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Abstract: In this study, the objective is to estimate the physical parameters of each snow layer at a given certain altitude, which is 
according to the problem will always be between other altitudes, whose profile data is entirely provided. The provided data for the 
target profile will also consist of the number of layers, height of each layer, the back-scattering coefficient and the altitude. The 
goal is to estimate the interval [풚풎풊풏, 풚풎풂풙] for each parameter, which are sphericity, diameter and density of the snowflakes. We 
are using here a multilayer snow profile and then applying the back scattering coefficients to calculate the snow layer altitude 
and height. Further, by correct prediction we can preserve the snow layers by continuously monitoring the snow model at the 
correct altitude throughout the year. Our aim demonstrates the comparatively better way to predict the best snow profile at right 
altitudes. 
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I.      INTRODUCTION 
The Arctic region has undergone a serious climate change in the near decade. A lot of ice region has melted due to global warming. 
Unlike Antarctic Sea ice arctic region is highlighted for decline due to serious change in sea ice thickness [1]. Also, a huge loss of 
multi-year ice is observed and replaced by first year ice which is a lot of concern [2].  It has a resulted in decline of the Spring snow 
depth [3]. These changes have significantly affected the entire environment of eco system and marine environment with navigation 
system for water animals.[4][5] Similarly, NoSREx campaign was conducted near the Arctic Region to the Sodankylä‐Pallas testbed 
for measuring the ever-declining ice bed of Sodankylä region. The landscape is generally flat and there are small hilly parts where 
the ice beds appear to be getting extinct in the recent years (NoSREx Data Report).[6][7] 
 

II.      RESEARCH OBJECTIVES 
In this project we will give the context of the problem, describe how we determine the boundaries of the target profiles through 
interpolation and the ideas about increasing the performance of the model. We will conclude with the main challenges encountered, 
the methods that were tried and the possible extensions. We are given the data of 7 altitudes for 4 different dates. Each profile 
consists of assimilated data and results of snow evolution model (crocus). Therefore, we have the following parameters: (h, g1, g2, 
g3, ρ, σ). So, if we consider a snow-pack with k layers of snow, where k is known: 
1) ℎ  = (ℎ , ..., ℎ ) is the height of each layer 
2) 푔1  = (푔 , ..., 푔 ) and 푔2  = (푔 , ..., 푔 ) are the sphericity of the snowflakes at each layer 
3) 푔3  = (푔 , ..., 푔 ) and 휌  = (휌 , ..., 휌 ) are the diameter and the density of the snow flakes 
4) σ is the back-scattering coefficient at a given altitudes at a given date 
We need to estimate (푔1 , 푔1 , 푔2 , 푔2 , 푔3 , 푔3 , 휌 , 휌 ) for the target pro-file, whose number of layers 
may be different from the given profiles. The only data provided for the target profile are: number of layers, back-scattering 
coefficient and the height of each layer. The position of the arctic research centre and the location of the site is given below in Fig 1 
and Fig 2. The data taken from the research centre is given below in Fig 3 and Fig 4. 

 
Fig. 1  Position of the Arctic research Centre         Fig. 2 Location of the site where the ice bed is to be measured 
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Fig. 3 Month based data from Research centre                              Fig. 4 Azimuth and frequency data from centre 

 
A. Data Visualisation 
The data above shows the number of Azimuth angles that we can take during the experiment. And also, the elevation range with the 
azimuth step is provided with a monthly basis. Here the frequency steps are an important factor in implementing the ice detection 
model. As soil temperature with moisture plays a vital role in determining the ice pack layer depth in different seasons.  
 

III.      POSSIBLE SOLUTION FOR THE ESTIMATION OF THE UNKNOWN SNOW PROFILE 
A. Averaged Coefficients Interpolation 
Our first approach considers the following setting. We know at least two full snow profiles, and we are trying to estimate another 
snow profile with known number of layers and known heights of each layer. Precisely, we are trying to estimate for each layer of the 
profile the parameters (g1, g2, g3, ρ). 
 
B. Linear Interpolation 
As a first approach we will consider linear interpolation between the two known profile with given altitudes, to get the missing snow 
profile. The main difficulty is to take into account the different number of layers between the snow profiles. The first step is to 
normalise the total heights of every snow layer. Let's call (ℎ ,..,ℎ ), the heights of the n layers of the known snow profile 푆 , 
(ℎ ,..,ℎ ), the heights of the m layers of the known snow profile 푆  and (ℎ ,..,ℎ ) the heights of the k layers of the unknown snow 
profile 푆 . We consider the following normalisation:  

                                                                         (ℎ ,..,ℎ ) = {   ,..,
∑   }  

We apply the same normalisation on the heights of the two other snow profiles. We now have snow profiles with the same total 
height but with different number of layers and different heights for each layer. We can't apply directly interpolation between 
parameters of 푆  and 푆  because of the different number of layers. We need to define a way to get a set of 4k parameters for the 
snow profiles 푆  and 푆 . First divide every layer of every snow profile into 퐼  very small layers with parameters corresponding to 
their depth and their snow profile. Second, define 퐿  the number of small layers covering the 1 layer of 푆 . Third, take the 퐿 first 
layers of 푆 and average their coefficients. Fourth, define 퐿  the number of small layers covering the 2  layer of 푆 . Fifth, take the 
layers from index 퐿  to 퐿  + 퐿  of 푆  and average their coefficients. Sixth, repeat this process for all layers of 푆 . Seventh, repeat 
this process replacing 푆  with 푆 . Eigth, taking a great value for l reduces the overlapping between the original layer and the small 
layers and thus gives results with greater precision. Once finished we have 2 sets of 4k parameters and we can perform a simple 
linear interpolation between the new parameters estimated from 푆  and 푆 . Let’s define 푥  the altitude of snow profile 푆 , 푦  a 
parameter corresponding to the unknown layer i of 푆  estimated using the snow profile 푆 , 푥  the altitude of snow profile 푆 , 푦  a 
parameter corresponding to the unknown layer i estimated using the snow profile 푆 , 푥  the altitude of snow profile 푆  and 푦  the 
parameter we want to estimate.                            

       Then:   푦 =  푦 + (푥   −  푥 )      
(     )  

 We can interpolate every parameter of every layer in this way and then obtain an estimation of the parameters of the unknown snow 
profile. The whole process is shown in the Fig 5. 
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Fig. 5 Process of Linear Interpolation for snow profiles 

 
C. Fitting Mixture of Gaussian to Generate Back-Scattering Coefficients 
For increasing the performance of the model, we need to take into account the back-scattering coefficient value. In this section we 
present a method to obtain a parametric model based on generating back-scattering coefficients for randomly chosen set of 
parameters. First, we need to generate a great number of σ randomly and uniformly using the function model. We consider a 
maximum of 50 layers for a snow profile, meaning that the parameters space will be of dimension 250 [for each layer i : (hi, ρ, g1, 
g2, g3)]. The parameter space will be constrained by known empirical maximum and minimum values for the parameters. We 
consider g1 ∈ [−99, 0] (no units), g2 ∈ [0, 99], (no units), g3 ∈ [0.2, 3] (mm), ρ ∈ [0.2, 0.6] (no units) and a total height between 0.2 
and 4 (m). The units given here are the ones used in the model. Using those data, we might fit a mixture of Gaussian using a non-
linear least square regression as in Fig 6. Fig 5 data was generated using a linear combination of Gaussian function and adding a 
small random Gaussian noise. Two different sets of initial values for the non-linear least-square algorithms are chosen. 

 
(a) Failed Regression due to bad choice of initial parameters                   (b) Successful Regression by choosing proper parameters 

Fig. 6 Process of Linear Interpolation for snow profiles 
 

D. Using the mixture and the interpolation 
As mentioned earlier, the interpolation does not take into account the back-scattering coefficient. we propose here a strategy to take 
the back-scattering coefficient into account as well as the profile estimated using the interpolation and the mixture of Gaussian fitted. 
The interpolation process returns an estimated profile 푝 . Using the fitted mixture of Gaussian 퐺 , we can assign a back-scattering 
coefficient to any profile 푝  as 퐺(푝) = 휎. Let's call 푝  the unknown true snow profile and 휎  the back-scattering coefficient of the 
unknown snow profile. 푝  is an estimation of the unknown snow profile but we expect: 퐺(푝 ) = 휎   ≠ 휎  . We want to find a new 
profile 푝∗ close to 푝  such that 퐺(푝∗)  =  휎 . Let's define: 퐺 (p) = G(p) - 휎  
 Now the set (푝:퐺 (푝) = 0) corresponds to the set of snow profiles for which (푝) = 휎  . Finding a new profile 푝∗  such that 
퐺(푝∗) = 휎  is now equivalent to finding a root of the function 퐺 . However, the search must be constrained given that for the 
unknown profile, we know the number n of layers and the height of each layer(ℎ … …ℎ ).  
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The problem we're solving can be written by giving an initial profile 푝  and a given 푛 , knowing the number of layers 푛  and their 
heights (ℎ … … …ℎ ) find a profile 푝∗ such that  ￼  
                                          (ℎ ∗,푔 ∗,푔 ∗,푔 ∗,휌 ∗, … . . ,ℎ ∗)= 0 for 푖  ∈  [푛 + 1,  50]  
                                                                                             ℎ ∗ = ℎ   for  푗  ∈  [1,  푛 ]  
Finally, we can transform it into a minimisation problem, finding a root of 퐺  is equivalent to finding a local minimum of  
 defined as 퐺 (푝)  =  |퐺 (푝)|  .  
                                                                                   Solve for 푝∗ = 푙표푐푎푙  arg min퐺 (푝)  
                                      (ℎ ∗,푔 ∗,푔 ∗,푔 ∗,휌 ∗, … … , ℎ ∗) = 0 for 푖  ∈  [푛  +  1,  50]  
                                                                                             ℎ ∗ = ℎ   for 푗  ∈  [1,  푛 ]  
We can now choose a minimisation algorithm adapted for 퐶  function and linear constraint, possibly taking advantage of the fact 
that we can compute analytically the gradient of 퐺  where it's defined. For example, we could choose the Newton-CG algorithm. 
 

IV.      OBSERVATION OF THE OUTPUT 
The newly obtained profile 푝∗ satisfies the knowledge we have on the unknown profile 푝  and we expect it to be closer to the true 
profile than the profile estimated using average interpolation algorithm. Fig 7 illustrates the algorithm on a toy example, with one 
parameter to estimate and for a set of data generated using linear combination of Gaussian with a small random Gaussian noise. The 
curve represents the fitted data as in Fig 6. 

 
(a) Estimated parameter 푝  using averaged interpolation and back scattering coefficient (y-axis) 휎   

 

  
              (b)The green diamond point signifies the back scattering coefficient  휎  corresponding to the unknown profile 

 

 
     (c)Subtracting 휎  to the fitted mixture of Gaussian and finding the absolute value  
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(d) the green dot for x = 0 corresponds to the new profile 푝∗ after minimization of the function 퐺  

Fig. 7 Illustration of the Algorithm using averaged interpolation 
 

V.      CONCLUSIONS 
One of the main challenges was to find the way to approach the problem. In the beginning we were looking for the ways to map the 
pixel intensities with the physical parameters of the snow layer. We came up with the graphical approach, but since the conditions 
changed where the images were not a concern, the approach gave a near perfect estimation of snowflakes. Also, to improve the 
estimated parameters, we provided all together with the back-scattering coefficients and the heights.  
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