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Abstract: This study models the reliability, availability, and maintainability of a finite capacity Hr/M/1/N phase queueing system 
in working and working-breakdown states. The arrival times are distributed according to a Hyperexponential distribution with r-
parallel phases, whereas the service times are distributed according to an exponential distribution. The differential-difference 
equations for the transient states are derived from the state-transition diagram for different environmental states, as well as 
failure and recovery states. For the particular situation of N=4, these governing equations are solved numerically. Sensitivity 
Analysis was used to investigate RAM performance measures for various parametric variables. 
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I. INTRODUCTION 
The study of a series of service stations through which each arriving customer must proceed before leaving the system is one of the 
most common applications of queueing theory. When the output from one service station becomes the input to the next, i.e., when 
units departing from one station are not collected and then moved on to the next station in a batch, the analysis of the system's 
behaviour requires the determination of the inter-departure time distribution at each stage, which is then used as the inter-arrival 
time distribution to the next station. This tends to be the most challenging component of the analysis in general. Therefore, for such 
queueing model the arrival or service times can be modelled with Phase type distributions and these models are used to measure the 
characteristics of queueing system. In such models, finding an ideal solution is very difficult and these models usually consider 
better approximations. As a result, a new technique to the study of G/M/1 systems with phase type distributions appears to be 
promising. One of the input distribution G can be assumed to be the blend of two exponential probability distributions, i.e., 
Hyperexponential distribution Hr. In this context, queuing system with Hyperexponential input distributions is more complex system 
as compared to Exponential or Erlang distributions and it is challenging to find an analytical solution. A Hyperexponential 
distribution is a continuous probability distribution which consists of two or more non-identical phases that occur in a exhaustive or 
parallel manner.  
Cosmetatos and Godsave (1986), have developed hyper-exponential Hr/M/1 inter-arrival and exponential service times queueing 
model with multi-server system. They developed an approximate formula for the equilibrium queue-size and queueing-time 
distributions. These formulas are based on the combination of heuristic arguments, analytical methods and the model is also dealt 
with the sensitivity analysis. Tian et al. (1989), examined the G1/M/1 queue with exhaustive service and multiple exponential 
vacations. The authors represent the embed Markov chain's transition matrix as a block-Jacobi form and provided a matrix-
geometric solution. In addition, the limiting behaviour of continuous time queue length processes, probability distributions for the 
waiting times and the busy period were also explored. Tarasov et al. (2019) studied the H2/M/1 queueing system and determined the 
mean delay time for different approaches and compared. Furthermore, the authors were able to optimise the constraints to find the 
characteristics for the H2/M/1 queueing system. Reliability theory is a well-developed field and has been researched by several 
authors. The computation of the Reliability of a system with parts showing dependent failures and repairs for any system is in 
general complex, and several methods are proposed which are available in the literature. Amiri et al. (2007) presented a 
methodology for assessing system transient survivability and availability in the presence of identical components and repairmen. To 
create the technique for the transient reliability of such systems, the authors used the ideas of Markov models, eigen vectors, and 
eigenvalues. The suggested approach is a more effective method and can be used to analyse a wide range of systems, including 
series, parallel, and k-out-of-n systems.  
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The proposed approach may also be used to calculate MTTFs and the time required for the system to attain steady state. There hasn't 
been much work done on the RAM analysis of the Hr/M/1 queueing system with working and working-breakdown states. As a 
result, this inspires to study the reliability, availability and maintainability analysis for hyper exponential single server finite 
capacity queuing system with working, working-breakdowns, failure and recovery policies. 
In this chapter the RAM analysis of the Hr/M/1/N queueing model with two different environmental states is analysed. The arrival 
process is modelled by Hyperexponential random variable with r phases of arrival with rate λr. The unit is arrived only by one phase 
of arrival that is chosen according to a discrete distribution pi, ∑ ௥݌

௜ୀଵ ௜ = 1. This Hyperexponential distribution has rate λ1 with 
probability p1 and rate λ2 with probability p2and so on. Let S(t) denote the environmental states such as the working and working 
breakdown states at time t. When the system is in the working state failure occurs in the queueing system with the failure rate α. The 
system is immediately switched to the working-breakdown state where the recovery process takes place with the recovery rate β. 
During this process, the system did not terminate its function but it continues its process at a slow pace. The differential-difference 
equations are formed from the state-transition diagram for the Hr/M/1/N queueing model and this model is numerically illustrated 
for the special case. The Fourth-Order Runge-Kutta numerical method is used to solve the transient probabilities for the Hr/M/1/N 
queueing model. The Reliability, Availability and Maintainability of the Hr/M/1/N queueing are analysed numerically and presented 
graphically. The sensitivity analysis was also performed to study the system change for changes in the model parameters.  
 

II. PRESUMPTIONS AND NOTATIONS 
The presumptions that are used in this chapter are: 
1) The arrival of units to the system are assumed to follow Hyperexponential distribution with r phases. 
2) The service process is exponentially distributed with FCFS (First Come First Serve) queue discipline 
3) When the system is not empty (i.e., at least one unit must be present), a failure rate arises with exponential rate α. The system 

immediately changes to Working-Breakdown mode, where it runs at a reduced rate. 
4) The recovery process occurs in the system's working-breakdown, which is exponentially distributed. When the system recovers, 

it returns to its normal working state of operation 
5) All arrival and the service times are independent of each other 
The following are the notations that are used in this chapter: 
RAM : Reliability, Availability and Maintainability   
N(t)  : Total number of machines in the system at any time t 
Hr : Hyper exponential distribution with r identical parallel phases 
S(t)  : The environmental state at any instant of time t                                                                                                                                                                                                          
R(t)  :  Reliability of the system at time t 
A(t)  :  Availability of the system at time t 
M(t)  :  Maintainability of the system at time t 
λr : Arrival rate for the rth phase  
µ1 : Service rate for working state  
µ2 : Service rate for working-breakdown state (µ1 > µ2). 
α : Failure rate  
β : Recovery rate  
Pn, i, j(t)   : Probability that there are n machines in the system with ith phases and jth states at time t 
Pn(t) : Probability that there are n units in the system at time t 
Pw(t) : Probability of n units in the system for the working state at time     t 
Pwb(t) : Probability of n units in the system for the working-breakdown State at time t 
pk : Probability that the arrival choosing kth phase  
 

III. RAM MODELLING OF Hr/M/1 QUEUEING SYSTEM 
In this section the analysis of the Reliability, Availability, and Maintainability for Hr/M/1/N queueing system with two different 
environmental states are analysed.  In Hr/M/1/N queueing systems, the arrival process is modelled by the Hyperexponential random 
variable with r phases of arrival with rates λr. In this case, the arrival phases should be of parallel structure, i.e., a unit arrive only to 
one phase, each is chosen according to a discrete distribution pk, ∑ ௥݌

௞ୀଵ ௞ = 1. 
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The arrival process is according to hyperexponential distribution has rate λ1 with probability p1, rate λ2 with probability p2and so on. 
The service process is exponentially distributed with two parameters µ1 and µ2 depending on the environmental states such as 
working and working-breakdown.  The failure occurs in the working state of the system with failure rate α, the system immediately 
moved its process to the working-breakdown state where the recovery process takes place with recovery rate β. Once the recovery 
occurs the state of the system is transposed to the working state. The failure and the recovery rates are exponentially distributed. 
Figure 1 exhibits the state-transition diagram for Hr/M/1/N queueing model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: State-transition Diagram of Hr/M/1/N Queueing Model 

 
The differential-difference equations for the time-dependent analysis of working and working-breakdown states for the Hr/M/1/N 
queueing model are obtained from the state-transition diagram and are given in equations (3.1) - (3.6).  
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The initial conditions for the transient state is 
P0,1,0(t)=1; Pn, i, j(t)=0, Ɐ n=0,1, 2…, N; i=1,2; j=0,1                     (3.7) 
 
The total system probability, which is defined as the probability of having n units in the system at any moment t ≥ 0, is given by 

     n w ,n w b , nP t = P t + P t                                                                        (3.8) 

 
The environmental states Pw, n (t) and Pwb, n (t) are the working normal and working-breakdown states, respectively. 
The system reliability at time t is calculated as follows: 

N 1

n,i,j
n=0 i=1 j=0

R(t)= P ( )
r

t                                                                                       (3.9)  

The system Availability at time t is calculated by considering all the working states is as follows: 
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The system Maintainability at time t is calculated by considering working-breakdown state which is calculated as follows: 

N

n,i,j
n=0 i=1 j=1

M(t)= P ( )
r

t        (3.11) 

 
IV. SPECIAL CASE –RAM FOR H2/M/1/4 QUEUEING MODEL 

The Hyperexponential 2-Phase queueing model with inter-arrival times and exponential service times with one server system and 
N=4 as the capacity of the system is taken into consideration. The RAM analysis of the H2/M/1/4 queueing model is investigated. 
The governing equations of the working and working-breakdown states for the H2/M/1/4 queueing model are given below: 
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A. Numerical Illustration 
The basis of this section is to examine the RAM analysis of the transient state of the H2/M/1/4 Queueing model by using the 
governing equations from (4.1) -(4.18). For ease of computation the capacity of the system is assumed as N=4 for the time range of 
t=0 to t=200 and for standard parametric values are taken as λ1=0.05, λ2=0.03 µ1=0.09, µ2=0.07, α=0.009, β=0.007 p1=0.6 and 
p2=0.4. The equations are solved by using fourth order Runge-Kutta numerical method andthe transient state probabilities of the 
queueing system are obtained. The probability trend curves for H2/M/1/4 queueing model are represented in Figure 2. The RAM 
analysis for H2/M/1/4 is also obtained and represented in Figures 3-5. 
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Figure 2: Probability Trend Curves H2/M/1/4 Queueing Model 

 
Figure 2 shows the probability trend curves that help to understand the distribution trend of the system probabilities for the specified 
time intervals. 
 

 
Figure 3: Reliability of H2/M/1/4 Queueing Model     Figure 4: Availability of H2/M/1/4 Queueing Model 
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Figure 5: Maintainability of H2/M/1/4 Queueing Model 

 
Figure 3, represents the Reliability of the H2/M/1/4 Queueing model. It was observed from the figure that as the time increases the 
Reliability of the system decreases. It was also found out that whentime reaches 200 the Reliability of the system will be 
approximately equal to 57%. 
Figure 4, shows the Availability of the H2/M/1/4 Queueing model. It is seen from the figure as the time range increases the 
Availability of the system decreases. When t=200  the Availability of the system is approximately equal to 17%. 
Figure 5, depicts the Maintainability of the H2/M/1/4 Queueing model. From the figure it was seen that as time increases 
Maintainability of the system increases. It is observed that in t=200, Maintainability is found out to be 42%. The H2/M/1/4 Queueing 
model's special metrics, such as MTBF and MTTR, were determined. The mean time between failures, or the average time between 
queueing system breakdowns, is 14 hours, while the average time to recover from a queueing system breakdown is 11 hours. 

 
V. SENSITIVITY ANALYSIS 

A. Sensitivity  Analysis For Different Arrival And Service Rates 
In this section, the performance of the system for the Reliability, Availability and Maintainability of the H2/M/1/4 queueing model is 
measured. This performance measure is studied by using the sensitivityanalysis changing the parametric values of λ1, λ2, µ1, α, β, p1, 
p2 for which the results are attained which are given in Tables 1-4.  

 
Table 1: Sensitivity Analysis for different Arrival and Failure rates 

Arrival Rate Vs Failure Rate 
TIME   λ1=0.05& λ2=0.02 λ1=0.06& λ2=0.03 λ1=0.07& λ2=0.04 

    R(t) M(t) A(t) R(t) M(t) A(t) R(t) M(t) A(t) 
  α=0.008 0.7593 0.2398 0.7261 0.7602 0.2382 0.7289 0.7681 0.2378 0.7727 

40 α=0.009 0.7340 0.2650 0.6976 0.7439 0.2645 0.6993 0.7498 0.2620 0.7071 
  α=0.01 0.7097 0.2893 0.6703 0.7106 0.2885 0.6728 0.7193 0.2863 0.6877 

80 α=0.008 0.6833 0.3157 0.6187 0.6912 0.3016 0.6264 0.7031 0.2960 0.6311 
  α=0.009 0.6527 0.3464 0.5827 0.6646 0.3345 0.5984 0.6735 0.3241 0.6050 
  α=0.01 0.6237 0.3756 0.5488 0.6316 0.3678 0.5546 0.6426 0.3577 0.5644 

120 α=0.008 0.6271 0.3728 0.5273 0.6311 0.3671 0.5321 0.6472 0.3565 0.5427 
  α=0.009 0.5937 0.4066 0.4868 0.6038 0.3954 0.4986 0.6199 0.3813 0.5085 
  α=0.01 0.5626 0.4382 0.4493 0.5757 0.4203 0.4549 0.5869 0.4140 0.4649 

160 α=0.008 0.5856 0.4160 0.4493 0.5979 0.4013 0.4549 0.6056 0.3948 0.4641 
  α=0.009 0.5511 0.4513 0.4066 0.5645 0.4454 0.4164 0.5732 0.4369 0.4263 
  α=0.01 0.5194 0.4840 0.3679 0.5219 0.4889 0.3768 0.5367 0.4796 0.3867 

200 α=0.008 0.5551 0.4487 0.3829 0.5649 0.4356 0.3988 0.5734 0.4539 0.4037 
  α=0.009 0.5204 0.4847 0.3396 0.5315 0.4797 0.3495 0.5402 0.5027 0.3534 
  α=0.01 0.4890 0.5177 0.3012 0.4974 0.5060 0.3111 0.5093 0.5387 0.3210 
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Table 1 depicts the changes in the system's Reliability, Availability, and Maintainability for various sets of arrival and failure rates 
while holding the other parameters constant. It is discovered that as the failure rate increases while keeping the arrival rate constant, 
the system's reliability and availability decrease while its maintainability increases. For different time intervals, as the arrival rate 
increases while the failure rate remains constant, the system's reliability and availability increase while its maintainability decreases. 

 
Table 2: Sensitivity Analysis for different Service and Failure rates 

SERVICERATEVs FAILURE RATE 
TIME   μ1=0.08 μ1=0.09 μ1=0.1 

    R(t) M(t) A(t) R(t) M(t) A(t) R(t) M(t) A(t) 
40 α=0.008 0.7592 0.2396 0.7261 0.7631 0.2389 0.7270 0.7694 0.2302 0.7299 
  α=0.009 0.7339 0.2648 0.6977 0.7434 0.2631 0.6986 0.7544 0.2614 0.6995 
  α=0.01 0.7094 0.2891 0.6703 0.7197 0.2865 0.6722 0.7298 0.2838 0.6761 

80 α=0.008 0.6832 0.3149 0.6188 0.6983 0.3057 0.6217 0.7034 0.2964 0.6386 
  α=0.009 0.6526 0.3455 0.5827 0.6657 0.3344 0.5986 0.6758 0.3241 0.6025 
  α=0.01 0.6236 0.3745 0.5488 0.6323 0.3674 0.5547 0.6428 0.3572 0.5646 

120 α=0.008 0.6269 0.3710 0.5273 0.6327 0.3672 0.5322 0.6423 0.3573 0.5421 
  α=0.009 0.5935 0.4045 0.4868 0.6037 0.3958 0.4988 0.6159 0.3969 0.5048 
  α=0.01 0.5623 0.4357 0.4493 0.5766 0.4231 0.4542 0.5868 0.4134 0.4641 

160 α=0.008 0.5851 0.4128 0.4494 0.5984 0.4043 0.4543 0.6059 0.3956 0.4642 
  α=0.009 0.5505 0.4475 0.4066 0.5659 0.4342 0.4105 0.5752 0.4256 0.4204 
  α=0.01 0.5187 0.4795 0.3679 0.5211 0.4673 0.3768 0.5314 0.4589 0.3867 

200 α=0.008 0.5541 0.4438 0.3829 0.5657 0.4346 0.3788 0.5751 0.4241 0.3827 
  α=0.009 0.5193 0.4788 0.3396 0.5322 0.4788 0.3436 0.5424 0.4685 0.3536 
  α=0.01 0.4877 0.5108 0.3012 0.4983 0.5019 0.3112 0.5048 0.4957 0.3212 

 
Table 2 shows the changes in the system's Reliability, Availability, and Maintainability for various sets of failure rates and service 
rates of the Working State while holding the other parameters constant. As the failure rates increase while the service rate remains 
constant, the system's reliability and availability decrease while its maintainability increases. Furthermore, as the service rates 
increase while the failure rate remains constant, the system's reliability and availability increase while its maintainability decreases. 

 
Table 3: Sensitivity Analysis for different Arrival and Recovery rates 

ARRIVAL RATE Vs RECOVERY RATE 
TIME   λ1=0.05& λ2=0.02 λ1=0.06&λ2=0.03 λ1=0.07& λ2=0.04 

    R(t) M(t) R(t) M(t) R(t) M(t) 
  β=0.006 0.7292 0.2698 0.7271 0.2709 0.7250 0.2724 

40 β=0.007 0.7340 0.2650 0.7329 0.2694 0.7308 0.2702 
  β=0.008 0.7387 0.2603 0.7366 0.2668 0.7325 0.2659 

80 β=0.006 0.6438 0.3554 0.6347 0.3656 0.6246 0.3753 
  β=0.007 0.6527 0.3464 0.6426 0.3545 0.6355 0.3671 
  β=0.008 0.6613 0.3376 0.6512 0.3438 0.6461 0.3583 

120 β=0.006 0.5807 0.4200 0.5786 0.4329 0.5685 0.4422 
  β=0.007 0.5937 0.4066 0.5898 0.4183 0.5799 0.4213 

  β=0.008 0.6062 0.3939 0.5963 0.4053 0.5864 0.4181 

160 β=0.006 0.5340 0.4689 0.5233 0.4774 0.5131 0.4806 
  β=0.007 0.5511 0.4513 0.5455 0.4654 0.5532 0.4769 

  β=0.008 0.5673 0.4347 0.5567 0.4433 0.5464 0.4543 

200 β=0.006 0.4997 0.5062 0.4857 0.5140 0.4723 0.5261 
  β=0.007 0.5204 0.4847 0.5125 0.4917 0.5022 0.5027 

  β=0.008 0.5399 0.4646 0.5249 0.4709 0.5147 0.4809 
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Table 3 represents the changes in the system's Reliability and Maintainability for various sets of Arrival rate and Recovery rate 
while holding the other parameters constant. When the recovery rate is increased while keeping the arrival rate constant, the 
system's reliability increases while its maintainability decreases. Furthermore, for different time intervals, as the arrival rate 
increases, the system's Reliability decreases, whereas the system's Maintainability increases by maintaining the recovery rate 
constant. 

Table 4: Sensitivity Analysis for differentServiceand Recovery rates 
SERVICE RATE Vs RECOVERY RATE 

TIME   μ1=0.08 μ1=0.09 μ1=0.1 
    R(t) M(t) R(t) M(t) R(t) M(t) 
  β=0.006 0.7287 0.2701 0.7292 0.2693 0.7299 0.2684 

40 β=0.007 0.7328 0.2653 0.7339 0.2645 0.7364 0.2636 
  β=0.008 0.7365 0.2606 0.7386 0.2598 0.7397 0.2589 

80 β=0.006 0.6245 0.3581 0.6337 0.3456 0.6439 0.3327 
  β=0.007 0.6353 0.3490 0.6426 0.3365 0.6528 0.3237 
  β=0.008 0.6469 0.3402 0.6512 0.3278 0.6614 0.3151 

120 β=0.006 0.5680 0.4270 0.5706 0.4129 0.5812 0.4062 
  β=0.007 0.5790 0.4132 0.5838 0.4083 0.5944 0.3928 
  β=0.008 0.5864 0.4001 0.5963 0.3953 0.6070 0.3801 

160 β=0.006 0.5130 0.4819 0.5243 0.4734 0.5356 0.4644 
  β=0.007 0.5355 0.4634 0.5415 0.4554 0.5529 0.4467 
  β=0.008 0.5466 0.4459 0.5577 0.4383 0.5692 0.4201 

200 β=0.006 0.4893 0.5264 0.4957 0.5140 0.5029 0.5011 
  β=0.007 0.4959 0.5033 0.5015 0.4917 0.5239 0.4896 
  β=0.008 0.5138 0.4818 0.5209 0.4709 0.5435 0.4594 

 
Table 4 depicts the changes in the system's Reliability and Maintainability for various sets of service rates and recovery rates while 
holding all other parameters constant. The table shows that as the Recovery rate increases while keeping the Service rate constant, 
the system's reliability increases while its maintainability decreases. It is discovered that for different time intervals while keeping 
the recovery rate constant, the system's reliability increases as the service rate increases, whereas the system's maintainability 
decreases. 

 
B. Sensitivity Analysis For Different Failure And Recovery Rates 
The graphical representations of RAM analysis for the H2/M/1/4 for different failure and recovery rates are shown in Figures 6-10. 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 6: Reliability for Different Failure Rates       Figure 7: Availability for Different Failure Rates 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue XI Nov 2023- Available at www.ijraset.com 
     

 
2404 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 
 
 

 
 
 
 
 
 
 
 
 
 
    

Figure 8: Maintainability for Different Failure Rates 
 

Figures 6, 7, and 8 show the Reliability, Availability, and Maintainability for various failure rates of 0.01, 0.0125, and 0.0155, 
respectively, while keeping the other parameters constant. The graph shows that as the failure rate is increased, the system's 
reliability and availability decrease while its maintainability increases. As the failure rate increases by 25%, the average change in 
system reliability and availability decreases by 12% and 42%, respectively, while maintainability increases by 11%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9:Reliability for Different Recovery Rates     Figure 10:Maintainability for Different Recovery Rates 
 
Figures 9, 10 represents the Reliability and Maintainability for different sets of recovery rates as 0.004, 0.005, 0.00625, while other 
parameters are kept constant. It has been noticed that when the recovery rate increases, the system's reliability increases yet its 
maintainability decreases. The average change in the systems Reliability is increased by 10%, while the Maintainability is decreased 
by 7% when the recovery rates are increased by 25%. 
 

VI. CONCLUSION 
The RAM analysis of the Hr/M/1/N Queueing model with two different environmental conditions is examined in this chapter. The 
state-transition diagram is used to obtain the differential-difference equations for the transient state of the r-phase Hyperexponential 
queueing model. Hyperexponential 2-phase inter-arrival times and exponential service times are assessed for a single server system 
with finite capacity as a specific case. The differential-difference equations for the H2/M/1/4 queueing model with working and 
working-breakdown states are solved using the fourth order Runge-Kutta numerical method.  
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The following are the outcomes: 
1) It was discovered that as time passes, the reliability and availability of the system decreases, while the maintainability of the 

system increases. 
2) When t=200, the system's Reliability and Availability were found to be 57 percent and 17 percent, respectively, whilst the 

system's Maintainability was determined to be 42 percent. 
3) The average time between queueing system failures, or mean time between failures, is 14 hours, whereas the average time to 

recover from a queueing system failure is 11 hours.  
4) For a fixed Failure rate, the Sensitivity Analysis was used to examine various sets of Arrival and Service rates. The H2/M/1/4 

Queueing model increases the system's reliability and availability while decreasing its maintainability. 
5) For a fixed recovery rate, the system's Reliability decreases as the arrival rates increase, while the system's Maintainability 

increases, and for a growing service rate, the system's Reliability increases while the Maintainability decreases. 
6) When the failure rates increase by 25%, the average change in system reliability and availability decreases by 12% and 42%, 

respectively, while the system's maintainability increases by 11%. 
7) It has been discovered that for every 25% increase in recovery rate, the average change in system reliability increases by 10%, 

while system maintainability decreases by 7%. 
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