

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 10 Issue: V Month of publication: May 2022

DOI: https://doi.org/10.22214/ijraset.2022.41899

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Structural and Thermal Analysis of Magnesium Based Brake Friction Material

Aditya Maithani¹, Vaibhav Mall², Sarthak Guha Roy³ ^{1, 2, 3}School of Mechanical Engineering, VIT Vellore, Tamil Nādu

Abstract: Conventional brake pad friction materials are made of organic, metallic and ceramic materials but they suffer from various shortcomings like dampening effects, formation of undesirable phases, sensitivity to high temperature and brittleness. However, in the recent years due to better tribological properties of magnesium and its composites they have gained considerable importance to be used as brake pad friction material. In present article the structural and thermal analysis of six magnesium composites (viz., AZ91 + 0.5 wt.% GNP, AZ91 + 30 wt.% TiC, Mg + 1 Al + 0.6 wt.% CNT, AZ91D + 1.5 wt.% B_4C , Mg + 10 % TiC + 5 wt.% MoS₂, Mg + 5 wt.% Graphite) in ANSYS software has been carried out. During the structural and thermal simulation it was observed that AZ91+0.5wt%GNP and Mg+1Al+0.60CNT gave the best results for total deformation, equivalent stress and strain and were found to be the most suitable composites for making brake pad friction material. This behaviour of the GNP and CNT composites can be attributed to their respective honey-comb and cylindrical structure lattice and high thermal properties.

Keywords: Brake pad friction material, Structural analysis, Thermal analysis, Composites, GNP, CNT

I. INTRODUCTION

Magnesium in the recent years is gaining importance in automobile industry due to its efficient mechanical properties, less weight and high machinability. ¹It is also noticed that magnesium is 35% lighter than aluminium and four times lighter than steel. ²Alloying of magnesium with manganese, zinc and rare earth materials increases the strength to weight ratio, which makes it suitable for applications where reduction of weight inertial forces is imperative. Incorporation of structural filler material viz., Carbon nano tube (CNT) and Graphene nano plates (GNP) leads to increase in thermal properties of magnesium composites.

Brake pads are a crucial component in the braking system of an automobile. They have to be designed in such a way that a constant coefficient of friction is maintained over a wide range of structural and thermal conditions. Although the wear of the brake pad is inevitable, however, it should be minimized as far as possible.

³ Highlighted that asbestos brake pads released carcinogenic materials during wear and thus have a negative effect on the human health. ⁴ reported that organic brake pads were not homogenous in nature as they depend highly on the type and conditions of the raw material. ⁵ highlighted that metallic matrix composites display low hardness and low strength to weight ratio, which effects the strength of brake pads.

⁶observed that magnesium has a high strength to weight ratio. According to ⁷ incorporations of CNT in the magnesium metal matrix composite rapidly increases its strength. The wear characteristics of the matrix is also improved by the addition of GNP, TiC and B₄C composites. In context of the above discussion, the present study aims to do a comparative analysis of the structural and thermal behaviour, of six different magnesium composites brake pad friction materials (viz., AZ91 + 0.5 wt% GNP, AZ91 + 30 wt% TiC, Mg + 1 Al + 0.6 CNT, AZ91D + 1.5 wt% B₄C, Mg + 10 % TiC + 5 wt% MoS₂, Mg + 5 wt% Graphite) under similar boundary conditions.

II. MATERIALS AND SIMULATION TECHNIQUES

In present study the simulation of the brake pad and disc model is carried out on ANSYS 2020 R2 software. The performance of the six-brake pad friction material composites (viz., AZ91 + 0.5 wt% GNP, AZ91 + 30 wt% TiC, Mg + 1 Al + 0.6 CNT, AZ91D + 1.5 wt% B₄C, Mg + 10 % TiC + 5 wt% MoS₂, Mg + 5 wt% Graphite) were evaluated under the boundary conditions mentioned in Table 1. The mechanical properties of the six magnesium composite materials are discussed in Table $2^{8,9,10,11,12,13,14,15,16}$. The boundary conditions and the faces upon which the boundary conditions have been implemented on the model are shown in Figure 1.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

Fig.1 Model design and boundary conditions used for simulation on ANSYS

The structural analysis was done for a braking period of 4 seconds whereas the thermal analysis was carried out for a braking period of 1 second. The brake pressure (i.e., 1MPa) was applied uniformly over the brake pad surface and tetrahedron mesh was used in the analysis. Fine meshing of the model was done in order to get accurate results across the disc and pad.

Tuble 1. Boundary conditions appred on the model				
Type of condition	Value/ Faces applied			
Pressure 1	1 MPa			
Pressure 2	1 MPa			
Cylindrical support	Axial and tangential direction is fixed, radial is given free support			
Rotational velocity	157.99 rad/s			
Fixed support	At grooves and brake pads			

Properties of brake friction	A791 + 0.5	A791 + 30	$M\sigma + 1 Al +$	A791D + 1.5	$M\sigma + 10\%$	$M_{\sigma+}$ 5 wt%
material	wt% GNP	wt% TiC	0.6 CNT	wt% B/C	$T_iC \pm 5 wt\%$	Graphite
material	WU/O UINI	wt/0 11C	0.0 CIVI	WI/0 D4C	M_{OS}	Orapine
Densites					1003 ₂	
Density	1782	1850	1735	1819.7	2110	1760
(Kg/m^3)	110-	1000	1,00	101)()		1100
Young's Modulus (MPa)						
	65500	47450	63475	47500	46120	45900
Poisson ratio	0.31	0.29	03	0.25	0.24	0.28
	0.51	0.29	0.5	0.25	0.21	0.20
Tensile Yield Strength						
(MPa)	210	172	215	165	-	-
(
Compressive Yield Strength	249	105	241	100	100	145
(MPa)	248	195	241	190	188	145
Ultimate tensile strength						
	278	254	291	245	230	225
(MFa)						
Ultimate compressive						
strength	425	255	430	250	174	185
(MPa)	120	200	100	200	17.1	100
. , ,						

Table 2. Mechanical properties of the six different magnesium composites

A. Material Analysis

During simulation, structural parameters viz., total deformation, shear stress, equivalent stress and thermal parameter (i.e., temperature gradient) were studied. These simulations are carried out to know the applicability of Magnesium composite-based friction materials under wide range of temperatures and stress values.

B. Total Deformation

The following figures shows the simulation results of total deformation on different magnesium composites. A comparitive desscription of the range of deformation obtained in the six simulations results are shown in table 3.

Name of composite	Range of deformation (in µm)
AZ91+ 0.5 wt.% GNP	0-28.095
AZ91+ 30 wt.% TiC	0-35.582
Mg + 1Al + 0.6 CNT	0-29.769
$AZ91D + 1.5 \% B_4C$	0-36.034
$Mg + 10\% TiC + 5\% MoS_2$	0-46.581
Mg + 5% Graphite	0-43.575

	1 0		0.1 .		•
Table 3. Total	deformation	ranges o	t the six	Magnesium	composites

Results from figure 2 and table 3 showed that AZ91+0.5 wt.% GNP had the minimum range of deformation. It was observed that Mg + 1AI + 0.6 CNT showed the next lowest deformation range (refer figure 2c and table 3). Mg + 10% TiC + 5% MoS₂ was seen to have the maximum range of deformation (refer figure 2e and table 3). The maximum deformation was seen at the periphery of the brake pad (represented by red colour) and the minimum at the centre of the disc (represented by blue colour). Analysis of the simulation results showed that the deformation in each case increased outwards in the radial direction.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

c) Mg + 1Al + 0.6 CNT

Fig 2. (a,b,c,d,e,f) Total deformation of the six magnesium composites

C. Equivalent (VON MISES) Stress

The results of Equivalent stress simulation are shown in figure 3. The range of equivalent stress of the six magnesium composites are shown in table 4.

Table 4. Equivalent suces ranges of the six Wagnesium composites					
Name of composite	Range of Equivalent stress (N/mm ²)				
AZ91+ 0.5 wt.% GNP	0.030587 - 27.674				
AZ91+ 30 wt.% TiC	0.043936 – 31.752				
Mg + 1Al + 0.6 CNT	0.01136 - 29.825				
AZ91D + 1.5 % B ₄ C	0.017221 – 33.454				
$Mg + 10\% TiC + 5\% MoS_2$	0.044209 - 37.60				
Mg + 5% Graphite	0.041136 - 36.80				

Table 4 Equivalent stress ranges of the six Magnesium composites

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 10 Issue V May 2022- Available at www.ijraset.com

Results from figure 3 and table 4 showed that AZ91+0.5 wt.% GNP had the minimum range of equivalent stress (i.e., 0.030587 - 27.674). It was observed that Mg + 1Al + 0.6 CNT showed the next lowest range of equivalent stress (i.e., 0.01136 - 29.825, as shown in figure 3c). The maximum range of equivalent stress was seen in Mg + 10% TiC + 5% MoS₂ (i.e., 0.044209 - 37.60, as shown in figure 3e). Results from table 4 also highlighted that the upper limit of the equivalent stresses in AZ91+ 30 wt.% TiC (i.e., 31.752) and AZ91D + 1.5 % B₄C (i.e., 33.454) were almost equal. Maximum equivalent stresses were observed in mid-section of the disc. There was a uniform distribution of equivalent stress on the disc

1.5e+05

5e+04

D. Equivalent Strain

The results of Equivalent strain simulation are shown in figure 4. The maximum values of the equivalent strain of the six magnesium composites are shown in table 5.

Name of composite	Maximum value of Equivalent strain			
AZ91+ 0.5 wt.% GNP	0.00031516			
AZ91+ 30 wt.% TiC	0.00041219			
Mg + 1Al + 0.6 CNT	0.00032062			
AZ91D + 1.5 % B ₄ C	0.00043447			
$Mg + 10\% TiC + 5\% MoS_2$	0.0004467			
Mg + 5% Graphite	0.0004515			

Table 5. Maximum Equivalent strain range of the six Magnesium composites

It was observed that the minimum value of the equivalent strain was very low as a result we have taken only the upper limit of the simulation results for analysis. From table 5 and figure 4 it was seen that AZ91+ 0.5 wt.% GNP had minimum value (i.e., 0.00031516) of the equivalent strain. Mg + 1Al + 0.6 CNT composite as seen in table 5 had the next lowest value of equivalent strain. It was observed that AZ91+ 30 wt.% TiC and AZ91D + 1.5 % B4C had approximately equal values of equivalent strain. Out of all the six composites Mg + 10% TiC + 5% MoS2 composite had the highest value of maximum strain. The maximum equivalent strain was seen on the brake pad in Mg + 5wt% Graphite and Mg + 10% TiC + 5% MoS2 composite as shown in figure 4e and 4f. However, in case of all the other composites (refer to figure 4a, 4b, 4c, 4d) the equivalent strain was distributed across the entire disc and not concentrated on the brake pad only

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

Fig.4 (a, b, c, d, e, f) Equivalent strain of six magnesium composites

E. Thermal Analysis

The thermal simulation of the disc and pad was carried out under the boundary conditions stated in Table 1. This simulation was carried out in order to observe the temperature gradient of the disc when the brake pads were subjected to a pressure of 1 MPa. Table 6 gives details about the values of thermal conductivity of the different composites used in the study.

Tuelle of Therman Properties of the shi fraghestani composites							
Property	AZ91 +	AZ91 + 30	Mg + 1 Al	AZ91D +	Mg + 10 %	Mg+ 5 wt%	
	0.5 wt%	wt% TiC	+ 0.6 CNT	1.5 wt% B ₄ C	TiC + 5 wt%	Graphite	
	GNP				MoS_2		
Thermal	200	80	197	82	165	298.2	
conductivity							
(W/mK)							

The thermal simulation results of the composites are shown in the following figures.

a) AZ91+30wt%TiC

b) AZ91+0.5wt%GNP

e) Mg + 10 % TiC + 5 wt% MoS₂
f) Mg+ 5 wt% Grap
Fig.5 (a,b,c,d,e,f) Thermal analysis of the six magneisum composites

The range of temperature observed for each composite after simulation is given in table 7

1 8	U I
Name of composite	Temperature range (in °C)
AZ91+ 0.5 wt.% GNP	59.448 - 296.83
AZ91+ 30 wt.% TiC	59.442 - 372.59
Mg + 1Al + 0.6 CNT	59.429 - 298.54
$AZ91D + 1.5 \% B_4C$	59.367 - 366.73
$Mg + 10\% TiC + 5\% MoS_2$	59.430-319.98
Mg + 5% Graphite	59.461 - 275.16

Table 7. Temperature ranges	of	the six	Magnesium	composites
-----------------------------	----	---------	-----------	------------

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

From the simulation results as shown in figure 5 it was seen that Mg+ 5 wt% Graphite, AZ91+ 0.5 wt.% GNP and Mg + 1AI + 0.6 CNT had a low range of temperature.

The maximum temperature of Mg+ 5 wt% Graphite, AZ91+ 0.5 wt.% GNP and Mg + 1Al + 0.6 CNT was 275.16, 246.17 $^{\circ}$ C and 253.98 $^{\circ}$ C respectively (as shown in table 7.). Analysis of the simulation results showed that the temperature was distribute uniformly across the disc. It was seen that in all composites the temperature increased radially outwards. Lower temperatures were seen at the centre of the disc.

AZ91+ 30 wt.% TiC and AZ91D + 1.5 % B₄C showed maximum temperature of 372.59° C and 366.73° C respectively. The highest temperature achieved for was approximately same. However, there was difference in the minimum temperature values of both the composites (as shown in figure 5c and 5d).

III. RESULT AND DISCUSSION

The structural and thermal behaviour of six different magnesium composites were analysed by doing simulation in the ANSYS software. The magnesium composites were subjected to the same boundary conditions of temperature and pressure in order to do comparative analysis.

Once the simulations were executed, the results of the simulation were plotted in order to analyse the behaviour of each type of composite under the boundary conditions.

The thermal behaviour of the composites during the simulation are shown in figure 5, figure 6 depicts total deformation, figure 7 depicts the equivalent stress and figure 8 depicts equivalent strain.

It can be observed from figure 5 that AZ91+0.5wt%GNP and Mg+1Al+0.60CNT displayed very less range of equivalent strain (i.e., $3*10^{-4}$ and $3.1*10^{-4}$ respectively). While the Mg + 10% TiC + 5% MoS₂ had maximum equivalent strain (i.e., $4.5 * 10^{-4}$). Results from figure 6 showed similar results that AZ91+0.5wt%GNP and Mg+1Al+0.60CNT had very low equivalent stress (i.e. 25 MPa and 30 MPa respectively). Total deformation results are discussed in figure 7. It was observed that AZ91+0.5wt%GNP and Mg+1Al+0.60CNT had the lowest deformation (i.e., $28.57 \mu m$ and 30 μm respectively) whereas Mg + 10% TiC + 5% MoS₂ had maximum deformation (i.e., 46.581).

The results of structural simulations highlighted that AZ91 + 30wt% TiC and AZ91 + 1.5 wt.% B_4C had considerably more deformation, stress and strain as compared to the above discussed two materials but showed better strength and elastic properties as compared to Mg + 10% TiC + 5% MoS_2 and Mg + 5% Graphite. The results of thermal simulation also showed that AZ91+0.5wt%GNP and Mg+1Al+0.60CNT composites had a lower range of temperature as compared to all the other composites except Mg+5% Graphite.

This low temperature gradient of Mg+5 wt.% Graphite was observed because of its high conductivity, due to the presence of Graphite layer in it. However, unlike CNT and GNP composites the presence of this graphite layer was not able to give very high structural strength to the composite. The thermal gradient across the disc highlighted that during braking mechanism, the heat was distributed uniformly across the entire disc.

One of the major reasons for the good structural behavior of CNT and GNP based magnesium composites was the presence of respective honey comb lattice. This kind of lattice displays very high strength and specific area per unit volume which helps in the uniform distribution of load. Under the tensile loading the stress gets transferred from strained matrix to the reinforced lattice. ¹²has also reported that GNP as a reinforcing material improved the tensile properties and increased the strain to fail rate. It was found that the addition of 0.3 wt.% GNP to the pure Mg matrix increased its elastic modulus, yield strength, UTS by 10.6%, 5% and 8%, respectively.

In case of Mg+1Al+0.60CNT high aspect ratio is observed as a result dislocation cannot easily overcome the obstacle, which increases the creep resistance of the material.

Hall Petch Strengthening mechanism occurs in CNT, based on the refinement of the grains, and is responsible for explaining the enhancement in compressive yield strength of CNTs reinforced MMCs. ¹⁷reported that magnesium CNT composite prepared through friction stir welding reported a 90 % increase in hardness.

In the case of Mg + 10% TiC + 5% MoS₂ low values of hardness and other structural properties was observed, due to interfacial reaction of the composite along with the formation of brittle reaction associated with the surface and delamination in the reinforcing materials towards the matrix. It was observed that AZ91 + 30wt% TiC and AZ91 + 1.5 wt.% B₄C, showed good structural and thermal properties for small amounts of additives (i.e., TiC and B₄C). However, increasing the proportion of these additives deteriorated the thermal and mechanical properties of the two above mentioned

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

IV. CONCLUSION

- *1)* From the structural and thermal simulation results it was concluded that AZ91+0.5wt%GNP and Mg+1Al+0.60CNT were the ideal composites for making brake pad friction material.
- 2) There is a need to validate the simulation results through lab experiments.

REFERENCES

- [1] Kulekci, M.K. Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39, 851-865 (2008).
- [2] Blawert C, Hort N, Kainer KV (2004) Automotive applications of magnesium and its alloys. Trans Indian Inst Met 57(4):397-408
- [3] Lemen RA. Asbestos in brakes: exposure and risk of disease. Am J Ind Med. 2004 Mar;45(3):229-37.
- [4] Andrzej Borawski; (2020). Conventional and unconventional materials used in the production of brake pads review . Science and Engineering of Composite Materials, ()
- [5] Gujrathi TV, Damale AV. A review on friction materials of automobile disc brake pad. International Journal of Engineering [ARDIJEET]. Educ Technol. 2015;3(2):1–4.
- [6] Eliezer D, Aghion E, Froes FH (1998) Magnesium science and technology. Adv Mat Performance 5:201–212
- [7] Goh, C.S., Gupta, M., Jarfors, A.W.E., Tan, M.J., Wei, J., 2010. Magnesium and Aluminium Carbon Nanotube Composites. KEM 425, 245–261. https://doi.org/10.4028/www.scientific.net/kem.425.245
- [8] Abazari, Somayeh & Shamsipur, Ali & Bakhsheshi-Rad, Hamid & Ismail, Ahmad & Sharif, Safian & Razzaghi, Mahmood & RamaKrishna, Seeram & Berto, Filippo. (2020). Carbon Nanotubes (CNTs)-Reinforced Magnesium-Based Matrix Composites: A Comprehensive Review. Materials. 13. 4421. 10.3390/ma13194421.
- [9] Sankar, C., Gangatharan, K., Christopher-Ezhil-Singh, S., Krishna Sharma, R., Mayandi, K. Optimization on Tribological Behavior of Milled Nano B4C Particles Reinforced with AZ91 Alloy Through Powder Metallurgy Method Transactions of the Indian Institute of Metals 72 (5) 2019: pp. 1255 – 1275. https://doi.org/10.1007/s12666-019-01618-y
- [10] Chinthamani, Sankar; Kannan, Gangatharan; George, Glan Devadhas; Sreedharan, Christopher Ezhil Singh; Rajagopal, Krishna Sharma (2020). Effect of Nano B4C on the Tribological Behaviour of Magnesium Alloy Prepared Through Powder Metallurgy. Materials Science, 26(4), 392–400. doi:10.5755/j01.ms.26.3.21556
- [11] Kandemir, Sinan (2018). Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing. Journal of Materials Engineering and Performance, (), -. doi:10.1007/s11665-018-3391-x
- [12] Rashad, M.; Pan, F.; Tang, A.; Asif, M.; She, J.; Gou, J.; Mao, J.; Hu, H. (2015). Development of magnesium-graphene nanoplatelets composite. Journal of Composite Materials, 49(3), 285–293. doi:10.1177/0021998313518360
- [13] Guler, Omer; Say, Yakup; Dikici, Burak (2020). The effect of graphene nano-sheet (GNS) weight percentage on mechanical and corrosion properties of AZ61 and AZ91 based magnesium matrix composites. Journal of Composite Materials, (), 002199832093334–. doi:10.1177/0021998320933345
- [14] Kumar, P.; Skotnicova, K.; Mallick, A.; Gupta, M.; Cegan, T.; Jurica, J. Mechanical Characterization of Graphene Nanoplatelets- Reinforced Mg-3Sn Alloy Synthesized by Powder Metallurgy. Metals 2021, 11, 62. https://doi.org/10.3390/met11010062
- [15] Venkit, Hari (2012). [IEEE 2012 International Conference on Green Technologies (ICGT) Trivandrum, Kerala, India (2012.12.18-2012.12.20)] 2012 International Conference on Green Technologies (ICGT) - Investigation of mechanical properties and wear behavior of magnesium alloy AZ91D reinforced with TiC., (), 335–339. doi:10.1109/icgt.2012.6477996
- [16] Aydin, Fatih; Sun, Yavuz; Emre Turan, M (2019). Influence of TiC content on mechanical, wear and corrosion properties of hot-pressed AZ91/TiC composites. Journal of Composite Materials, (), 002199831986057–. doi:10.1177/0021998319860570
- [17] Y. Morisada; H. Fujii; T. Nagaoka; M. Fukusumi (2006). MWCNTs/AZ31 surface composites fabricated by friction stir processing., 419(1-2), 344–348.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)