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Abstract: Because of the limited energy available to sensor nodes in wireless sensor networks (WSNs), data compression is 
critical in these networks. The majority of the time, data communication results in energy consumption; however, by minimizing 
data transmission and reception, the lifetime of sensor nodes may usually be extended significantly. To compress sensor data, we 
present a new Improved Stacked RBM Auto-Encoder model, which is built of two layers: an encode layer and a decode layer, 
which is described in detail in this work. Data from sensors is compressed and decompressed in the encode layer; data from 
sensors is reconstructed and compressed in the decode layer. The encode layer and the decode layer are both made up of four 
conventional Restricted Boltzmann Machines that are used throughout the system (RBMs). We also present an energy 
optimization strategy that, by trimming the parameters of the model, can further minimize the energy consumption of the model 
storage and calculation. We evaluate the model's performance by comparing it to the data acquired by Intel Lab in the 
environment. Assuming that the model's compression ratio is 10, the average Percentage RMS Difference value is 9.84 percent, 
and the average temperature reconstruction error value is 0.312 degrees Celsius. It is possible to minimize the energy 
consumption of node communication in WSNs by 92 percent. When compared to the traditional method, the proposed model 
achieves higher compression efficiency and reconstruction accuracy while maintaining the same compression ratio as the old 
method. The results of our experiments demonstrate that the new neural network model can not only be applied to data 
compression for WSNs, but it also has high compression efficiency and an excellent transfer learning capability. 
Keywords: Data Compression; Stacked-Autocoder; transfer learning; energy, consumption optimization 
 

I.  INTRODUCTION 
Sensor networks ideal for collecting environmental information such as temperature, light, and humidity in difficult-to-reach regions 
have been discovered through research. Because of the advancement of information technology in recent years, wireless sensor 
networks (WSNs) have played an increasingly essential role in a wide range of fields and disciplines [1. Unmanned vehicles require 
a GPS and an accelerometer in order to find themselves, as well as a camera and lidar in order to gather information about their 
surroundings [2]. In addition, they can forecast the travelling trajectory of objects in the vicinity by combining this multi-modal 
sensor data. Similarly, environmental monitoring apps require information such as temperature, humidity, wind direction, and so on 
to function properly. The proliferation of WSN applications and sensor nodes has resulted in a massive rise in the amount of sensing 
data available. Direct transfer of the sensing data acquired by WSNs to a gateway will not only cost a significant amount of power, 
but it will also increase the likelihood of transmission mistakes. Because the storage and portable energy resources available to a 
sensor node are limited, it is critical to develop a data compression strategy for WSNs that is both energy efficient and redundant. 
These considerations have prompted the development of energy-efficient technologies that reduce energy usage while also 
extending the lifetime of WSNs. The data gathering methods used by WSNs include direct transmission to the base station, multi-
hop forwarding, data aggregation, and modelling with coding, among other things. Data aggregation is a critical technology for data 
processing in wireless sensor networks. The amount of data that must be transferred can be significantly decreased [3] by 
aggregating the data that has been collected or received. Existing research on data aggregation algorithms often involves a node 
comparing the relationship between its perceptual data and the data from the surrounding nodes in order to determine the best 
technique. The information will not be submitted if it is determined that the data is close in order to reduce the transmission of 
redundant information. Even while these aggregation algorithms minimize the amount of data transmitted and reduce the energy 
consumed by the node, they result in the loss of node information. Furthermore, when aggregating, the outlier detection is time-
consuming and might result in delays [4, 5, 6, 7, 8]. It is possible to accomplish non-collaborative data compression at the sources 
using the Slepian-Wolf coding technique, which makes use of dispersed source coding technology. Although theoretically feasible 
[5, it is not feasible due to a lack of prior understanding of the data correlation structure.  
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Model-based compression algorithms such as APCA [6] and PWLH [7] have also demonstrated high compression ratios in the past. 
However, because they approximate data with temporal and spatial locality, they cause a loss of sensing data to be recorded. There 
has been some study that indicates that modelling in conjunction with the encoding approach is preferable for data transmission in 
WSNs [8]. Initially, it models the sensor node's original sensing data, after which the modeled weights are transferred to the base 
station, which then utilizes the weights to compress the original sensing data. Compressed sensing (CS) [9] is a new data 
compression technique for wireless sensor networks. [10] The core concept is that, provided that a signal is sparse or compressible 
at a particular level, it can be recreated from a limited number of linear measurements that are less than the Shannon–Nyquist limit. 
Numerous notable advancements in the field of signal processing have resulted from recent research into computational statistics, 
including unique sub-Nyquist sampling algorithms and a remarkable burst of work in sparse approximation and representation 
[11,12]. A approach for reducing the sensing data traffic for wireless sensor networks is proposed in Ref. [13], and it does not 
necessitate any adaptations to the data correlation structure. In Ref. [14], the CS principle was applied as a compression and 
forwarding technique in order to reduce the amount of data transmitted. When the signal amplitude is high, the current 
implementation of the CS necessitates the use of a substantial amount of memory space to hold the random sampling operator.  
The traditional CS is therefore not directly applicable to large-scale applications, and it will necessarily increase the computational 
complexity of encoding, so that the compression achieved by the classic compression is restricted by the mobile embedded 
processor. At the same time, because of the energy constraints, it is difficult to deploy large-scale WSNs. The analogue CS approach 
[15] is a novel mechanism for sampling and processing sparse signals at a rate that is less than the Nyquist rate. [16] addressed the 
issue of energy usage for sensor nodes performing CS and DCS when both digital and analogue CS were taken into consideration. 
To reduce the total amount of energy consumed by a WSN while gathering sensor data from the entire network [17], the least 
energy CS-based data aggregation problem was investigated. In Ref. [18], the CS-based signal and data collection for WSNs was 
proposed, as well as a cluster-sparse reconstruction technique for in-network compression in order to achieve precise signal 
recovery and energy efficiency while maintaining network performance. Although the segmented linear compression method, which 
employs polynomial approximation in the form of segmentation to reduce the dimension of a high compression ratio, has poor 
smoothness, poor precision, and abnormal change, it is a viable option for reducing the size of a high compression ratio. The data 
compression strategies for WSNs that are based on spatiotemporal correlation were summarized in Refs. [19,20]. A method for 
compressing sensing data for WSNs was proposed in Ref. [21], and it is described as follows: run length coding method. When 
applied to the same distortion rate as wavelet compression, a technique based on spatial correlation has been proposed in ICACT 
[22], which saves more energy than wavelet compression in terms of energy savings. However, as previously stated, the shallow 
learning algorithm's learning ability is extremely limited when it comes to advanced features, as evidenced by the example above.  
In addition, because the deep learning method can extract detection information from multiple levels of features, the system has a 
strong data fitting ability because it is trained to learn deep features from the data. Presently, there are just a few studies on how to 
compress sensing data for WSNs using a deep learning model, and these studies are limited in scope. In Ref. [23], a strategy for 
reducing the dimensionality of data was described, which involved the use of principle components analysis (PCA). Reference [24] 
discusses the integration of machine learning methodologies with CS, in which feed-forward deep neural network topologies are 
utilized to aid in the reconstruction of CS signals. In Ref. [25], a stacked Auto-Encoder (SAE)-based data compression technique 
was proposed, which was implemented. Combining the SAE with the cluster routing protocol is what this method is called. If the 
SAE compression algorithm is used instead of the usual compression technique, the accuracy of data fusion can be improved by 7.5 
percent. In Ref. [26], it is recommended to use a deep convolution network for ECG signal reduction, which requires a significant 
amount of computation. The Restricted Boltzmann Machine (RBM) is a probabilistic model for a density over observed variables 
that make use of a collection of hidden variables to achieve the desired result (representing presence of features). RBM is a method 
in which all observed variables are connected to all hidden variables through the use of various parameters. It was frequently 
employed in the classification and creation of information. The Convolutional RBM (C-RBM) was created in Ref. [27] in order to 
achieve object detection. It is a version of the RBM model in which weights are shared in order to preserve the spatial structure of 
images, as opposed to the RBM model. 
 Previously, in Ref. [28], an algorithm for pre-training Deep Boltzmann Machines (DBMs) was described in detail. CS 
reconstruction algorithm was proposed in Ref. [29], which consists of two nested inference problems, one on the CS observation-
matching problem and the other on the RBM model, and is described in detail in Ref. [30]. When compared to variational 
autoencoders (VAE) and generative adversarial networks (GAN), RBM has the simplest network structure and requires the fewest 
number of parameters to operate on. As a result, RBM consumes little computational energy, making it more suitable for use in 
wireless sensor networks (WSNs) with limited energy.  
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According to our survey results, there is currently no research on how to directly use RBM to compress the sensing data for WSNs 
at this time. Currently, we are primarily interested in learning how to compress sensing data using RBM. In our next research, we 
will also look into how to compress sensing data using VAE, GAN, and other deep learning models. Using the RBM generation 
model in conjunction with the nonlinear learning method of deep learning theory, we developed the Stacked CAE-AE model, which 
can compress and reconstruct sensing data from wireless sensor networks. The encoder and decoder of the Stacked CAE-AE model 
are formed by stacking four ordinary RBMs of different sizes together. Utilizing the mathematical characteristics of the Stacked 
CAE-AE model, the sensing data is compressed using the model. Within the context of our tests, we investigate and compare the 
performance of the model against many different compression methods, and we propose an energy optimization strategy for the 
model to help reduce the amount of energy consumed during the calculation. The following are some of the key contributions made 
by this paper:  
The Stacked CAE is a hybrid model that combines four standard RBMs with the auto-encoder function to compress and reconstruct 
the sensing data.  
1) It is the first hybrid model to be produced. We suggested a new approach of data compression that, when compared to the old 

methodology,  
2) Provides improved reconstruction accuracy while maintaining the same compression ratio. With the help of model parameters 

pruning,  
3) Provides an energy optimization approach, and we investigated the effectiveness of pruning different proportion model 

parameters on the reconstruction accuracy of the Stacked-CAE model when running at the same compression ratio as the 
model.  

The following is the structure of the remainder of this paper: It is explained in depth in Section 2 about the design of the Stacked 
CAE-AE as well as the specifics of Stacked CAE training. The findings of the experiments are discussed in Section 3. In particular, 
we employ a number of techniques for energy optimization. Section 4 presents a summary of our method and discusses potential 
future work.  

II. STACKED AE MODEL 
A. Architecture of the Stacked CAE 
The Stacked-CAE model contains two parts. The first part of the Stacked CAE-AE model we call encoder E, which includes 
four standard RBMs (in Figures 1 and 2). 
 

 
 
 
 
 
 

Figure 1. Standard RBM. 

Figure 2. Stacked CAE. 
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Each standard RBM is an undirected graph model, which includes two layers.  The vector v (v1, v2, . . . , vn) represents the 
visual layer, which is the input vector with n scalar components from the training dataset; The vector h (h1, h2, . . . , hm) represents 

the hidden layer vector with m scalar components. The standard RBM takes the state space (v, h) ∈ {0, 1} m+n. The goal of RBM is 
to find Pdata (v) the unknown true high dimensional distribution of the visual layer variables [30]. To achieve this goal, the high-
dimensional distribution of the training dataset is modelled to get P(v|θ ), where the sample distribution depends on the model 
parameters θ [31]. 
For the second part of the Stacked CAE-AE model, firstly we use the characteristics of auto-encoder to flip the encoder E to get a 
symmetrical scale decoding output named decoder D; the structure is shown in Figure 3. The initial input of the encoder E is used as 
the input of the multilayer auto-encoder. Our goal is to satisfy the top output approximately equal to the bottom input. 
 
B. Details of Stacked CAE Training 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Stacked CAE. 
 

III. RESULTS AND DISCUSSION 
A. Preprocessing Dataset 
The experimental data was collected by the Intel Lab wireless sensor network research team from the University of California, 
who placed 54 sensors to collect environmental data information in the laboratory from 28 February to 5 April 2004.  
In order to reduce the difference between the input data of the compressed model, and converge the algorithm more quickly, we 
mapped the original data to [0, 1] by max − min normalization, where max is the maximum value of the node sensing data, min is 
minimum value.  
After the pre-processing is completed, the node temperature database is converted to a data set. Each node collects temperature 
data as a column vector, and stores this data in the temperature.txt file. Due to node failure, some nodes only recorded a small 
amount of data. The average number of data by each node after pre-processing is 29,665. The maximum number of data in all 
nodes is 55,080, and the minimum number is 2507. We divide each node data into two parts: The training set and the test set. In 
order to ensure that each node has enough training data to train the model, we did not use common split standards such as 7:3 and 
6:2:2, and instead used 9:1. 
The more the number of samples in the training set, and the closer the empirical distribution is to the true distribution, the more 
accurate will the fitness of model distribution be. Increasing the number of training sets is an effective measure to prevent 
over-fitting. We provide following three methods: (1) Obtain data from the source; (2) estimate the data distribution parameters of 
the training set by statistical methods such as point estimation and interval estimation, and use this distribution to generate more 
data; (3) augment the training set by interpolation in the original training set, such as Kriging Interpolation and Natural 
Neighbor Interpolation. 
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B. Compression and Reconstruction 
We used the following performance criteria to evaluate the performance of our compression algorithm: (1) compression ratio 
(CR); (2) percentage RMS difference (PRD) [26]; (3) quality-score (QS) [26]. The definitions and formulas of these 
performance criteria are as follows: 
Compression Ratio (CR): It is defined as the compressed data length over the size of uncompressed data, as shown in 
Equation (6). 
CR= DR/Dor * DCp 

(6) 
Where Dor is the number of bytes of all original data. Dcp is the number of bytes of all compressed data. The CR value is 
expected to be high for an effective compression algorithm. 
Percentage RMS Difference (PRD): It is a widely used performance measure that is used for calculating the quality of 
reconstructed data in the compression. The PRD value is expected to be as low as possible for a quality compression approach. 
Quality-Score (QS): Other important evaluation criteria for determining the effectiveness of compression algorithms is the QS 
value. QS is the ratio of CR to PRD. It represents the reconstructed data quality. The larger the QS value, the better the 
compression and reconstruction performance. 
QS=CR/PRD    (7)          
The learning rate determines how far the weights move in the gradient direction in a mini-batch, which is usually set by the 
experimenter. If the learning rate is small, the training will become more reliable, but optimization will take a long time, because 
each step towards the minimum of the loss function is small. If the learning rate is big, the training may not converge and could also 
diverge. Optimization will cross the minimum value and cause loss function to become worse. There are many ways to set an 
initial value for the learning rate. A simple solution is to try a few different values to see which value will optimize the loss 
function without loss in training speed. In the pre-training phase, we refer to the parameters in Ref. [36], set the learning rate of 
0.01/batch-size (the batch-size is 120). In the retraining phase, we start with a value of 0.1, then exponentially reduce the learning 
rate to 0.01, 0.001 and 0.0001. In order to find the optimal learning rate, we set different learning rates to train the model and record 
the summation of loss value when the model loss is no longer reduced [37]. Figure 5 shows the loss value of a model with 
different learning rates. We sought to find a point with the smallest value of model loss. In our experiment, we found that when the 
learning rate was between 0.0001 and 0.001, the model loss value was the smallest. We finally selected a learning rate of 0.0001. 
We first use the training set of node 7 to pre-train the model without retraining, and test the efficiency of a different number of pre-
training iterations to the compression performance of the model. Then we use the test set of node 7 to calculate the PRD value and the 
QS value of the model under different numbers of pre-training iterations. Similarly, we use the training set of node 7 to retrain the 
model with a fixed number of pre-training iterations. We use the test set of node 7 to calculate the PRD value and the QS value of the 
model under different numbers of retraining iterations. During the test, we added the PRD value and the QS value of each mini-
batch of the test set, and then averaged the sum value as the final result. The number of mini-batches of the test set is 325. The 
results are shown in Figure 6. 
 

Figure 5. The loss value of model with different learning rates. 
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(a) (b) 

Figure 6. (a) Compression performance under different number of pre-training iterations without retraining; (b) compression 
performance under different retraining iterations with the number of pre-training iterations as 10. 

 
Without retraining, the compression performance of the model will not increase and could even decrease with an increase in the 
number of pre-training iterations. When the number of pre-training iterations is 10 and the number of retraining iterations is 0, the 
compression performance of the model is optimal with the smallest PRD value and the largest QS value. Thus, we set the number of 
pre-training iterations of our model to 10. When the number of pre-training iterations is fixed, increasing the number of retraining 
iterations can significantly improve the compression performance of the model. When the number of retraining iterations reaches 
200 and above, the compression performance of the model tends to be stable. At this time, increasing the number of retraining 
iterations does not significantly improve the compression performance of the model. Considering that the model needs to be 
calculated on the sensor node, increasing the number of retraining iterations will lead to an increase in calculation energy 
consumption. We finally selected the number of retraining iterations as 200. 
In this experiment, we test the compression performance of the model under different CRs. This experiment data uses the data 
of node 7 with the number of pre-training iterations of 10, and the number of retraining iterations of 200. We then set CR as 10, 20, 
40, and 120. We use the test set of node 7 to calculate the PRD value and the QS value of the model under different CRs. 
During the test, we summed up the PRD value and the QS value of each mini-batch of the test set, and then averaged the sum 
value as the final result. The number of mini-batches of the test set is 325. Figure 7 shows the compression performance of the 
model under different CRs. 

 
(a) (b) 

Figure 7. (a) The PRD value under different CRs, (b) The QS value under different CRs. 
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Figure 7 illustrated that for a single node, with the increase of the CR, the compression performance of the model is not 
significantly increased or decreased, which shows that the model can imbibe the inherent properties of the data. These inherent 
properties are inherently weighted on the weight matrix and are independent of the dimension after compression. This is the 
difference between the deep compression method and the shallow compression method, since the reconstruction error of the 
shallow compression method increases with an increase in the CR. The result means that our algorithm can get a higher CR in the 
case of minimal reconstruction error. In our experiments, when CR was 10, the PRD value was the smallest. The reconstructed 
data value is closest to the original data value. Although increasing CR can significantly increase the QS value, the PRD value 
will also increase, which represents a difference between the reconstructed data, and the original data becomes larger. In this 
experiment, we explore the optimal compression performance of the model, and in the next experiment, we set the CR to 10 to 
explore the reconstruction performance of the model. 
Figure 8 shows the reconstructed data and the original data of node 7 for our model, with the number of pre-training iterations 
being 10, the number of retraining iterations being 200, and CR of 10. We first use the model to compress the original data, 
and then use the model to reconstruct the compressed data. For all the data in the test set of node 7, we sum up the absolute 
value error between the original data and the reconstructed data, and then average the sum value as the final result. The 
average absolute value error obtained was 0.2815 ◦C, maximum value was 0.4602 ◦C, and minimum value was 0.0026 ◦C. Our 
model has been proven to have higher reconstruction accuracy, and the reconstructed data can correctly approximate the trend 
and value of the original data. 

Figure 8. The reconstructed data and the original data of node 7 under CR is 10. 
 

In the following experiments, we compare the performance of our algorithm with other compression algorithms. Performing 
CS algorithm on 40,000 data points for node 7. Since the length of stream data for CS algorithm cannot be too long, we divide 
these points into eight segments with segment length of 5000. We average the results of all segments as the final result of CS 
algorithm, and set the CR at 10. The results are shown in Table 1. At the same time, we test the performance of our algorithm 
on different data sets. The results are shown in Table 2. 
 

Table 1. Compression performance comparison. 
Algorithm PRD (%) QS Reconstruction Data Error (◦C) 
CS 38.40 26.04 1.4143 
Standard RBM 33.03 30.28 1.0423 
Our algorithm 10.04 99.60 0.2815 

 
Table 2. Model performance on other datasets. 

Dataset PRD (%) QS Reconstruction Data Error 
Argo (temperature) 11.10 90.09 0.8434 (◦C) 
ZebraNet (location/UTM format) 9.82 101.83 259.26 
CRAWDAD (speed) 8.53 117.23 6.2056 (km/h) 
Intel Lab (humidity) 10.90 91.74 3.8383 (%RH) 
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IV. CONCLUSION 
Conclusions In this research, we present a Stacked CAE model for compressing WSNs data employing Convolutional RBM and AE 
in conjunction with each other. We suggest a model parameter adjustment technique that is divided into two parts: pre-training and 
retraining, with the goal of improving compression performance as a result. Experiment studies are used to determine the 
effectiveness of the number of iterations of pre-training and retraining on the performance of the model. We also provide a method 
for applying the model to wireless sensor networks (WSNs) and examine the computational efficiency of the approach. We apply 
the strategy of prune parameters to further improve the energy consumption of our algorithm, taking into account the calculation and 
communication energy consumption. Our experimental results demonstrate that our algorithm has superior transfer learning ability 
as well as superior reconstruction accuracy when compared to traditional algorithms when operated under the identical CR. It is 
possible to cut the energy usage of data communication by 90 percent. The sensor node is typically outfitted with a number of 
sensors that collect data from a variety of environmental monitoring devices. Joint compression and reconstruction of multi-stream 
data can be accomplished using this technology, which can be enhanced. It is inevitable that the theoretical system error will be 
incorporated into this method because Gibbs sampling and k-step divergence are utilized to estimate the probability distribution of 
reconstructed data in this method. Exploring ways to reduce the systematic inaccuracy of the model will be the subject of our next 
research project, which will be completed this year. Deep learning models such as VAE, GAN, and other mixed deep learning 
models can also be used.  
 

REFERENCES 
[1] Lazarescu, M.T. Design of a WSN platform for long-term environmental monitoring for IoT applications. J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 45–54. 

[CrossRef] 
[2] Janai, J.; Güney, F.; Behl, A.; Geiger, A. Computer vision for autonomous vehicles: Problems, datasets and state-of-the-art. arXiv 2017, arXiv:1704.05519. 
[3] Kuo, T.W.; Lin, K.C.J.; Tsai, M.J. On the Construction of Data Aggregation Tree with Minimum Energy Cost in Wireless Sensor Networks: NP-Completeness 

and Approximation Algorithms. IEEE Trans. Comput. 2016, 65, 3109–3121. [CrossRef] 
[4] Mcdonald, D.; Sanchez, S.; Madria, S.; Ercal, F. A survey of methods for finding outliers in wireless sensor networks. J. Netw. Syst. Manag. 2015, 23, 163–

182. [CrossRef] 
[5] He, S.; Chen, J.; Yau, D.K.Y.; Sun, Y. Cross-Layer Optimization of Correlated Data Gathering in Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2012, 

11, 1678–1691. [CrossRef] 
[6] Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Locally adaptive dimensionality reduction for indexing large time series databases. ACM Sigmod Rec. 

2001, 30, 151–162. [CrossRef] 
[7] Buragohain, C.; Shrivastava, N.; Suri, S. Space efficient streaming algorithms for the maximum error histogram. In Proceedings of the IEEE 23rd International 

Conference on Data Engineering, Istanbul, Turkey, 16–20 April 2007; pp. 1026–1035. 
[8] Li, M.; Lin, H.J. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications. IEEE 

Trans. Ind. Electron. 2015, 62, 4430–4442. [CrossRef] 
[9] Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef] 
[10] Eldar, Y.C.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University Press: Cambridge, UK, 2012; pp. 1289–1306. 
[11] Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [CrossRef] 
[12] Zhang, Z.; Xu, Y.; Yang, J.; Li, X.; Zhang, D. A survey of sparse representation: Algorithms and applications. IEEE Access 2015, 3, 490–530. [CrossRef] 
[13] Haupt, J.; Bajwa, W.U.; Rabbat, M.; Nowak, R. Compressed sensing for networked data. IEEE Signal Process. Mag. 2008, 25, 92–101. [CrossRef] 
[14] Caione, C.; Brunelli, D.; Benini, L. Distributed Compressive Sampling for Lifetime Optimization in Dense Wireless Sensor Networks. IEEE Trans. Ind. 

Inform. 2012, 8, 30–40. [CrossRef] 
[15] Ranieri, J.; Rovatti, R.; Setti, G. Compressive sensing of localized signals: Application to analog-to-information conversion. In Proceedings of the 2010 IEEE 

International Symposium on Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010; pp. 3513–3516. 
[16] Brunelli, D.; Caione, C. Sparse recovery optimization in wireless sensor networks with a sub-nyquist sampling rate. Sensors 2015, 15, 16654–16673. 

[CrossRef] [PubMed] 
[17] Xiang, L.; Luo, J.; Vasilakos, A. Compressed data aggregation for energy efficient wireless sensor networks. In Proceedings of the 2011 8th Annual IEEE 

Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Salt Lake City, UT, USA, 27–30 June 2011; pp. 
46–54. 

[18] Li, S.; Xu, L.D.; Wang, X. Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Trans. Ind. Inform. 2013, 9, 
2177–2186. [CrossRef] 

[19] Wu, M.; Tan, L.; Xiong, N. Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications. Inf. 
Sci. 2016, 329, 800–818. [CrossRef] 

[20] Sheltami, T.; Musaddiq, M.; Shakshuki, E. Data Compression Techniques in Wireless Sensor Networks. Future Gener. Comput. Syst. 2016, 64, 151–162. 
[CrossRef] 

[21] Bhosale, R.B.; Jagtap, R.R. Data Compression Algorithm for Wireless Sensor Network. Int. Res. J. Multidiscip. Stud. 2016, 2, 1–6. 
[22] Ying, B. An energy-efficient  compression  algorithm  for  spatial  data  in  wireless  sensor  networks. In Proceedings of the 18th IEEE International 

Conference on Advanced Communications Technology, PyeongChang, Korea, 31 January–3 February 2016; pp. 161–164. 
[23] Hinton, G.E.; Salakhutdinov, R.R. A better way to pretrain deep boltzmann machines. In Proceedings of the Twenty-Sixth Conference on Neural Information 

Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 2447–2455. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 10 Issue V May 2022- Available at www.ijraset.com 
     

 207 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

[24] Tramel, E.W.; Manoel, A.; Caltagirone, F.; Gabrié, M.; Krzakala, F. Inferring sparsity: Compressed sensing using generalized restricted Boltzmann machines. 
In Proceedings of the 2016 IEEE Information Theory Workshop (ITW), Cambridge, UK, 11–14 September 2016; pp. 265–269. 

[25] Papa, J.P.; Rosa, G.H.; Marana, A.N.; Scheirer, W.; Cox, D.D. Model selection for Discriminative Restricted Boltzmann Machines through meta-heuristic 
techniques. J. Comput. Sci. 2015, 9, 14–18. [CrossRef] 

[26] Tomczak, J.M.; Zie˛ba, M. Classification Restricted Boltzmann Machine for comprehensible credit scoring model. Expert Syst. Appl. 2015, 42, 1789–1796. 
[CrossRef] 

[27] Carreira-Perpinan, M.A.; Hinton, G.E. On contrastive divergence learning. Aistats 2005, 10, 33–40. 
[28] Tulder, G.V.; Bruijne, M.D. Combining Generative and Discriminative Representation Learning for Lung CT Analysis with Convolutional Restricted 

Boltzmann Machines. IEEE Trans. Med. Imaging 2016, 35, 1262–1272. [CrossRef] 
[29] Côté, M.A.; Larochelle, H. An Infinite Restricted Boltzmann Machine. Neural Comput. 2016, 28, 1265–1288. [CrossRef] [PubMed] 
[30] Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [CrossRef] 
[31] Salakhutdinov, R.; Mnih,  A.;   Hinton,  G.   Restricted  Boltzmann  machines   for  collaborative  filtering. In Proceedings of the 24th International Conference 

on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 791–798. 
[32] Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision 

(WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. 
[33] Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710. 
[34] Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of the Twenty-Ninth Conference on 

Neural Information Processing Systems, Montréal, QC, Canada, 7–12 December 2015; pp. 1135–1143. 
 
 



 


