

10 VII July 2022

https://doi.org/10.22214/ijraset.2022.44551

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 10 Issue VII July 2022- Available at www.ijraset.com

42 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Software Defect Estimation Using Machine
Learning

Dr. Md Jaffar Sadiq1, Shaik Ruma Sufian2, K. Sowmya Reddy3, Madapati Vinisha4

1Associate Professor, Dept of IT, Sreenidhi Institute of Science and Technology
2, 3, 4B.Tech (IT) Student

Abstract: In recent years, software has become increasingly vital in our daily lives. We come across it in various forms like Alexa
to automatic mops.
Building a software is a huge task, it involves many stages. The developer is required to build or design a software within the
given deadline and with the allotted budget. During which few erroneous decisions might be taken which lead to poor logic,
improper design etc.
 That would make the user dissatisfied. In order to let the device achieve the users desired outcome we must build a flawless
software. To build one as that, one must predict if any defects are present.
As a result, we employ seven machine learning algorithms to assist us in predicting any software flaws.
Keywords: Software development, Machine learning

I. INTRODUCTION
Software development is both necessary and time-consuming. As discussed before it includes various stages. Project planning,
requirements, design, coding, testing, maintenance, and deployment are the seven steps that software development encompasses. A
software engineer is expected to build or design a software within the given deadline and with the allotted budget. During this phase
few erroneous decisions might be taken that lead to poor logic, wrong coding, improper design etc. Giving rise to rework. Rework
increases the maintenance costs.
We want to see how well seven machine learning algorithms forecast software problems using quality metrics including precision,
accuracy, F-measure, and recall.Bagging, Multilayer perceptron, Multinomial naive bayes, Naive bayes, Radial bias, Random forest,
and Support vector machine were among the machine learning techniques used.

II. RELATED WORK
Numerous studies have developed and used factual and AI-based defect prediction algorithms in programming frameworks. Basili et
al (1996) [2] have utilized calculated relapse to inspect what the impact of the set-up of item situated plan measurements is on the
expectation of shortcoming inclined classes. Khoshgoftaar et al (1997) [3] have utilized the neural organization to group the
modules of enormous media transmission frameworks as flaw inclined or not and compared it to a non-parametric discriminant
model. To identify software problems, Fenton et al. (2002) [8] utilized a Bayesian belief.
But, Weaver(2003) [9] along with Ma et al. (2007) [10] discovered that limitations were present in the latter. Ceylan et al. (2006) [4]
proposed a decision tree, radial bias function and multilayer perceptron based model which was applied on three huge companies in
Turkey and detected the flaws in the software, which lead the companies to make necessary changes. Elish et al. (2008) [5] applied
SVM on the four NASA data sets [12] against other machine learning algorithms and realizedSVM's performance was superior to
that of others. Wang at all. (2013) [7] worked on ensemble algorithms and re-sampling techniques, they used various methods along
with AdaBoost.NC.

III. METHODOLOGY

A. Data set
In this case, two data sets are employed. They're NASA data sets taken from the "PROMISE" repository that are open to the
public.[1]. The data sets have 22 instances. To demonstrate how data size affects accuracy, data sets of various sizes were
chosen.Language, number of attributes, number of instances, proportion of defective modules, and description are all included in
each data set, it is depicted in Table II.Every data set contains equal number of attributes. The attribute details are shown below in
Table I.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 10 Issue VII July 2022- Available at www.ijraset.com

43 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Table I

Table II

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 10 Issue VII July 2022- Available at www.ijraset.com

44 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

B. Algorithms
The seven machine algorithms used or selected for this experiment have been taken from Malhotra et. al. (2015) [6] andare as
follows:
1) Bayesian Learners
 Naive Bayes: Based on the Bayes Theorem. It determines in every class the probability of every feature and returns the highest

probable outcome.It used to tackle classification problems. P(A|B) = P(B|A)P(A) P(B)
 Multinomial Naive Bayes: To reach this outcome, size of the NB classifier is to be increased. A multinomial distribution is

assigned to each feature.

2) Ensemble Learners
 Bagging: Bagging is obtained from bootstrapping and aggregating. It is the combination of both. Bootstrapping is nothing

but selecting randomly some samples from the given original data set. In bootstrapping selections can be repeated. And each
bootstrapped data set is converted into a decision tree. And the output is predicted based on the frequencies.

 Random Forest: Based on tree. It makes a prediction for each tree and chooses the best one to avoid over fitting and improve
generalisation accuracy from the most frequently occurring results of all projected classes over trees. It is the most adaptable,
efficient, and user-friendly tool for dealing with classification and regression issues.

3) Neural Networks
 Multilayer Perceptron: A multilayer perceptron is used in a Neural Network. The input, output, and at least one or more hidden

layers are the three layers that make up this system. The feed forward technique is used.
 Radial basis Function: It is similar to mathematical function. It assigns a real value to each input which is taken from the

original data set and the obtained value is always positive. It always gives a positive value as it is based on the distance measure.
It also contains three layers input, output and hidden layers.

4) Support Vector Machines
The SVM basically create a boundary line it divides the classes. This boundary line is known as hyper plane. It uses two vectors i.e.,
points to create a hyper plane. These two vectors are generally outliers. As it uses two vectors for the support it is names as support
vector machine algorithm. Svm is classified into two types. They are linear and non linear svm. Linear svm is used when the given
original data is in linear format. Otherwise non linear svm is used. SVM selection helps to create limit points/vectors of the hyper
plane.

C. Evaluation Metrics
To assess the above-mentioned learning algorithms, generally used assessment metrics such as the terms "accuracy," "precision,"
"recall," and "F-measure" are used. Confusion matrix is none other than the error matrix, it is a summary of expected outcomes on a
a classification issue used to determine the efficacy of each algorithm's model. It is one of the commonly used as well as easy
metrics that determines the accuracy of a model in classification problems where the output comprises of classes of two or more
than two classes.
It is possible to obtain true positive and negative results as well as misleading positive and negative values.
 Positive (P):It's used to determine whether a finding is favourable.
 Negative (N): It's utilised to figure out if the observation result isn't good.
 True Positive (TP): When both the test data and estimated results are true, it is taken as true positive.
 False Negative (FN): When the estimated result is false and test data is true then it is considered as false negative.
 True Negative (TN): When the estimated result is false and test data is also false then it is considered as true negative.
 False Positive (FP):False positive occurs when the estimated result is correct but the test data is incorrect.

The four quality metrics are as follows:
Accuracy:

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 10 Issue VII July 2022- Available at www.ijraset.com

45 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The classification rate is a measure of accuracy.

Recall:
The number of accurately predicted positive observations in the actual class is divided by the total number of observations.

Precision:
The number of positive cases that were correctly classified divided by the number of positive examples that were expected.

F-measure:
This statistic includes FNs and FPs. The precision and recall of the test as a weighted harmonic mean

IV. RESULT ANALYSIS

Table III

The graph (Table III) shows the accuracy percentages of all the seven algorithms which are used in our project. On the x axis
different algorithms are displayed and on the y axis the accuracy levels of the algorithms are displayed. Our project results shows
that the bagging and random forests algorithms which come under tree structured classifiers has high accuracy in predicting
software defects while compared to the other algorithms. Out of all the seven different machine learning algorithms bagging stands
as the best and the most accurate in estimating software defects. The bagging has overall accuracy and precision high when applied
to all the data sets. But naive bayes has greater precision and f-measure when compared to bagging algorithm. Based on our
experimental study it is evident that the tree structured classifiers are more accurate algorithms in detecting software defects. And
based on our study it is clear that Rbf radial basis function has least accuracy when estimating software defects.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 10 Issue VII July 2022- Available at www.ijraset.com

46 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

V. CONCLUSION
The project's goal is to find software flaws. It reduces the rework, time, manpower and maintenance costs of a company as the
defects or flaws present in the software are detected during the beginning stages. By using the seven machine learning algorithms
we predict the defect in the software by comparing the results based on the four metrics, namely Accuracy, Recall, Precision and F-
Measure. After the prediction, necessary changes are made. This way the flawless software is released into the real environment
which leads to customer satisfaction as well as it profits the company.

REFERENCES
[1] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software Engineering Databases. School of Information Technology and Engineering,

University of Ottawa, Canada, 2005.
[2] Victor R Basili, Lionel C. Briand, and Walcelio L Melo. ´ A validation of object-oriented design metrics as quality indicators. IEEE Transactions on software

engineering, 22(10):751–761, 1996.
[3] Taghi M Khoshgoftaar, Edward B Allen, John P Hudepohl, and Stephen J Aud. Application of neural networks to software quality modeling of a very large

telecommunications system. IEEE Transactions on Neural Networks, 8(4):902–909, 1997.
[4] Evren Ceylan, F Onur Kutlubay, and Ayse B Bener. Software defect identification using machine learning techniques. In 32nd EUROMICRO Conference on

Software Engineering and Advanced Applications (EUROMICRO’06), pages 240–247. IEEE, 2006.
[5] Karim O Elish and Mahmoud O Elish. Predicting defect-prone software modules using support vector machines. Journal of Systems and Software, 81(5):649–

660, 2008.
[6] Ruchika Malhotra. A systematic review of machine learning techniques for software fault prediction. Applied Soft Computing, 27:504–518, 2015.
[7] Shuo Wang and Xin Yao. Using class imbalance learning for software defect prediction. IEEE Transactions on Reliability, 62(2):434–443, 2013.
[8] Norman Fenton, Paul Krause, and Martin Neil. Software measurement: Uncertainty and causal modeling. IEEE software, 19(4):116–122, 2002.
[9] Robert Andrew Weaver. The safety of software: Constructing and assuring arguments. University of York, Department of Computer Science, 2003.
[10] Yan Ma, Lan Guo, and Bojan Cukic. A statistical framework for the prediction of fault-proneness. In Advances in Machine Learning Applications in Software

Engineering, pages 237–263. IGI Global, 2007.

