

13 II February 2025

https://doi.org/10.22214/ijraset.2025.66803

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

692 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Statistical Analysis for Storage Utilization

Forecasting

Bala Kishore Gonga1, Masthan Babu Padarthi2, Indrani Chuppala3

Systems Engineer

Abstract: Sonatype Nexus is a robust repository management tool commonly utilized in DevOps and CI/CD workflows. It

facilitates the efficient management, storage, and retrieval of binary artifacts. Nexus is integral to software development,

offering centralized storage and organization for build artifacts, dependencies, and containers, thereby enhancing team

collaboration and ensuring control over the software supply chain. On a daily operational basis, various artifacts are uploaded

across multiple repositories in each Nexus instance. It is the administrator’s duty to free up space whenever it exceeds a certain

threshold. Failing to do so may result in server shutdowns, negatively impacting business operations. While the administrator

can utilize automated tasks from Nexus, these have certain constraints, especially when it comes to deleting specific artifacts.

This poses a challenge when valuable artifacts occupy a significant portion of space, causing a reduction in available storage

without clear indication of when the server will fail.

This paper addresses the issue by applying a machine learning model, specifically Linear Regression, to analyze space usage

patterns. The regression model will derive an equation based on existing data, enabling predictions of future space consumption

and offering a proactive solution to manage server capacity.

Keywords: Sonatype Nexus Repository Manager, NXRM, Release Repository, Snapshot Repository, Docker registry, npm

repository, Maven, Nuget, LDAP, Linear Regression Analysis.

I. INTRODUCTION

Nexus Repository serves as a centralized platform designed to organize and handle software artifacts [1], such as libraries, packages,

and dependencies, in different formats. It functions as a universal repository manager that supports formats including Maven, npm,

NuGet, Docker [2], and others, enabling teams to store, retrieve, and exchange these artifacts throughout the software development

lifecycle. Nexus [3] stores build artifacts like JAR files, Docker images, and more, making them available to development and

deployment pipelines.

It can also proxy external repositories (e.g., Maven Central) and locally cache dependencies, thus optimizing build times and

minimizing network traffic. Nexus allows teams to manage multiple versions of artifacts with consistent versioning policies.

Additionally, it can operate as a private Docker registry [4], ensuring secure management and storage of container images for

containerized applications. Nexus integrates smoothly with continuous integration and continuous deployment tools such as Jenkins

[5] and Bamboo, automating the process of retrieving and publishing build artifacts.

It provides detailed role-based access control (RBAC) and can scan repositories for security vulnerabilities, ensuring adherence to

security protocols. Nexus is widely adopted in DevOps pipelines for managing dependencies [6], storing build outputs, and

maintaining a secure software supply chain. Each business unit has its own Nexus instance, and users begin uploading artifacts to

the relevant repositories. These repositories are categorized as snapshot and release repositories. Artifacts for non-production

environments are stored as snapshot artifacts, while production artifacts are stored as release artifacts. ReactJS and NodeJS artifacts

are stored in npm-hosted repositories.

II. LITERATURE REVIEW

Nexus instances are linked to a load balancer, as depicted in Figure 1. Various client types are supported for interacting with the

Nexus Repository Manager (NXRM).

In response to the development team's request, the NXRM administrator [7] will set up hosted repositories according to the

specific delivery types. For Java development, hosted repositories such as SNAPSHOT and RELEASE will be established, while

for Node.js development, npm repositories will be configured. Docker registries will be created to facilitate the uploading of

Docker images.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

693 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fig: 1 Sonatype Nexus Repository Management Architecture diagram

Figure 1 illustrates the architecture of Sonatype Nexus Repository Management. Users interact with the NXRM tool to upload or

download artifacts. The data is stored in a PostgreSQL database [8], with two instances of PostgreSQL configured for periodic

backups. The NXRM administrator is responsible for granting access to the appropriate users. In cases where multiple users require

access to the same repository, the administrator creates Active Directory (AD) Groups, adding users to the relevant groups instead

of assigning repository access to individual users. Permissions are then assigned to these AD groups [9]. For the Java development

team, artifact files are typically created as JAR files. These are uploaded to either the snapshot or release repository depending on

the artifact’s version. A fixed version will be directed to the release repository, whereas a snapshot version will go to the snapshot

repository. In the case of web development, npm packages are created and uploaded to the hosted npm repository [10]. For .NET

development, the corresponding packages are uploaded to the NuGet repository, and Docker images are stored in the Docker

registry.

On daily basis artifacts from the different deveopers will be uploaded to corresponding repositories[11]. The access has been given

by the NXRM admin team to work with the uploads. We can not re upload if it is NON SNAPSHOT artifact. If it is SNAPSHOT

version it will be re uploaded.

In a development environment, code typically undergoes frequent revisions, so it's not possible to finalize the artifact in the initial

development cycles. For each completed cycle or delivery, the artifact is uploaded. To accommodate this, we use the SNAPSHOT

[12] version (e.g., 1.0.0-SNAPSHOT), which appends a timestamp to the artifact name each time it’s uploaded. For instance, if the

artifact is generated on 10/17/2024 at 21:03, the resulting artifact name would be abc-1.0.0-171020242103. In this example, 'abc'

represents the artifact’s name. If the same artifact is built again just five minutes later, the new artifact name would be 1.0.0-

171020242603, with the timestamp reflecting the updated time. This process ensures that each build generates a unique artifact

name. Therefore, rebuilds occur without any issues. A snapshot repository supports this rebuild process. However, it's technically

incorrect to say we're uploading the same artifact each time, as each upload results in a distinct artifact with a different timestamp.

After all development cycles in the environment have been completed and it's determined that the build is functioning as expected,

the artifact version can be updated to a fixed version. At this point, the artifact’s version is no longer tied to the date or timestamp.

For example, the artifact name will simply be abc-1.0.0 without any timestamp appended. In this case, re-uploading the artifact is

not permitted unless the option to allow re-uploads is explicitly enabled. For the subsequent release, the artifact name will increment

to abc-1.0.1, which will be derived from the earlier SNAPSHOT version, such as abc-1.0.1-SNAPSHOT [13].

Each team maintains its own repositories within the Nexus instance. For example, if Team A needs to access artifacts from Team B,

they can configure the repositories in the Maven settings.xml [14] file. This allows Maven to scan the repositories based on the

dependencies specified in the pom.xml file. To use an artifact, the groupId, artifactId, and version must be specified in the pom.xml.

If the artifact is hosted internally, it will be fetched from the repositories listed in the settings.xml file. However, if the artifact is

hosted externally, Maven will generate an error unless the correct external repository location is specified in the settings.xml [15].

External URLs should be configured as proxies within this file.

 NXRM

 USER

 PGSQL-1

PGSQL-2

NEXUS

ADMIN

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

694 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Maven will first check the local cache for the artifact. If it’s not found locally, Maven will then search the internal organizational

repositories. If the artifact is not available internally, it will attempt to retrieve it from the external proxies. Once Maven successfully

locates the artifact whether from the local cache, internal repositories, or external proxies—it will download it to the local cache for

future use, ensuring it's available for subsequent builds.

Consider the scenario where the current artifact is named 'nexus.' When creating a development branch in GitHub, the version is set

as nexus-1.0.0-SNAPSHOT. This version is uploaded to the Nexus SNAPSHOT repository as nexus-1.0.0-171020241136. If a

subsequent build is triggered, the artifact name will change to nexus-1.0.0-171020241138 (2 minutes after the previous build). After

completing all development cycles, if the version is finalized by removing the '-SNAPSHOT' suffix, the artifact will be named

nexus-1.0.0 and uploaded to the releases repository. Once this artifact is available, anyone in the organization referencing its GAV

[16] (GroupId, ArtifactId, Version) will be able to download it locally from the Nexus release repository. For the next cycle, a new

GitHub branch will be created with the version nexus-1.0.1-SNAPSHOT. Each new development build will generate time-stamped

artifacts such as nexus-1.0.1-171020241142, nexus-1.0.1-171020241145, and so on. Finally, the release version nexus-1.0.1 will be

created during the release build and uploaded to the Nexus release repository. Any of these versions can be referenced in the

pom.xml file using the appropriate GAV parameters.

Nexus can serve as a private repository for Docker images, enabling secure storage and management of containerized applications.

To do this, a Docker registry [17] must be set up within the Nexus instance, similar to how snapshot and release repositories are

created. After configuring the registry, users can log in through the terminal and begin pushing Docker images to it. These images

can later be pulled from the registry to the local environment as needed for deployment purposes.

N Nexus works effortlessly with continuous integration [18] and continuous deployment tools like Jenkins and Bamboo, automating

the process of fetching and publishing build artifacts. When the build process begins by pulling the GitHub code to the local

environment, the artifact is generated. This artifact must then be uploaded to the Nexus repository via the Nexus plugin, which is

already integrated into Jenkins. Authentication is required using Nexus credentials. Once the development team commits the code, it

automatically triggers the build job, causing the code to be checked out within Jenkins (CI/CD tool). Upon successful completion of

the build, the artifact is created based on the specifications in the pom.xml file, which may result in a JAR, WAR, or ZIP file.

The artifact is initially saved in the local cache on the machine where the build runs. In the next stage, the artifact is uploaded to the

Nexus repository. If the artifact is a snapshot version, it is pushed to the snapshot repository; if it’s a release version, it is uploaded

to the release repository. This process can also be applied to npm packages or Docker images. Once a Docker image is created, it

will be pushed to the Docker registry hosted within Nexus. For a detailed view of the entire process, from code commit to artifact

upload to the NXRM repository, please refer to Figure 2.

Fig 2: CI/CD Pipeline Integration

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

695 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Administrator credentials are required for setting up and configuring the NXRM instance. After completing the configuration, we

will be prompted to update the credentials by entering the password in an encrypted format. We can use our own credentials for this

purpose. Additionally, we have the option to integrate the Linear Data Access Protocol (LDAP) [19] with the NXRM instance,

enabling us to incorporate Active Directory (AD) Groups into the setup. A separate AD Group will be created for each project team

and added to the instance. This integration simplifies user management, allowing us to easily add or remove members from the AD

Groups.

SNo System

IP

Time

Stamp

Operation URL Size Status

1 10.0.* 100924 PUT url 150 success

2 10.1.* 110924 DEL url 200 success

3 10.2.* 120924 GET url 250 success

4 10.4.* 130924 PUT url 300 success

5 10.3.* 140924 GET url 350 success

6 10.6.* 150924 PUT url 400 success

7 10.5.* 160924 DEL url 450 success

8 10.4.* 160924 GET url 500 success

Table 1. Nexus Repository log file entries.

Table 1 presents various metrics for a number of repositories, including the repository name, timestamp, repository subgroup, the

type of operation (GET, PUT, or DELETE) [20], upload volume, and the success or failure of the upload. The metrics should be

categorized based on the operation type. Of these operations, only the PUT operation has a direct impact on disk space. It is

important to calculate the total volume of uploads for daily, weekly, and monthly analysis [21]. For instance, we have selected

sample data for the PUT operation across different subgroups of the repository. These details are shown in Table 2. Please note that

the values in Table 1 may not correspond to those in Table 2.

subgroup URL Time

Stamp

Size

(Gb)

Operation Status

Sb1 url1 100924 5 PUT success

Sb2 url2 120924 6 PUT success

Sb3 url3 130924 10 PUT success

Sb4 url4 140924 3 PUT success

Sb5 url5 150924 4 PUT success

Sb6 url6 160924 8 PUT success

Sb7 url7 170924 10 PUT success

Sb8 url8 180924 4 PUT success

Table 2: Business unit vs Upload operations

Graph 1: Business unit vs Upload operations

0

1

2

3

4

5

6

7

8

9

10

Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8

REPO vs UPLOADS

Size (Gb)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

696 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Please monitor the usage of space on a daily, weekly, and monthly basis. Unnecessary artifacts, such as snapshots and outdated

fixed version files, should be manually removed. If these artifacts are not deleted, new uploads will fail, potentially disrupting the

work of many developers. The administrator must either remove these files manually, use the administrative tasks available within

NXRM, or collaborate with the development team to identify and delete the redundant artifacts. The amount of space recovered by

deleting unwanted files should align with the volume of uploads to the NXRM repositories. Since the NXRM instance is shared

across multiple business units, some of which may have high-volume usage while others have low-volume usage, we face two

options: provide a dedicated instance for high-volume users or require them to submit lists of unnecessary artifacts frequently, so the

administrator can delete them to free up space for ongoing activities. Failure to take either of these actions could result in upload

failures for other business units, even if they consume much less storage.

Although we may have ample storage at the start of the NXRM operations, eventually we will need to address any issues related to

space management. Rather than relying on manual intervention, which is highly time-consuming, predicting usage patterns based on

daily, weekly, and monthly analysis would make it easier to estimate the required space for future activities. If we can anticipate in

advance that available storage will only last for a limited period, we can take proactive measures, such as notifying developers to

clean up unnecessary artifacts or expanding the disk capacity.

By following this approach, we can prevent disruptions like NXRM becoming unavailable for operations. This strategy would save

a significant amount of man hours for the development team. For example, if 20 members in a single team are working, and 10 to 15

teams depend on the same NXRM, we could save 2400 man hours daily. Without such predictive analysis, any unexpected issues

would lead to a waste of valuable man hours. The table below outlines the man hours saved through this approach.

SNo Num of developers Hours Hours Saved

1 10 80 80

2 20 160 160

3 30 240 240

4 40 320 320

Table 3: Number of developers vs Man hours

Graph 2: Number of developers vs Man hours

Graph 2 shows that number of hours saved by the developers once we get any solution to avoid abnormal incidents. What ever the

man hours available in each team , 100% savings we can observe.

0

50

100

150

200

250

1 2 3 4

Num of developers Hours Hours Saved

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

697 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

III. PROPOSAL METHOD

A. Problem Statement

Excessive space usage due to numerous uploads can result in unexpected issues with the NXRM instance. Rather than waiting until

the disk is full and encountering these problems, forecasting space usage on a daily, weekly, or monthly basis allows us to

proactively manage disk space. This approach will help prevent disruptions and save valuable man hours.

B. Proposal

A machine learning algorithm will be utilized to forecast space usage by analyzing historical data on space consumption. To do this,

we need to examine log files from the past year to identify both dependent and independent variables (Feature Engineering). NXRM

log files contain information such as repository URLs, timestamps, operation types, operation status, upload sizes, and the time

taken to complete each upload. Using data analysis tools like Python’s Pandas and NumPy, we can extract the repository name from

the URL that the development team used when uploading artifacts to the Nexus Repository Manager. This analysis will yield the

repository name, timestamp, artifact size, operation type, and the time spent on the corresponding task.

In the next phase of the analysis, we will filter the data by operation type, specifically focusing on the PUT operation (upload

operation). We will apply this filtering process to gather data for the entire month for each repository. For example, repositories

such as TCT, RFR, CFC, PRD, GST, TGB, and SCY each represent a different business unit, with multiple users in each unit

uploading artifacts to the NXRM repository. The analysis will be organized by repository and then broken down on a monthly basis

for each business unit. Please refer to Table 4 for a detailed breakdown of the analysis we’ve described.

SNo URL Name Activity Size(Gb) Status

1 http://ui UI PUT 4 Success

2 http://back Back GET NA Success

3 http://middle Middle DEL NA Success

4 http://ui UI GET NA Success

5 http://back Back GET NA Success

6 http://ui UI GET NA Success

7 http://middle Middle PUT 6 Success

Table 4: Nexus log file data attributes and values

Within the TCT business unit, various repositories such as UI, Middle, and Backend have been set up. The primary issue that TCT

is facing is a lack of available space. To address this, we’ve begun analyzing the repository names, operation types, timestamps, and

artifact sizes for uploads. We will compile the total volume uploaded to each repository on a monthly basis. This will provide a

comprehensive view of the space usage for the entire business unit, taking into account all its repositories (UI, Middle, and

Backend).

IV. IMPLEMENTATION

We have utilized Python libraries such as NumPy, Pandas, and Scikit-learn to perform data analysis. The data has been gathered on

a daily, weekly, and monthly basis to assess usage patterns. This analysis helps estimate the space needed to run the NXRM instance

without encountering unexpected issues.

Once we have historical usage data for each business unit on a monthly scale, we can apply this data in a machine learning model to

forecast future requirements. The same approach is used across all business units, where we perform feature engineering to identify

relevant parameters for input into the machine learning algorithm (using techniques like Linear Regression). This model will predict

the dependent variable, where time serves as the independent variable and the total size of artifacts (representing the space

consumed by all artifacts within a business unit in a given month) is the dependent variable.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

698 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 SNo Repo Name Volume (GB)

1 Repo1 40

2 Repo2 50

3 Repo3 79

4 Repo4 54

5 Repo5 87

6 Repo6 98

7 Repo7 120

Table 5: Repo vs Volume consumption

Graph 3: Repo vs Volume consumption

Graph 3 illustrates the space usage for each repository (Repo1 → R1, Repo2 → R2, Repo3 → R3, Repo4 → R4, Repo5 → R5,
Repo6 → R6, and Repo7 → R7). The usage data for all repositories within a single business unit is shown on a monthly basis. We

need to aggregate the total space consumed by the business unit within one month. For the analysis, we have collected daily usage

data over a 12-day period, which will allow us to forecast the space requirements for the next several days. Below is the table

showing the data for the first 12 days of October.

SNo Day Total space consumption

(Gb)

1 1 12

2 2 14

3 3 16

4 4 18

5 5 21

6 6 27

7 7 27

8 8 29

9 9 36

10 10 39

11 11 42

12 12 55

Table 6: Space consumption on daily basis

0

20

40

60

80

100

120

Repo1 Repo2 Repo3 Repo4 Repo5 Repo6 Repo7

Volume (GB)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

699 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Graph 4: Day vs Volume consumption

Calculating the Slope (m) and Intercept (b):

To compute the values of m and b, we use the least squares method [18], which minimizes the sum of the squared differences

between the actual and predicted values. The formulas for the slope (m) and intercept (b) are

Let 'n' represent the total number of data points (in this case, days). The term ∑xy refers to the sum of the products of corresponding

x and y values, ∑x is the sum of all x values, ∑y is the sum of all y values, and ∑x² is the sum of the squares of all x values. Using

the space consumption data across several months (with months represented numerically), we computed the coefficients m = 3.50

and b = 5.27. Therefore, the final linear regression equation [19] for predicting space usage is y = 3.50x + 5.27. For example, when

x = 1, the predicted y value is 8.77GB, and for x = 2, y is 12.7GB. This equation allows us to forecast future space requirements

based on historical trends.

Figure 3 illustrates both the actual and predicted daily volume usage values derived from the regression model.

SNo Day Total space

consumption (Gb)

Predcicted

Space

consumption

1 1 12 8.769

2 2 14 12.265

3 3 16 15.762

4 4 18 19.258

5 5 21 22.795

6 6 27 26.251

7 7 27 29.748

8 8 29 33.244

9 9 36 36.741

10 10 39 40.237

11 11 42 43.734

12 12 55 49.23

Table 7: Actual vs Predected values

0

2

4

6

8

10

12

14

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

Total space consumption (Gb) Day

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

700 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Graph 5: Actual vs Predected values

As per the values from the Table 7 , the predicted values are near by actual values. The difference between actual and predicted

values are called residual points. Since the difference actual and predicted values is not having much with these values.

V. CONCLUSION

The NXRM instance has been experiencing space-related issues. To prevent unexpected disruptions, we have implemented linear

regression analysis to forecast the space requirements for upcoming days. With this predictive model, we can take proactive steps,

such as collaborating with the development team to identify and remove unnecessary artifacts, thereby freeing up space. If the

forecast indicates that space will not be sufficient, we can request additional storage to prevent potential disruptions in the NXRM

instance. Without such analysis, we would only be aware of the issue when the system crashes. By implementing this analysis, we

save a significant amount of man hours.

There are several strategies available, such as working with the development team to remove unwanted artifacts or scheduling cron

jobs through admin tasks. However, these methods will only be effective as long as the volume of new business and artifact uploads

remains manageable. If the number of artifacts being uploaded consistently exceeds the rate at which they are removed, we will

eventually need to add more disk space to avoid system performance issues. Otherwise, we risk facing a scenario where the system

becomes unresponsive, leading developers to seek urgent help, which may not be possible to address quickly. To prevent such

situations, the approach we have proposed will be highly beneficial.

Looking ahead, future work will focus on extending the analysis to include two independent variables. In this paper, we have

considered time as the independent variable, with volume as the dependent variable, which is known as univariate linear regression.

However, incorporating additional factors, such as the number of users, into the analysis could further enhance our ability to prevent

future disruptions.

REFERENCES
[1] Apache Maven cookbook by RaghuRam Barathan.

[2] UNI VARIATE LINEAR REGRESSION ANALYSIS FOR SONATYPE NEXUS REPOSITORY SPACE MANAGEMENT , Renukadevi Chuppala, Dr.

B.Purnachandra Rao , International Journal of Applied Engineering & Technology , Roman Science Publications Ins. Vol. 5 No.1, January, 2023

[3] Kubernetes Ip-Tables Performance Using Trie Tree And Radix Tree Implementation, Renukadevi Chuppala , Dr. B. PurnachandraRao, International Journal

for Multidisciplinary Research (IJFMR) E-ISSN: 2582-2160, Volume 5, Issue 2, March-April 2023

[4] Kubernetes IP Hash Set For Managing Addresses in IP-Tables, Renukadevi Chuppala , Dr. B. Purnachandra Rao, International Journal of Innovative Research

and Creative Technology 2023 IJIRCT ISSN: 2454-5988 Volume 9 Issue 5.

[5] Kubernetes Etcd Implementation Using Btree and Fractal Trees ,Renukadevi Chuppala, Dr. B. PurnachandraRao. International Journal of Innovative Research

in Engineering & Multidisciplinary Physical Sciences, IJIRMPS | ISSN: 2349-7300 , Volume 12 Issue 1 , January - February 2024

[6] Log Structured Hash Table Tree For Efficient CPU Utilization In ETCD, Renukadevi Chuppala ,Dr.B.PurnachandraRao, International Journal of Leading

Research Publication (IJLRP) E-ISSN: 2582-8010, Volume 5, Issue 6, June 2024

[7] Adelson-Velsky Landis and Log Structured Merge Tree for Kubernetes ETCD , Renukadevi Chuppala , Dr. B. Purnachandra Rao, Advanced International

Journal of Multidisciplinary Research E-ISSN: 2584-048, Volume 2, Issue 5, September-October 2024

[8] Hadoop Distributed File System Write Operations , Renukadevi Chuppala , Dr. B. Purnachandra Rao, International Journal of Intelligent Systems and

Applications in Engineering IJISAE, 2024, 12(23s), 720–731

[9] Kubernetes Ip-Tables Time Complexity Using Trie Tree And Radix Tree Implementation , Kishore Kumar Jinka, Dr.B.Purnachandra Rao , International

Journal of Applied Engineering & Technology, ISSN: 2633-4828 , Volume 5, Issue 2, June 2023

0

2

4

6

8

10

12

14

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

Total space consumption (Gb) Predcicted Space consumption Day

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

701 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

[10] Kubernetes IP Hash Set For Enhanced CPU Utilization , Kishore Kumar Jinka, Dr.B.Purnachandra Rao, International Journal for Multidisciplinary Research,

E-ISSN: 2582-2160 , Volume 2, Issue 5, September-October 2023

[11] Btree And Fractal Tree For Kubernetes ETCD Implementation , Kishore Kumar Jinka, Dr.B.Purnachandra Rao, International Journal of Innovative Research

and Creative Technology, E-ISSN: 2454-5988 , Volume 10, Issue 1, January 2024

[12] Kubernetes Ip-Tables Time Complexity Using Trie Tree And Radix Tree Implementation, Kishore Kumar Jinka, Dr.B.Purnachandra Rao, International Journal

of Applied Engineering & Technology, ISSN: 2633-4828, Volume 5, Issue 2, June 2023

[13] Kubernetes IP Hash Set For Enhanced CPU Utilization, Kishore Kumar Jinka, Dr.B.Purnachandra Rao , International Journal for Multidisciplinary Research,

E-ISSN: 2582-2160, Volume 2, Issue 5, September-October 2023

[14] Btree And Fractal Tree For Kubernetes ETCD Implementation, Kishore Kumar Jinka, Dr.B.Purnachandra Rao, International Journal of Innovative Research

and Creative Technology, E-ISSN: 2454-5988, Volume 10, Issue 1, January 2024

[15] ETCD Implementation Using Log Structured Merge Tree To Improve CPU Utilization, Kishore Kumar Jinka, Dr.B.Purnachandra Rao, International Journal of

Innovative Research in Engineering & Multidisciplinary Physical Sciences, E-ISSN: 2349-7300, Volume 12, Issue3, May-June 2024

[16] Multi Variate Linear Regression Analysis ForSonatype Nexus Repository Space Management, Kishore Kumar Jinka, Dr.B.Purnachandra Rao, International

Journal of Intelligent Systems and Applications in Engineering, ISSN: 2147-6799, Volume 12, Issue 23S, August 2024,

[17] Log Structured Merge Tree and Log Structured Hash Table Tree for Kubernetes ETCD, Kishore Kumar Jinka, Dr.B.Purnachandra Rao, International Journal of

Multidisciplinary Research, E-ISSN: 2584-0487, Volume 2, Issue 5, September-October 2024

[18] Kubernetes IP-Tables Bitmap Compaction Using Regular And Irregular Intervals , Kishore Kumar Jinka, Dr.B.Purnachandra Rao October-2024 , Beyond

Intelligence: AI for a Changing Planet/ Beijing, China International Conference,

[19] One Dimensional Regression Analysis For Disk Space Management , Kishore Kumar Jinka, Dr.B.Purnachandra Rao, November-2024 LASMCER - Latest

Advancements in Science, Management, Commerce, and Educational Research

[20] Multi Variate Linear Regression Analysis For Sonatype Nexus Repository Space Management , Kishore Kumar Jinka, Dr.B.Purnachandra Rao , International

Journal of Intelligent Systems and Applications in Engineering, ISSN: 2147-6799, Volume 12, Issue 23S, August 2024

[21] Log Structured Merge Tree and Log Structured Hash Table Tree for Kubernetes ETCD, Kishore Kumar Jinka, Dr.B.Purnachandra Rao , International Journal

of Multidisciplinary Research, E-ISSN: 2584-0487, Volume 2, Issue 5, September-October 2024.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue II Feb 2025- Available at www.ijraset.com

702 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

