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Abstract: This paper investigates the solutions of specific exponential Diophantine equations involving Fermat primes. Through 

a structured case-by-case analysis, integer solutions are identified for equations of the form
2zba yx  , where zyx ,,  are 

non-negative integers. Theorems and proofs are provided to demonstrate the validity of these solutions. The study confirms that 

certain triplets, such as (1,0,2), (2,2,5), and others, satisfy the given equations under distinct mathematical constraints. These 

results extend the theoretical framework of Diophantine analysis and may have implications for cryptographic applications and 

computational number theory. 
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I. INTRODUCTION 

Diophantine equations, named after the ancient Greek mathematician Diophantus, are equations where only integer solutions are 

sought  1 . Among these, exponential Diophantine equations have a particular structure where exponents are variables, making them 

complex and intriguing in number theory  5 . This paper focuses on a specific class of exponential Diophantine equations that 

involve Fermat primes number. Fermat prime numbers of the form 122 
n  257,17,5,3.,.ge . In  8 , By analyzing these equations 

under different cases, we determine integer solutions that satisfy their conditions. The findings contribute to the broader 

understanding of number theory, particularly in identifying patterns and constraints in such equations. 

 

II. DEFINITION 

A. Catalan’s Conjecture  

Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène 

Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University. The integers 23 and 32 are two perfect 

powers(that is, powers of exponent higher than one) of natural numbers whose values (8 and 9, respectively) are consecutive. The 

theorem states that this is the only case of two consecutive perfect powers. That is to say, that The Diophantine equation a x +by =1 

has unique integer solution with min {a, b, x, y}>1. The solution (a, b, x, y) is (3, 2, 2, 3).  

1) Theorem: 1 

 (1,0,2) and (2,2,5) are the solution of the exponential Diophantine equation 
 

2
43 z

yx                                  (1) 

where zyx &, are non-negative integers.
 

Proof: 

We will divide the proof under 3 cases. 

Case 1 

Suppose 0x , then 2
1281 z

yx   becomes  
241 Z

Y   

Let 
u

z 21  ,        (2)  

whereuare non-negative integers. 

         Then 
uy

z
 221                           (3)  

Using (2) & (3), we get, 222 2  uuy
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2]12[2 22  uyu
 

1u  

Then 32
22 y . Which is impossible for positive values of y  

so that 0x . 

 

Case 2   

Suppose 0y & write (1) as 2
13 z

x   
x

z 31
2   

Let v
z 31  ,        (4)  

Wherevis a non-negative integer.  

          Then vx
z

 31                             (5)  

Using (4) & (5), we get, 233  vvx

 

2]13[3 2  vxv
 

0v  

If y = 0 then x = 1, so that z = 2 

Hence (0,1,2) is the solution of  
2

1281 z
yx   

 

Case 3  

Suppose 2x , rewrite (1) as
22

23 z
yx 

 
wy

z 32
22   

Let 
wy

z 32  ,        (6)  

where w are non-negative integers. 

then
wxy

z
 32                   (7) 

Using (6) & (7),  
1

233
  ywwx

 

0 w  

then
12

213
 y

 

If 2x then 1y , so that 5z  

Hence  5,12  is also the solution of 
2

43 z
yx   . 

In general, (0,1,2) and (2,1,5) are the solution of the exponential Diophantine equation 
2

43 z
yx 

 
 

2) Theorem:2 

(1,1,3) is the solution of the exponential Diophantine equation 
 

2
45 z

yx 
                                (8) 

where zyx &, are non-negative integers.
 

Proof: 

We will divide the proof under 3 cases. 

Case 1 

Suppose 0x , then 
2

45 z
yx   becomes  

2
41 Z

Y   
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Let 
u

z 21 ,        (9)  

whereu are non-negative integers. 

         Then 
uy

z
 221                           (10)  

Using (9) & (10), we get, 2222  uuy

 

2]12[2 22  uyu
 

1 u  

Then 32
22 y

. Which is impossible for positive values of y  

so that 0x . 

 

Case 2   

Suppose 0y & write (8) as 
2

15 z
x 

 
x

z 51
2   

Let 
v

z 51 ,        (11)  

wherev is a non-negative integer.  

          Then 
vx

z
 51                           (12)  

Using (11) & (12), we get, 255  vvx

 

2]15[5 2  vxv
 

0 v  

Then 35 x
. Which is impossible for positive values of x 

so that 0y . 

 

Case 3  

Suppose 2x , rewrite (8) as 
22

25 z
yx 

 
wy

z 52
22   

Let 
wy

z 52  ,        (13)  

where w are non-negative integers. 

then
wxy

z
 52                   (14) 

Using (13) & (14),  
1

255
  ywwx

 

0 w  

then
1

215
 yx

 

If 1x then 1y , so that 3z  

Hence  3,1,1  is also the solution of 
2

45 z
yx   . 

 

3) Theorem:3 

(1,3,9) is the solution of the exponential Diophantine equation 
 

2
417 z

yx 
                                (15) 
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where zyx &, are non-negative integers.
 

Proof: 

We will divide the proof under 3 cases. 

 

Case 1 

Suppose 0x , then 
2

417 z
yx   becomes  

2
41 Z

Y   

Let 
u

z 21 ,        (16)  

whereu are non-negative integers. 

         Then 
uy

z
 221                           (17)  

Using (16) & (17), we get, 2222  uuy

 

2]12[2 22  uyu
 

1 u  

Then 32
22 y

. Which is impossible for positive values of y  

so that 0x . 

 

Case 2  

 Suppose 0y & write (15) as 
2

117 z
x 

 
x

z 171
2   

Let 
v

z 171 ,        (18)  

wherev is a non-negative integer.  

          Then 
vx

z
 171                            (19)  

Using (18) & (19), we get, 21717  vvx

 

2]117[17 2  vxv
 

0 v  

Then 317 x
. Which is impossible for positive values of x 

so that 0y . 

 

Case 3  

Suppose 2x , rewrite (15) as
22

217 z
yx 

 
wy

z 172
22   

Let 
wy

z 172  ,        (20)  

where w are non-negative integers. 

then
wxy

z
 172                  (21) 

Using (20) & (21),  

1
21717

  ywwx
 

0 w  

then
1

2117
 yx
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If 1x then 3y , so that 7z  

Hence  9,3,1  is also the solution of 
2

417 z
yx   . 

 

4) Theorem:4 

(1,7,129) is the solution of the exponential Diophantine equation 
 

2
4257 z

yx 
                                (22) 

where zyx &, are non-negative integers.
 

Proof: 

We will divide the proof under 3 cases. 

 

Case 1: 

Suppose 0x , then 
2

4257 z
yx   becomes  

2
41 Z

Y   

Let 
u

z 21 ,        (23)  

whereu are non-negative integers. 

         Then 
uy

z
 221                           (24)  

Using (23) & (24), we get, 2222  uuy

 

2]12[2 22  uyu
 

1 u  

Then 32
22 y

. Which is impossible for positive values of y  

so that 0x . 

 

Case 2:   

Suppose 0y & write (22) as 
2

1257 z
x 

 
x

z 2571
2   

Let 
v

z 2571 ,        (25)  

wherev is a non-negative integer.  

          Then 
vx

z
 21                             (26)  

Using (26) & (25), we get, 2257257  vvx

 

2]1257[257 2  vxv
 

0 v  

Then 3257 x
. Which is impossible for positive values of x 

so that 0y . 

 

Case 3:  

Suppose 2x , rewrite (22) as 
22

2257 z
yx 

 
wy

z 5257
22   

Let 
wy

z 2572  ,       (28)  

where w are non-negative integers. 
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then
wxy

z
 2572          (29) 

Using (28) & (29),  
1

2257257
  ywwx

 

0 w  

then
1

21257
 yx

 

If 1x then 7y , so that 129z  

Hence  129,7,1  is also the solution of 
2

4257 z
yx   . 

 

III. CONCLUSION 

The study successfully determines integer solutions for a class of exponential Diophantine equations involving Fermat primes. By 

dividing the proofs into systematic cases, we demonstrate the constraints under which such equations hold true. The solutions 

obtained contribute to the ongoing research in Diophantine analysis and provide a foundation for further exploration in number 

theory. Future research may focus on generalizing these findings to broader classes of equations or exploring their applications in 

computational fields. 
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