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Abstract: Future frame prediction project aims at predicting future frames of a video given previous frames. If ‘n’ frames are 
given into the model (n being 19 in our case) our model predicts the n+1th frame in the sequence (i.e., 20th frame). The model 
used for prediction is a deep learning model - GAN (Generative Adversarial Model). The Generative adversarial model has 2 
components: the generator which generates the 20th frame and the adversary (Critic) which compares the outputs of the 
generator with real outputs.  
The purpose of this comparison is to train both the generator and the critic in a cyclic fashion to the point where the generator 
can create almost real-looking outputs. Complex systems like aiming machines, self-driving cars, etc require a good level of 
correct future prediction to make their outputs correct. We aim at creating a common prediction model which can be generalized 
for any task and can be used in any such machine. 
 

I. INTRODUCTION 
The project involves developing a Neural Network model that can predict the next frame of a video. Intelligent decision- making 
systems require the capacity to foresee, anticipate, and reason about future events. Auto driving systems, Articulated robots, Aiming 
Systems, etc. are some of the many intelligent decision-making systems which require a good sense of possible future predictions to 
output correct and usable predictions in their corresponding fields. The roots of this project are based on one of the coherent features 
of human intelligence i.e., to predict the future. Future prediction, here, does not mean having the powers of Doctor Strange to see all 
possible futures at a long period. Humans have a conceptual sense of the future and can predict a possible version of it given present 
and past information.  
The human brain is able to do so by continuously interacting with its environment and remembering how similar objects react in 
previously understood environments in the presence of a general sense of the laws of nature/physics. For example- In a game of 
catch, if Person A throws a ball to Person B then without knowing the weight of the ball, air resistance, gravitational pull of the area, 
etc. but with enough practice, person B can predict an approximate place to be to catch the ball. Several computer games like Call of 
Duty, Dota 2, etc. are entirely built to be won by the person who can predict the next move of their opponent better, under the 
distinct rules of that game.  
Thus, we aim to build a Neural Network model to be able to artificially replicate this ability of humans to predict future frames of a 
given video given past frames. The model will focus on predicting the frames with the best quality and attention to detail. 
Eventually, as the past frames of the video are used to predict future frames, the number of previously predicted frames will start to 
increase in the frames that will be used to predict further frames. This is when most previous models start to degrade in the quality of 
their prediction. Hence, we aim to build a new architecture for predicting the frames better, both using actual frames and predicted 
frames. 
We will be using a deep learning model in our project - GANs (Generative Adversarial Networks) with Wasserstein Loss. There are 
2 components in the model - Generator and Critic. The role of the Generator is to predict the next frame in the sequence given 
previous frames and random noise. The critic also takes in the previous frames but it also takes the output of the Generator as the input 
and creates a score in the range of (-Infinity, Infinity) which is used to train both these models till the Generator is successfully able to 
fool the Critic in as much that the Critic cannot differentiate the Generators outputs from the real frames. 
The Dataset that we are using is the Moving MNIST dataset. This is the moving variant of the MNIST database of handwritten 
digits. This is the data used by the authors for reporting model performance. The Moving MNIST dataset contains 10,000 video 
sequences, each consisting of 20 frames. In each video sequence, two digits move independently around the frame, which has a 
spatial resolution of 64×64 pixels. 
The evaluation in Video datasets is both visual and technical. The visual evaluation is the easiest way to see and compare the actual 
and predicted next frames in the sequence. Along with this technical approaches used to compare the results of the model are - Mean 
Squared Error (MSE) and Structural Similarity Index (SSIM). 
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II. LITERATURE SURVEY 
A. Abstract Of Paper Referred 
1) The ability to predict, anticipate and reason about future outcomes is a key component of intelligent decision-making systems. 

In light of the success of deep learning in computer vision, deep-learning-based video prediction emerged as a promising 
research direction. Defined as a self-supervised learning task, video prediction represents a suitable framework for representation 
learning, as it demonstrates potential capabilities for extracting meaningful representations of the underlying patterns in natural 
videos. Motivated by the increasing interest in this task, we provide a review of the deep learning methods for prediction in 
video sequences. They firstly define the video prediction fundamentals, as well as mandatory background concepts and the 
most used datasets. Next, They carefully analyze existing video prediction models organized according to a proposed 
taxonomy, highlighting their contributions and their significance in the field. The summary of the datasets and methods is 
accompanied by experimental results that facilitate the assessment of the state of the art on a quantitative basis. The paper is 
summarized by drawing some general conclusions, identifying open research challenges, and by pointing out future research 
directions. They find that exposure to temporal sequences improves the prediction of future events. Learning to predict from 
temporal sequences generalizes to untrained stimuli. Learning to predict is sensitive to the global structure of the trained 
sequence. Learning to predict is compromised by increased attention load. 

2) Prediction errors (PE) are a central notion in theoretical models of reinforcement learning, perceptual inference, decision-
making, and cognition, and prediction error signals have been reported across a wide range of brain regions and experimental 
paradigms. They attempted to see the forest for the trees and consider the commonalities and differences of reported PE signals 
in light of suggestions that the computation of PE forms a fundamental mode of brain function. They suggested that while the 
encoding of PE is a common computation across brain regions, the content and function of these error signals can be very 
different and are determined by the afferent and efferent connections within the neural circuitry in which they arise. 

3) They use long short-term memory (lstm) networks to learn representations of video sequences. Their model uses an encoder 
lstm to map an input sequence into a fixed-length representation. This representation is decoded using single or multiple decoder 
lstms to perform different tasks, such as reconstructing the input sequence or predicting the future sequence. They experiment 
with two kinds of input sequences - patches of image pixels and high level representations ("percepts") of video frames 
extracted using a pre-trained convolutional net. They explore different design choices such as whether the decoder lstms should 
condition on the generated output. They analyse the outputs of the model qualitatively to see how well the model can extrapolate 
the learned video representation into the future and into the past. They further evaluate the representations by finetuning them for 
a supervised learning problem - human action recognition on the ucf-101 and hmdb-51 datasets. They show that the 
representations help improve classification accuracy, especially when there are only a few training examples. Even models 
pretrained on unrelated datasets (300 hours of YouTube videos) can help action recognition performance. In order to 
autonomously learn wide repertoires of complex skills, robots must be able to learn from their own autonomously collected 
data, without human supervision. One learning signal that is always available for autonomously collected data is a prediction: if 
a robot can learn to predict the future, it can use this predictive model to take actions to produce desired outcomes, such as 
moving an object to a particular location. However, in complex open-world scenarios, designing a representation for prediction 
is difficult. In this work, they instead aim to enable self-supervised robotic learning through direct video prediction: instead of 
attempting to design a good representation, they directly predict what the robot will see next, and then use this model to achieve 
desired goals. A key challenge in video prediction for robotic manipulation is handling complex spatial arrangements such as 
occlusions. To that end, they introduced a video prediction model that can keep track of objects through occlusion by 
incorporating temporal skip-connections. Together with a novel planning criterion and action space formulation, they 
demonstrate that this model substantially outperforms prior work on video prediction-based control. Their results show 
manipulation of objects not seen during training, handling multiple objects, and pushing objects around obstructions. These 
results represent a significant advance in the range and complexity of skills that can be performed entirely with self-supervised 
robotic learning. 

B. Datasets Explored 
1) Action and Human Pose Recognition Datasets 
a) KTH: KTH is an action recognition dataset that includes 2391 video sequences of 4 seconds mean duration, each of them 

containing an actor performing an action taken with a static camera, over homogeneous backgrounds, at 25 frames per second 
(fps) and with its resolution down sampled to 160 120 pixels. Just 6 different actions were performed, but it was the biggest 
dataset of this kind at the moment. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 10 Issue V May 2022- Available at www.ijraset.com 
     

 
2018 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

b) Hmdb-51: Hmdb-51 is a large-scale database for human motion recognition. It claims to represent the richness of human motion 
taking profit from the huge amount of video available online. It is composed of 6766 normalized videos (with a mean duration of 
3.15 seconds) where humans appear performing one of the 51 considered action categories. 

c) Ucf101: Ucf101: is an action recognition dataset of realistic action videos, collected from YouTube. It has 101 different action 
categories, and it is an extension of ucf50, which has 50 action categories. 

 
2) Video Prediction 
a) Standard Bouncing Balls Dataset: A common test set for models that generate high dimensional sequences. It consists of 

simulations of three balls bouncing in a box. Its clips can be generated randomly with custom resolution but the common 
structure is composed of 4000 training videos, 200 testing videos, and 200 more for validation. These kinds of datasets are 
purely focused on video prediction. Van hateren dataset of natural videos: is a very small dataset of 56 videos, each 64 frames 
long, that has been widely used in unsupervised learning. 

b) Norb Videos: Norb videos dataset is a compilation of static stereo pairs of 50 homogeneously colored objects from various 
points of view and 6 lightning conditions. Those images were processed to obtain their object masks and even their casted 
shadows, allowing them to augment the dataset by introducing random backgrounds. Viewpoints are determined by rotating the 
camera through 9 elevations and 18 azimuths (every 20 degrees) around the object. Norb videos' dataset was built by 
sequencing all these frames for each object. 

c) Moving MNIST: Moving MNIST (m-mnist): is a video prediction dataset built from the composition of 20-frame video 
sequences where two handwritten digits from the mnist database are combined inside a 64 64 patch, and moved with some 
velocity and direction along with frames, potentially overlapping between them. This dataset is almost infinite (as new 
sequences can be generated on the fly), and it also has interesting behaviors due to occlusions and the dynamics of digits bouncing 
off the walls of the patch. For these reasons, this dataset is widely used by many predictive models. A stochastic variant of this 
dataset is also available. In the original m-mnist, the digits move with constant velocity and bounce off the walls in a 
deterministic manner. In contrast, in sm-mnist digits move with a constant velocity along a trajectory until they hit a wall at 
which point they bounce off with a random speed and direction. In this way, 8 moments of uncertainty (each time a digit hits a 
wall) are interspersed with deterministic motion. 

 
3) Other Purpose or multi-purpose Datasets 
a) Camvid 
b) Caltech pedestrian dataset 
c) Kitti 
d) Cityscapes 
e) Ai steering angle 
f) Visor 
g) Prost 
h) Arcade learning environment 
i) Inria 3d movie dataset v2 
j) Robotrix 
k) Uasol 
l) Youtube-8m 

III. RESEARCH METHODOLOGY 
A. Objectives to be Achieved 
1) To research the existing techniques and analyze the achievements already made in the field. 
2) We will look into the existing techniques used to successfully predict the new frames of a video comparable to the best results 

existing at the time. 
3) To set a new milestone in the field of video prediction for other fellow researchers to follow. 
4) To successfully implement new techniques for the task. 
5) We will look into new and improved techniques like GANs, StyleGANs, Variational Encoders, Recurrent Neural Networks 

and try to implement them for the task. 
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6) To analyze and improve the implementation of the latest techniques. 
7) We will try to tune the implementation of the latest techniques to match our requirements and find the best possible result 

from the best possible model given the information from the analysis. 
8) To find a good and established result with the techniques used. 
9) We will try to find the best and stable results from the techniques comparing the multiple approaches and choosing the 

best one we could find. 
 
B. Solution 
1) We have used a Deep Learning approach through Generative Adversarial Networks(GANs). We have implemented a basic 

Generator - Critic architecture using Pytorch and through the use of the Moving MNIST(MMNIST) dataset, trained the model. 
2) The architecture of our model is a typical Generative Adversarial Network(GAN), with a generator-critic system. Videos are 

passed into through a convolutional 3D. 
3) The Generator consists of Convolutional 3D blocks made using batch normalization and activation layers. The Critic is also 

made using Convolutional 3D blocks but with some fully connected layers at the end. 
4) The Generator takes in all of the frames as a 3D image where the channels represent the 19 frames and creates a new frame as 

the prediction, the next frame. 
5) The critic then looks at all the previous frames and the created one and the real one to give out a score for the respective frame’s 

reality with the previous frames. This score is then used to calculate losses and optimize the generator and critic in the 
respective job using an optimizer, currently Adam. 

6) The loss used is called Wasserstein Loss which is just a simplified Earth-Mover’s Distance function. 
 

 
 
 
C. Software Specification 
1) Model: The main core of the project is the Neural Network Model - GAN which is used for the predictions. The model is 

developed in Python with PyTorch and other supporting libraries. But the crux of the project is entirely built using PyTorch. 
Besides that, libraries like NumPy, Pandas, Urllib, Pathlib, etc are used as well. 

a) PyTorch: PyTorch is an open-source machine learning library based on the Torch library, used for applications such as 
computer vision and natural language processing, primarily developed by Facebook's AI Research lab. It is free and open-
source software released under the Modified BSD license. PyTorch defines a class called Tensor (torch.Tensor) to store and 
operate on homogeneous multidimensional rectangular arrays of numbers. PyTorch Tensors are similar to NumPy Arrays, but 
can also be operated on a CUDA-capable Nvidia GPU. PyTorch supports various sub-types of Tensors. PyTorch is built on the 
Python and torch library which supports computations of tensors on Graphical Processing Units. Tensors are the workhorse of 
PyTorch. We can think of tensors as multi- dimensional arrays. PyTorch has an extensive library of operations on them 
provided by the torch module. PyTorch Tensors are very close to the very popular NumPy arrays. In fact, PyTorch features 
seamless interoperability with NumPy. Compared with NumPy arrays, PyTorch tensors have the added advantage that both tensors 
and related operations can run on the CPU or GPU. The second important thing that PyTorch provides allows tensors to keep 
track of the operations performed on them 35 that helps to compute gradients or derivatives of an output with respect to any of 
its inputs. 
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b) Torchvision: The torchvision package consists of popular datasets, model architectures, and common image transformations for 
computer vision. Torchvision is a library for Computer Vision that goes hand in hand with PyTorch. It has utilities for efficient 
Image and Video transformations, some commonly used pre-trained models, and some datasets. Torchvision Transforms are 
common image transformations. They can be chained together using Compose. Most transform classes have a function 
equivalent: functional transforms give fine-grained control over the transformations. This is useful if you have to build a more 
complex transformation pipeline (e.g. in the case of segmentation tasks). Most transformations accept both PIL images and 
tensor images, although some transformations are PIL-only and some are tensor-only. The Conversion Transforms may be used 
to convert to and from PIL images. The transformations that accept tensor images also accept batches of tensor images. A 
Tensor Image is a tensor with (C, H, W) shape, where C is a number of channels, H and W are image height and width. A batch 
of Tensor Images is a tensor of (B, C, H, W) shape, where B is a number of images in the batch. Torchvision.utils.make_grid() 
returns a tensor which contains the grid of images. It is a handy function to visualize the batched outputs of a model. 

2) Numpy: NumPy, which stands for Numerical Python, is a library consisting of multidimensional array objects and a collection 
of routines for processing those arrays. Numpy can be used both for Mathematical computations as well as loading certain types 
of data files. Pur Moving MNIST dataset has an extension of npy, which is a data format built using Numpy so it can be 
written and read, only using Numpy. Using NumPy, mathematical and logical operations on arrays can be performed. NumPy 
is a Python package. It stands for ‘Numerical Python. It is a library consisting of multidimensional array objects and a collection 
of routines for processing of array. The most important object defined in NumPy is an N-dimensional array type called ndarray. It 
describes the collection of items of the same type. Items in the collection can be accessed using a zero-based index. Every item 
in a ndarray takes the same size as the block in the memory. Each element in ndarray is an object of the data-type object (called 
dtype). Any item extracted from the ndarray object (by slicing) is represented by a Python object of one of the array scalar types 

3) Matplotlib: Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension 
NumPy. It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like 
Tkinter, wxPython, Qt, or GTK. There is also a procedural "pylab" interface based on a state machine (like OpenGL), designed 
to closely resemble that of MATLAB, though its use is discouraged. Matplotlib was originally written by John D. Hunter. Since 
then it has had an active development community and been distributed under a BSD-style license. Michael Droettboom was 
nominated as matplotlib's lead developer shortly before John Hunter's death in August 2012 and was further joined by Thomas 
Caswell. 

 
D. Dataset 
The only dataset used in our project is the Moving MNIST dataset. Moving MNIST (M-MNIST)[7]: is a video prediction dataset built 
from the composition of 20-frame video sequences where two handwritten digits from the MNIST database are combined inside a 
64 ×64 patch, and moved with some velocity and direction along with frames, potentially overlapping between them. This dataset is 
almost infinite (as new sequences can be generated on the fly), and it also has interesting behaviors due to occlusions and the 
dynamics of digits bouncing off the walls of the patch. For these reasons, this dataset is widely used by many predictive models. A 
stochastic variant of this dataset is also available. In the original M-MNIST, the digits move with constant velocity and bounce off 
the walls in a deterministic manner. In contrast, in SM-MNIST digits move with a constant velocity along a trajectory until they hit a 
wall at which point they bounce off with a random speed and direction. In this way, moments of uncertainty (each time a digit hits a 
wall) are interspersed with deterministic motion 
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IV. EXPERIMENTAL RESULTS 
Since the most widely used evaluation protocols for video prediction rely on image similarity-based metrics, the need for fairer 
evaluation metrics is imminent. A fair metric should not penalize predictions that deviate from the ground truth at the pixel level, if 
their content represents a plausible future prediction in a higher level, i.e., the dynamics of the scene correspond to the reality of 
the labels. In this regard, some methods evaluate the similarity between distributions or at a higher level. How- ever, there is still 
room for improvement in the evaluation protocols for video prediction and generation. 

Result comparison 
 

Model result over iterations 
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A. Evaluation Metric Used 
The mean squared error (MSE) tells you how close a regression line is to a set of points. It does this by taking the distances from the 
points to the regression line (these distances are the “errors”) and squaring them. The squaring is necessary to remove any negative 
signs. It also gives more weight to larger differences. It’s called the mean squared error as you’re finding the average of a set of 
errors. The lower the MSE, the better the forecast. It’s important to note that a value of 0 for MSE indicates perfect similarity. A 
value greater than one implies less similarity and will continue to grow as the average difference between pixel intensities increases 
as well. 

 
 
When comparing images, the mean squared error (MSE)–while simple to implement–is not highly indicative of perceived similarity. 
Structural similarity aims to address this shortcoming by taking texture into account. The results have been calculated after training 
the Model for 1250 steps with a batch size of 8. 
MSE is 0.21064980461567206 mean for a total of 1510 different predictions. 
 
The Structural Similarity Index (SSIM) metric extracts 3 key features from an image: 
1) Luminance: Luminance is measured by averaging over all the pixel values. Its denoted by μ (Mu) and the formula is given 

below, 

 
2) Contrast: It is measured by taking the standard deviation (square root of variance) of all the pixel values. It is denoted by σ 

(sigma) and represented by the formula below 

 
1) Structure: The structural comparison is done by using a consolidated formula, in essence, we divide the input signal with its 

standard deviation so that the result has unit standard deviation which allows for a more robust comparison. 

 
The comparison between the two images is performed on the basis of these 3 features. 
 

The SSIM method is clearly more involved than the MSE method, but the gist is that SSIM attempts to model the perceived change 
in the structural information of the image, whereas MSE is actually estimating the perceived errors. There is a subtle difference 
between the two, but the results are dramatic. 
SSIM is 0.6803057275071278 mean for a total of 1510 different predictions 
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V. CONCLUSION AND FUTURE SCOPE 
The results of the model have been generated and presented. The Generative Adversarial model was successfully able to predict the 
20th from the previous 19 frames. The quality of the 20th image is also recent and the comparisons of actual and predicted frames 
have also been done. The model was, although successful in creating the 20th frame from the training as well as the testing set, but 
was not able to entirely achieve its goal of predicting all possible frames in the future. The results of the model start to deteriorate after 
the 3rd iteration and vanish around the 5th iteration of frame generation. This is due to the time-insensitive nature of the model. As 
Conv3D blocks are used in the model, hence the model is unable to understand the flow of time within the frames. Also, because of 
its extreme noise sensitivity because of that, even a slight change (noise) in a frame causes the future frames to be even noisier 
which ultimately leads to this noise magnification in future frames generated from previous predicted frames. 
The model is very good in predicting the immediate next future frame in a series. Hence even with a few modifications, it can be 
used to predict frames not that far in the future. Which can be utilized in fast-paced machines that do not require much foresight into 
the future. The results can be improved even more if LSTM blocks are used instead of Conv3D blocks which could give the model 
an insight into understanding the motion of time and correctly predict better frames. This modification was not possible right now 
due to the extensive resources required to run that model with LSTM blocks. But by reducing the size of the image along with 
reducing the number of previous frames that the model looks at, a considerably smaller version of the model can be created which 
could successfully execute the entire model, creating better results in a reasonable amount of time. Hence, in the future, these few 
modifications could greatly improve the results produced by this model. 
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