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Abstract: The explosive growth of Electric Vehicles has made developing a robust system for managing batteries that are one of 
the crucial components of an EV, the need of the hour. Accuracy of the estimation models for determining the State of Charge 
and State of Health levels of the battery packs plays a key role. There are many sophisticated systems to determine these 
parameters we have tried to review a few of these systems in this paper. The complete electrification of the automotive industry 
heavily depends on the energy density and longevity that the battery packs provide and maintaining these packs in a safe 
operating condition can help achieve these goals. 
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I. INTRODUCTION  
Awareness regarding Environment change, Global Warming, have drawn peoples’ attention towards using eco-friendly products and 
develop technologies that help preserve our planet. Global Oil and Natural Gas crises have led to the development of Electrical 
Vehicles over the years. And today we have enough infrastructural and technological capabilities to harness the potential of EV’s, 
changes and development within the EV ecosystem will enable us to innovate and make it more efficient. The main aim of BMS is to 
improve the lifespan of the batteries used in EV’s [5]. As we improve our technologies in this space we should not only think about 
the efficiency of the product while it is in use but we should also develop it in a way that at the end of the life-cycle the components 
used in manufacturing should be easily degradable and environment friendly. Degradability of the batteries used in EV’s is a 
challenge for many manufacturers around the world, and currently one of the solutions can be designing the batteries in a way which 
elongates the life-cycle of the batteries. The BMS module solves major issues due to which batteries become un-useable or which 
decrease the life cycle of the battery. 
The downside of modern battery systems are the complex physical processes occurring inside the battery during operation. Complex 
monitoring systems do the necessary work of ensuring thesafe and efficient operation of the battery systems. One needs to know how 
much energy is currently stored inside the battery, the SoC. It is necessary to know the battery system’s SoH. Aged batteries can 
cause unexpected system failures, thus, foreseeing upcoming failures of the battery system is a major task of battery monitoring 
systems. Failure of foreseeing a battery fault can cause extreme situations, such as, e.g. the lithium-ion battery system of Boeing’s 
new Dreamliner aircraft which caused a fire in the cockpit, resulting in an unacceptable situation in an aircraft [22]. Furthermore, it is 
necessary to know how much power can be withdrawn from the battery. Another major state of interest, the state of function (SoF), is 
required to evaluate the battery’s power capability for a given operation condition at a given moment, which is necessary to know 
how much power can be withdrawn from the battery. In conventional vehicles, the state of function is mainly determined by the 
cranking capability of the battery. However, the power capability of the battery in an electric vehicle needs to be known at every 
moment of operation. A battery failing to deliver the necessary power during a power consuming maneuver such as, overtaking on the 
highway, is unacceptable. In this paper we will review the first and the second states and their estimation models. 

II. BMS MODEL 

A. Design, Scalability  
The architecture design of the BMS is chosen by keeping scalability in mind. The BMS uses Slave-Master configuration where the 
slave micro-controller reports to the master micro-controller which then collects information and processes it to give meaningful 
insights on the battery health. The number of slave controllers to be used depends on the size and the use case of the battery. For 
example if the battery is being used in a two wheeler EV then the number of slave controller required would be comparatively less 
than if the BMS battery was used in a 4 wheeler EV. 
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B. Output Integrations  
The Master controller of the BMS architecture can be integrated with software graphical UI (user interface) which can help the user 
get the specifics like State of Health, State of Charge, Range, Life-cycle, etc. on a single dashboard while more complex tasks like 
cell-balancing are performed by the BMS in the background. 

III. BATTERY PACK  
Battery pack is the core component in an electric vehicle and a lot of research is being done to improve the specific energy of battery 
packs. Lithium-ion batteries have high voltage, low self-discharge, high specific energy, portability, and relatively long life compared 
to other chemistries. Cycle life of Li-ion battery packs can reach 2000 cycles at a rate of 1 C [19]. Since a battery pack consists of 
individually assembled cells which may have gone through certain variations during the manufacturing process there arises a safety 
hazard during the operation of the battery pack. Equivalent cell circuit modelling of battery packs help in simulating the battery pack 
in a variety of operating conditions to study how it reacts and set crucial thresholds for charge/discharge rate and temperature of the 
operating conditions. Cells inside the battery pack are usually not at the same capacity due to variations in manufacturing processes. 
Hence an auxiliary circuitry to balance these cells individually to bring them at the same level of capacity is needed. Some voltage 
balancing algorithms are analysed et al. Duraisamy [1]. However we find that these passive balancing systems take a longer time to 
balance the cells as opposed to active balancing systems. Active balancing is especially necessary for aged cells to prolong their life 
[1]. Cell configuration may be PCM or SCM according to the power requirement of the application. Primarily three cell form factors 
are used, cylindrical which offers very high strength and specific energy at a very low expenses, Prismatic cell configuration provides 
a very high energy capacity and Pouch cell configuration provides very good heat dissipation however the strength of this 
configuration is low [20]. The factors that need to be taken care of when designing any battery pack is (1) Energy density, (2) 
Thermal dissipation, (3) Cost and (4) Weight 

Table 1. Comparisons of different battery pack configurations 
 Cylindrical Prismatic Pouch 

Energy density Medium High High 
Thermal 

dissipation Medium High High 

Cost Low Medium Medium 
Weight Medium High Low 

IV. ESTIMATION METHODS 
Wide range of stimulation processes will help correctly estimate the values of SoC, SoH, and Range etc. The Controller deals with 
various interdependent values and generates insights and crucial data which in turn increases the efficiency and performance of the 
Battery. The BMS makes sure that the battery isn’t put through adverse conditions which may deteriorate the health of the battery. 
Data communication speed and accuracy plays an important role here hence CAN bus is used. Extensive algorithmic computation is 
required for the estimation of the parameter values. Various Battery monitoring methods are being used in the BMS, because safety, 
operation and even the life of the passenger is of utmost importance and depends on the BMS. The State of Charge estimation has 
been implemented using Coulomb Counting method and Open-Circuit Voltage methods, which eliminates the limitation of stand-
alone coulomb counting method and further corrected by Kalman filtering method which increases the efficiency [7].Multiphysics 
model simulation and multifunction integrated BMS technology increases the accuracy [6]. The battery parameters form our 
experimental results is also included in the model which validates the simulation. 

A. SoC 
The SoC, that is, state of chargerepresents available capacity, and is one of the most important states to monitor. It also helps increase 
battery performance. SoC is estimated based on conditions such as operating current, temperature, and voltage [2]. The SoC of the 
battery is an expression of the current capacity of the battery as a percentage of the maximum capacity. It is generally calculated using 
current integration to determine the change in battery capacity over time.  
If we consider a completely discharged battery with Ib (τ) as the charging current, the charge delivered to the battery is R t t0 Ib (τ) 
dτ. The SoC of the battery is simply expressed as:  

SOC (t) = Rt t0 Ib (τ) dτ Q0 × 100%(1) 
As the charging current, where Q0 is the battery capacity at time t [23]. BMS prevents the battery from discharging below a certain 
SOC and charging when full.  
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1) Open Circuit Voltage (OCV): There is about a linear dating among the SOC of the lead-acid battery and its open circuit voltage 
(OCV) given via means of  

ܸOC (ݐ) = ܽ1 × SOC (ݐ) + ܽ(2) 0 

 

 

 

 

 

 

 

 

whereinSoC(ݐ) is the SoC of the battery at 0ܽ ,ݐ is the battery terminal voltage whilst SoC = 0%, and ܽ1 is received from 
understanding the cost of ܽ0 and ܸOC(ݐ) at SOC = 100%. By (2), the estimation of the SoC is equal to the estimation of its OCV. On 
the contrary, the lead-acid battery, the Li-ion battery, does now no longer have a linear dating among the OCV and SoC. The OCV 
dating with SOCturned from making use of a pulse load at the Li-ion battery, then permitting the battery to attain equilibrium. The 
dating among the OCV and SoC can't be precisely equal for all batteries. Because the traditional OCV-SoC differs amongst batteries, 
there's a trouble in that the connection of the OCV-SoC ought to be measured to estimate appropriately the SoC. Lee et al.  [24] 
proposed changed OCV-SoC dating primarily based totally at the traditional OCV-SoC. 

2) Electromotive Force (EMF): The SoC may be measured by the usage of the EMF- electromotive force of the Li-ion battery. The 
EMF may be decided to be the OCV whilst the battery is in equilibrium. The EMF is associated with the battery SoC. The OCV 
the usage of EMF changed into modelled the usage of exclusive strategies.A version to expect the EMF voltage for a SoC 
estimation. The authors divided the battery's voltage curve into parts. The first component consists of the linear region (complete 
to partial SoC) and the alternative has a hyperbolic region (keen on low SoC) of the curve. In this method, the EMF changed into 
expected  usage of the burden present day and terminal voltage with a few coefficients for the linear region, impedance, and the 
terminal voltage; the battery present day changed  taken into consideration for the hyperbolic region [3]. This version confirmed 
properly effects for a SoC estimation. The proposed version by Ali et al. [3] has an EMF supply with a parallel resistance and a 
regular section element. 

B. SoH 
The battery pack loses some of its capacity over time, this may be caused due to a variety of reasons. The State of Health (SoH) of 
the battery is a parameter that can help estimate the capacity of the battery pack as a function of depth-of-discharge. It is defined as 
the ratio of the maximum charge capacity of an aged battery to the maximum charge capacity when the battery was new. This is an 
indicator to calculate how the battery's capability to store energy is deteriorating, and decreases over the battery's lifetime. The BMS 
is in charge of making sure that the battery is charged or discharged in proper conditions and there is no significant damage done to 
the battery pack. SoH is tracked by measuring the internal resistance, since the internal resistance increases as the capacity 
increases.  
The SOH is computed as: 

SOH = Qact × 100% 
   QR 
Where QR is the rated capacity and Qact is the actual battery capacity. The industry is yet to come to a consensus on the exact 
definition of SoH and how to measure it. It is a figure of merit of the present condition of a battery pack, compared to its ideal 
conditions. The unit of SoH is percent, it is 100% for a new battery and decreases as the battery goes through several charge-
discharge cycles. The SoH is usually derived by capacity and the internal resistance, but it can also be derived by other battery 
parameters like the AC impedance, self-discharge rate, or the power density. If we consider the current capacity as a parameter to 
determine the SOH we can simply compare the current, current capacity to the current capacity at the beginning.  

 
Fig. 1. Typical relationship between SOC and OCV 
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According to that we can determine the percent of SoH. Generally, if the battery capacity decreases to 80% of the initial value, then 
the BMS would warn the user to replace the battery pack. The SoH helps in keeping track of battery aging and degradation, and 
other durability problems. The SoH of the battery pack eventually decreases over its use, slowing this down and extracting 
maximum possible life out of a battery pack is a field under heavy research. Increasing the durability is the primary goal of this 
research so that the same pack can be used for a longer life and range, major parameters characterizing the durability of battery 
packs are capacity and internal resistance hence these are at prime focus. Energy batteries that are primarily used as power source in 
Electric Vehicles suffer performance degradation due to capacity fade. On the other hand, power batteries that are primarily used in 
Hybrid Electric Vehicles suffer performance degradation due to the increase of internal resistance. Self-learning of the data to build 
an adaptive model can help increase the accuracy and reliability of the predicted SoH value [8]. 
1) Capacity Fade: Due to the ageing of the battery pack which is a very complicated process in itself as it depends heavily on 

environmental factors the capacity of the battery pack gradually reduces. The usage pattern of the battery pack affects the 
overall life and reliability of the battery pack. Accurate and real time monitoring of the battery packs vital parameters is 
necessary to take any necessary preventive measures required. The active materials inside the cells reduce the number of charge 
cycles and this causes reduction of capacity of the cell to hold power. Capacity fade is caused by a loss of active electrode 
material (loss of storage medium) [9]. Total capacity is the maximum energy (in Ah) that a battery can hold at a given 
temperature and the residual capacity is defined as the remaining amount of energy the battery can provide before being 
completely depleted [17]. Metallic lithium is deposited on the surface of the negative electrode which accelerates the capacity 
fade process due to extremely high voltage or overcharge which leads to composition of the positive electrode which generates 
a high amount of heat and can also result in short circuits[4]. There is a strong correlation between the SoC and capacity [17]. 
Durability model-based open-loop SoH estimation method using the external characteristic model uses experimental laws and 
focuses on the capacity fade and internal resistance increment [4]. Ramadass et al. [18] developed a semi-empirical capacity 
fade model for Li-ion cells. 

2) Internal Resistance (IR): There is a linear relationship found between capacity decrement and increase in internal resistance 
[10][11]. For a Plug-in Hybrid Vehicle both power as well as energy is needed so both the capacity fade as well as internal 
resistance of the battery pack needs to be monitored. The SOH is predominantly a diagnostics issue [11]. Most of the algorithms 
and techniques for battery health management have focused on SoC calculation and SoH is usually ignored. The capacity fade 
may be caused by the decrease in capacity of individual cells in the battery pack, however other variations could also be a 
possible reason. In case of variation in the capacity of the individual cells, balancing them can help improve the SoH of the 
battery pack. The internal resistance of Li-ion batteries is a highly important parameter since it is used to determine the 
batteries’ power capability [12]. The accurate information about the degradation due to the rise in internal resistance is 
necessary to determine the cooling strategy to use. It was observed by Stroe et al. [25] that internal resistance increases 
nonlinearly during calendar ageing following a power law function but by increasing storage temperature and increasing the 
storage SOC level the internal resistance accelerates exponentially. Some SOH decrements e.g. a loose screw, are reversible 
and could be considered as sub-health. Some SOH decrements are however irreversible e.g. battery damage caused by vehicle 
collision, battery short circuit caused by water, etc. Hence we see that the aging of batteries is just a small part of performance 
degradation and cannot fully characterize SoH of a battery pack. Most of the current SoH definitions are unfortunately limited 
to the category of the aging of batteries rather than actually involving the battery SoH parameters. It is more appropriate to call 
current algorithms as State of Life (SOL). According to Yuana et al. [13] the four major causes for battery degradation 
mechanisms are the formation of dendrites, distortion in electrode chemical, decomposition of electrolyte and formation of solid 
electrolyte interphase (SEI) layer. Non-invasive methods to determine the crucial internal parameters of the battery packs need 
to be developed for an accurate prediction of SoH. 

3) Battery Temperature Management System: The heating and cooling process is controlled by the BMS based on the overall 
temperature distribution within the battery pack and the requirements of charge/discharge [2]. Although there may be variations 
in the manufacturing processes of the cells which may cause significant variations in the crucial thermal and electrical 
parameters of the cells and eventually affect the battery pack as well. Battery pack must not be subjected to extreme 
temperature conditions for a prolonged period of time as it may cause serious damage to the battery pack and decrease its SoH 
value eventually decreasing the RUL as well. Accurate thermal model of a battery pack can help optimize the design of a 
dedicated battery thermal management system (BTMS) that will be in charge of monitoring the temperature of the battery pack 
and protecting it. BTMS’s can be classified as active or passive [21].  BTMS will be provided with certain threshold values. If 
the temperature crosses those values the cooling mechanism will be turned on and the cooling process will begin to avoid any 
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irreversible damage to the battery pack. In cases where the temperature is extremely high the BTMS may even cut off the 
battery pack from the rest of the vehicle as this may be caused due to a collision and can lead to explosion of the battery pack as 
Lithium is a very combustible and fairly reactive element. The thermal model of a battery pack combines the battery's phases of 
heat generation, heat transfer, and heat dissipation to analyze the temperature distributions of battery cells, modules, and stacks 
in the time and space domains, to optimize the design and safety of the battery thermal management system (BTMS). BTMS 
must also have a local thermal management system. The conductivity of electrodes and electrolytes is affected by the variation 
in temperature which is usually related to chemical reactions inside the cells. The relationship between the rate of chemical 
reactions and reaction temperature follows the Arrhenius equation. As for low temperatures the battery packs will degrade at 
operating temperatures below 0 °C [14]. Real-time diagnosis of thermal faults is almost unexplored in the existing published 
literature, despite its critical importance for battery safety and performance. A Partial Differential Equation based model 
presented by Satadru et al. [15] for the thermal diagnostic scheme of Lithium ion battery packs. This approach helps eliminate 
control/observation spillover. The combined effect of control and observation spillover is shown to lead to potential instabilities 
in the closed-loop system [16]. The output of the BTMS block is used to control a fan and/or an electric heater, which attempts 
to keep the battery temperature within the optimal range. The thermal management block reads ambient and battery 
temperatures, initiates cooling or heating operation, and sends an emergency signal to ECU in case of abnormal rise in 
temperature. Therefore, the temperature estimation by using thermal models is a first step and a necessary part to enable precise 
thermal state monitoring. In addition, predictive thermal management with several advantages, such as the core temperature 
information, can be utilized. 

4) Remaining Useful Life (RUL): RUL is the remaining time or the number of charge cycles that the battery has during which it 
can meet its operational requirements or simply the amount of time from now to the end of its useful life. RUL has placed great 
emphasis on vehicle BMS research and manufacturing to meet the demand for reduced costs, increased accuracy and reliability, 
and catastrophic failure prevention. RUL can be calculated as follows:  

RUL = Tf - Tc (1) 
whereTf is a random variable of the idle time when degradation is detected and TC is the current time that the predicted signal will 
most likely pass idle time a uncertainty of. However, the various sources of uncertainty need to be disseminated along with the 
reliability of the RUL estimate and prediction, as there are inherent uncertainties in the mining process, measurements, 
environmental / operational conditions, and modeling errors. The RUL parameter is understood to be the remaining time or number 
of charge cycles until the battery reaches 0% SoH. Basically, there are two concepts for estimating the RUL of the battery that can 
be found in the literature. The first concept is based on the useful life model used for SoH estimation. Using this life model, it is 
possible to predict the RUL of the battery using future battery conditions and loads as inputs. To estimate these future conditions, 
observing the battery usage in the last predefined period can be used. Alternatively, a predefined reference load profile can be used. 
The downside to this concept is that it relies entirely on the absolute accuracy of the life model and does not include a recalibration 
mechanism to account for the current SoH of the battery, which is estimated based on measurements. The other concept for 
estimating the RUL of the battery generally requires two parts. The first part is the estimation of the current characteristics of the 
battery, which is chosen as the definition of the battery life. It can be the battery capacity, the impedance, and their combination or, 
in general, the estimated SoH. The second part is the predictive model, which takes these properties as input, analyzes your changes 
in the past, and predicts your changes in the future. The RUL is the expected time it will take for the characteristic to reach the 
threshold, which is defined as the end of the battery life. The various prediction methods have their advantages and disadvantages in 
terms of numerical complexity, precision, and the ability to produce not only the RUL estimate, but also its confidence intervals. 
The greatest challenge, however, lies in the development and parameterization (training) of the prediction model used, which allows 
an accurate prediction of the rate of change of the battery properties towards the end of the useful life, taking into account its 
changes at the beginning. This predictive model can be implemented as a battery life model that can be recalibrated 

V. CONCLUSION 
Challenges of the oil crisis and environmental pollution have increased the demand for electricity in consumers and industry, which 
bring opportunities and challenges for energy storage. Two methods of State of Charge estimation were discussed, each with its own 
properties. It is difficult to evaluate the performance of different processes because existing applications have been in different 
discharge conditions and different battery sizes. The developments of various SoC estimation methods for battery applications, such 
as BMS in hybrid electric vehicles, are expected to be valuable. Based on the development history of the SoC estimate, the future 
development directions of the SoC estimate are proposed at the end. 
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The SoH of the battery pack depends on many factors and hence it is difficult to standardize the estimation method for calculating 
SoH. However the importance of the SoH value is very high as even the slightest error in estimating the SoH can lead to irreversible 
damage to the battery pack. Temperature and over charge/discharge are some of the important factors to take into account while 
calculating SoH value. Estimating Capacity fade using machine learning techniques seems a promising area. The relation between 
internal resistance and capacity fade is found out to be almost linear. Calculation of Remaining Useful Life using predictive models is 
very effective as opposed to calculating its value using standard battery parameters. SoC and SoH estimation methods are present in 
plenty however no single one can give a complete picture as there are many complex variables that need to be monitored 
simultaneously. Sensor faults can result in ambiguity in the results even with highly accurate estimation methods so checking the 
status of these sensors also is necessary. Thermal management is also a crucial function. The reliability of BTMS needs to be checked 
continuously.  
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