

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: I Month of publication: January 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77206>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Surge Capacitor – The Forgotten Hero

Kumar Gautam

Hindalco Industries Ltd, India

Abstract: In power plants, nearly 90% of installed rotating equipment consists of AC induction motors. Although these motors are generally provided with redundancy, their failure leads to increased maintenance costs, higher spare inventory requirements, and potential operational risks. In most installations, overvoltage protection is limited to surge arresters. While surge arresters effectively clamp peak overvoltages, they do not provide adequate protection for motors connected through long cable runs and operated by Vacuum Circuit Breakers (VCBs). Switching operations of VCBs generate steep-fronted voltage transients that can cause severe electrical stress on motor windings, leading to inter-turn insulation failure. The mitigation of such voltage surges can be significantly improved by the coordinated application of surge capacitors along with surge arresters. This combined protection scheme limits both the peak overvoltage and the rate of rise of voltage (dv/dt), thereby reducing insulation stress, suppressing partial discharge activity, and enhancing the reliability and service life of motors.

Keywords: Inter-turn insulation failure, surge arrester, surge capacitor, voltage spike, VCB switching

I. INTRODUCTION

Modern medium- and high-voltage motors employ Vacuum Pressure Impregnation (VPI) technology for stator winding insulation to enhance mechanical strength, thermal endurance, and moisture resistance. Despite these advancements, VPI-insulated windings remain vulnerable to steep-fronted voltage transients generated by lightning surges, long feeder cables, and vacuum circuit breaker (VCB) switching operations.

VCB switching phenomena such as current chopping, re-strokes, and pre-strokes can generate voltage surges with very high dv/dt values. When transmitted through long cable lengths, these surges are reflected and amplified at the motor terminals, resulting in non-uniform voltage distribution across stator windings.

High dv/dt transients cause:

- 1) Unequal voltage distribution between adjacent turns
- 2) Localized electric field intensification
- 3) Partial discharge inception
- 4) Progressive degradation of insulation materials

Over time, these effects result in inter-turn short circuits, leading to:

- Increased stator current
- Localized overheating
- Accelerated insulation deterioration
- Eventual catastrophic motor failure

Repeated exposure to such electrical stresses significantly reduces motor service life, even in systems designed with operational redundancy.

II. CONVENTIONAL PROTECTION: SURGE ARRESTERS ONLY

A. Function of Surge Arresters

Surge arresters, typically based on metal oxide varistor (MOV) technology, are widely used to protect electrical equipment from transient overvoltages. Their primary functions are:

- 1) Clamping high peak overvoltages to safe levels
- 2) Diverting surge energy directly to ground

B. Limitations of Surge Arresters

Despite their effectiveness against high-energy surges, surge arresters exhibit inherent limitations:

- 1) They do not control the rate of rise of voltage (dv/dt)
- 2) They operate only after the voltage exceeds a predefined protective level
- 3) High-frequency oscillations and steep-fronted waves can still reach motor terminals

As a result, surge arresters alone cannot provide adequate protection against **turn-to-turn insulation stress**, particularly in motors fed through long cables and switched by VCBs.

III. SURGE CAPACITORS FOR MOTOR PROTECTION

Surge capacitors are specialized protective devices connected in shunt (line-to-ground) at motor terminals. They are specifically designed to protect insulation systems from steep-fronted switching and lightning surges. For comprehensive protection, surge capacitors are commonly applied in conjunction with surge arresters.

Steep-fronted voltage waves impose severe electrical stress on turn-to-turn insulation in rotating machines and transformers, often leading to partial discharge activity and insulation breakdown.

A. Advantages of Surge Capacitors

- 1) Instantaneous response with no operating delay
- 2) Continuous protection (permanently connected)
- 3) Minimal maintenance requirements
- 4) Long operational life
- 5) Environmentally friendly construction

Surge capacitors used in industrial applications are designed for 50/60 Hz systems, with typical capacitance values ranging from 0.1 μF to 0.5 μF .

IV. WORKING PRINCIPLE OF SURGE CAPACITORS

A surge capacitor protects high-voltage equipment by limiting the **rate of rise of transient voltage (dv/dt)** and absorbing high-frequency surge energy. It provides a low-impedance path to transient components, thereby reducing wavefront steepness and insulation stress.

A. Wavefront Reduction

When a steep-fronted surge reaches the motor terminals, the capacitor initially behaves as a short circuit and requires time to charge. This delays the voltage rise, significantly reducing electrical stress on turn-to-turn insulation and minimizing the risk of insulation failure.

B. Energy Absorption

The surge current absorbed by the capacitor is governed by:

$$I = C \frac{dv}{dt}$$

By absorbing surge current and temporarily storing energy, the capacitor reduces both the peak voltage magnitude and dv/dt .

C. Continuous Operation

Unlike surge arresters, surge capacitors are permanently connected and respond instantly to all transient events without requiring a triggering threshold.

D. Installation Location

For maximum effectiveness, surge capacitors should be installed **as close as possible to motor or generator terminals**, where they can control the steepness of incoming voltage waves before they stress the insulation.

V. COORDINATED PROTECTION: SURGE CAPACITOR AND SURGE ARRESTOR

Optimal protection is achieved through coordinated application:

- 1) Surge arresters limit the magnitude of high-energy overvoltages
- 2) Surge capacitors control dv/dt and suppress high-frequency transients

Surge arresters act as surge diverters, grounding excessive voltage, while surge capacitors act as **surge absorbers**, smoothing the voltage wavefront and protecting sensitive insulation systems.

VI. COMPARISON: SURGE CAPACITOR VS SURGE ARRESTER

Feature	Surge Arrester	Surge Capacitor
Primary Function	Limit voltage / divert energy	Reduce dv/dt and wavefront steepness
Operating Mode	Active only during overvoltage	Continuous (always connected)
Best Protection Against	High-energy surges	Fast, low-energy transients
Main Components	Zinc oxide (MOV)	Capacitive elements

VII. CHARACTERISTICS OF A GOOD SURGE CAPACITOR

A high-quality surge capacitor should possess:

- 1) PCB-free, environmentally friendly dielectric fluid
- 2) Corrosion-resistant steel tank
- 3) Hermetically sealed, leak-proof construction
- 4) High partial discharge inception voltage (PDIV)
- 5) Low-loss polypropylene capacitor elements
- 6) Capacitance typically between 0.1 μ F and 0.5 μ F

VIII. CONCLUSION

Conventional protection using surge arresters alone is effective in limiting peak overvoltages but does not adequately control dv/dt or suppress high-frequency oscillations at motor terminals. Consequently, turn-to-turn insulation remains exposed to damaging electrical stress.

The coordinated application of surge capacitors in conjunction with surge arresters provides a comprehensive protection scheme. Surge capacitors continuously reduce dv/dt and wavefront steepness by absorbing high-frequency transient energy, while surge arresters safely divert high-magnitude surge energy to ground. This combined approach significantly minimizes insulation stress, suppresses partial discharge activity, and enhances the reliability and service life of motors operated through long cables and VCBs. Therefore, the integrated use of surge capacitors and surge arresters is strongly recommended for medium- and high-voltage motor installations in power plants and industrial facilities to prevent inter-turn insulation failure, reduce maintenance costs, and improve overall system reliability.

Author Biography

Kumar Gautam received the B.E. degree in Electrical & Electronics Engineering from BIT Mesra in 2011. He is currently working at Hindalco Industries Ltd., Mahan Aluminum, as Department Head – 220 kV Transformers, Switchyard, and Transmission Lines. His research interests include generators, transformers, and high-voltage switchyards.

REFERENCES

- [1] Marx Electric Inc., Technical Resources on Surge Protection Devices.
- [2] Eaton Corporation, Surge Protection and Motor Protection Application Guides.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)