI. RESULT 
A. Quantitative Performance 

TABLE I 
PERFORMANCE ON LOCO TEST SET 

Model mAP@0.5 (%) Precision (%) Recall (%) F1 (%) Latency (ms) Size (MB) 

SmartNavNet 62.2 70.2 55.7 62.3 10.0 3.0 

YOLOv4-Tiny 58.0 65.0 52.0 57.9 12.5 6.2 

YOLOv5n 60.5 68.0 54.0 60.5 11.0 7.1 
B. Ablation Study 

TABLE III 
ABLATION STUDY 

Variant mAP@0.5 (%) Latency (ms) Size (MB) 

Full model 62.2 10.0 3.0 

Ghost Convs 60.1 11.5 3.8 
CSP-PANet 59.8 9.8 2.5 

SE blocks 61.0 10.2 2.9 

Quantization Off 62.3 15.0 10.0 
 
C. Qualitative Analysis 

 
Fig. 2 Sample SmartNavNet detections on LOCO test images. 

 
VII. CONCLUSION 

In this paper, we introduced SmartNavNet, a lightweight object detection model meticulously engineered for real-time warehouse 
automation on resource-constrained edge devices. By integrating Ghost Convolution modules for efficient feature generation, a 
CSP-PANet neck for robust multi-scale fusion, Squeeze-and-Excitation blocks for adaptive channel attention, and INT8 post-
training quantization for deployment-ready compression, SmartNavNet strikes an optimal balance between detection accuracy, 
inference speed, and model size. 
Our extensive evaluation on the LOCO dataset, encompassing 10 000 images under diverse lighting, occlusion, and scale 
conditions, demonstrates that SmartNavNet achieves 62.2% mAP@0.5, 70.2% precision, and 55.7% recall, with an average 
inference latency of 10 ms on a Snapdragon 855 and a compact 3 MB quantized footprint. Compared to established lightweight 
baselines—YOLOv4-Tiny and YOLOv5n—our model delivers up to 4.2% higher mAP, reduces model size by more than 50%, and 
accelerates inference by 20%, affirming its suitability for real-time monitoring and robotic guidance in modern warehouses. 
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A. Key takeaways 
1) Efficiency Gains: Ghost Convolutions and CSP-PANet reduce computational overhead without compromising feature richness. 
2) Attention Benefits: SE blocks enhance discriminative power, particularly in cluttered scenes. 
3) Edge Deployment: INT8 quantization enables sub-10 ms inference with minimal accuracy loss. 

 
B. Future Directions 
1) Recall Improvement: Incorporating advanced augmentation strategies (e.g., mosaic, CutMix) and robust loss functions (e.g., 

GIoU, DIoU) to further boost recall on heavily occluded objects. 
2) 3D Integration: Extending the 2D detector with depth or stereo vision inputs for enhanced robotic manipulation and obstacle 

avoidance. 
3) Hardware-Aware Optimization: Employing Neural Architecture Search (NAS) techniques tailored to specific SoCs and 

microcontrollers to maximize throughput and energy efficiency. 
Through these enhancements, SmartNavNet lays a foundation for highly responsive, accurate, and compact vision systems in next-
generation warehouse automation. 
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