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Abstract: Recently, a machine learning (ML) area called deep learning emerged in the computer-vision field and became very 
popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural 
network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet 
Classification. Since then, researchers in many fields, including medical image analysis, have started actively participating in 
the explosively growing field of deep learning.  
In this paper, deep learning techniques and their applications to medical image analysis are surveyed. This survey overviewed 1) 
standard ML techniques in the computer-vision field, 2) what has changed in ML before and after the introduction of deep 
learning, 3) ML models in deep learning, and 4) applications of deep learning to medical image analysis. The comparisons 
between MLs before and after deep learning revealed that ML with feature input (or feature-based ML) was dominant before the 
introduction of deep learning, and that the major and essential difference between ML before and after deep learning is learning 
image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, 
although the depth of the model is an important attribute.  
The survey of deep learning also revealed that there is a long history of deep-learning techniques in the class of ML with image 
input, except a new term, “deep learning”. “Deep learning” even before the term existed, namely, the class of ML with 
image input was applied to various problems in medical image analysis including classification between lesions and non-
lesions, classification between lesion types, segmentation of lesions or organs, and detection of lesions. ML with image input 
including deep learning is a very powerful, versatile technology with higher performance, which can bring the current state-of-
the-art performance level of medical image analysis to the next level, and it is expected that deep learning will be the mainstream 
technology in medical image analysis in the next few decades. “Deep learning”, or ML with image input, in medical image 
analysis is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the 
field of medical image analysis in the next few decades. 
Keywords: Deep learning, Convolutional neural network, Massive-training artificial neural network, Computer-aided diagnosis, 
Medical image analysis, Classification (key words) 
 

I. INTRODUCTION 
Machine learning (ML) is indispensable in the field of medical imaging [1-13], including medical image analysis, computer-aided 
diagnosis (CAD) [14-17], and radiomics, because objects of interest in medical images, such as lesions and organs, may be too 
complex to be represented accurately by a simple equation or model. For example, a polyp in the colon is model as a bulbous object, 
but there are also colorectal lesions that have a flat shape [18, 19]. Modelling of such complex objects needs a complex model with a 
large number of parameters. Determining such a large number of parameters cannot be accomplished manually. Thus, tasks in 
medical imaging essentially require “learning from data (or examples)” for determination of a large number of parameters in a 
complex model. Therefore, ML plays an essential role in the medical imaging field. 
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Fig. 1 Standard ML for classifying lesions (i.e., ML with feature input or feature-based ML) in the field of computer vision before 
the introduction of deep learning. Features (e.g., circularity, contrast, and effective diameter) are extracted from a segmented  lesion 

in an image. Those features are entered as input to an ML model with feature input (classifier) such as a multilayer perceptron 
(MLP) and a support vector machine (SVM). The output of the classifier consists of class categories such as cancer or non-cancer. 

 
One of the most popular uses of ML in computer-aided diagnosis (CAD) and medical image analysis [6, 20] is the classification of 
objects such as lesions into certain classes (e.g., lesions or non-lesions, and malignant or benign) based on input features (e.g., 
contrast, area, and circularity) obtained from segmented objects. This class of ML is referred to as ML with feature input or 
feature-based ML. The task of ML is to determine “optimal” boundaries for separating classes in the multi-dimensional feature 
space that is formed by the input features [21]. 
Recently, an ML area called deep learning emerged in the computer vision field. A term, deep learning, was proposed for ML 
models for a high-level representation of objects by Hinton in 2007, but it was not recognized widely until late 2012. Deep learning 
became very popular in the computer vision field after late 2012, when a deep-learning approach based on a convolutional neural 
network (CNN) [22] won an overwhelming victory in the best-known worldwide computer-vision competition, ImageNet 
Classification, with the error rate smaller by 11% than that in the 2nd place of 26% [23]. Consequently, the MIT Technology 
Review named it one of the top 10 breakthrough technologies in 2013. Since then, researchers in virtually all fields have started 
actively participating in the explosively growing field of deep learning [24]. 
This paper surveys the research area of deep learning and its applications to medical image analysis. The surveys includes 1) 
standard ML techniques in the computer-vision field, 2) what has changed in ML before and after the introduction of deep learning, 
3) ML models in deep learning, and 4) applications of deep learning to medical image analysis. 
 

II. MACHINE LEARNING BEFORE AND AFTER DEEP LEARNING 
A. “Standard” ML―ML with Feature Input 
ML algorithms are often used for classification of objects in images, and they are usually called classifiers. A “standard” ML 
approach in the computer vision field is illustrated in Fig. 1. First, objects such as lesions in an image are segmented by using a 
segmentation technique such as grey-level-based segmentation, edge-based segmentation, and an active contour (or shape) model. 
Next, features such as circularity, contrast, and size of the segmented lesion are calculated in a feature analysis step. Then, the 
calculated features are inputted to an ML model such as linear or quadratic discriminant analysis (LDA or QDA) [25], a multilayer 
perceptron (MLP) [26], a support vector machine (SVM) [27], and random forests [28]. The ML model is trained with sets of 
input features of lesions and N known class labels from C1 to CN for the lesions. The training is performed to determine “optimal” 
boundaries for separating classes such as cancer or non-cancer in the multi-dimensional feature space that is formed by the input 
features. After training, the trained ML model determines to which class a new unknown lesion belongs. Thus, this class of ML can 
be referred to as ML with feature input, feature-based ML, object/feature-based ML, or simply a classifier. 

Fig. 2 Architecture of a CNN. The layers in the CNN are connected with local shift-invariant inter-connections (or convolution 
with a local kernel). The input and output of the CNN are images and class labels (e.g., Class A and Class B), respectively. 
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Fig. 3 “New” ML class, ML with image input (image-based ML) in the field of computer vision after the introduction of deep 
learning. Pixel values from an image are directly entered as input to an ML model with image input model such as a convolutional 

neural network (CNN), a deep belief net 
 
(DBN), and a massive-training artificial neural network (MTANN). This class of ML with image input includes deep learning. Thus 
the major and essential difference between ML approaches before and after the introduction of deep learning is direct training of 
pixels in images. 
 
B. “Deep learning”―ML with Image Input 
A term, deep learning, was created by Hinton in 2007 for ML models for a high-level representation of objects, but it was not 
recognized widely until late 2012. Deep learning became very popular in the computer vision field after late 2012, when a deep-
learning approach based on a convolutional neural network (CNN) [22] won an overwhelming victory in the best-known computer-
vision competition, ImageNet [23]. The architecture of a general CNN is illustrated in Fig. 2. The input to the CNN is an image, and 
the outputs are class categories such as cancer or non-cancer. The layers are connected with local shift-invariant inter-connections 
(or convolution with a local kernel). Deep learning models, such as a deep CNN and a deep belief net (DBN) [29] which is a 
generative graphical model with multiple layers, use pixel values in images directly instead of features calculated from segmented 
objects as input information; thus, feature calculation or object segmentation is not required, as shown in Fig. 3. Deep learning has 
multiple layers (>4) of nonlinear or quasi-nonlinear processing to acquire a high-level representation of objects or features in 
images. 
Compared to ML with feature input (also referred to as feature-based ML, object/feature-based ML, or a common classifier), deep 
learning skips steps of segmentation of objects, feature extraction from the segmented objects, and feature selection for determining 
“effective features”, as shown in Fig. 4. Deep learning is also called an end-to-end ML paradigm or approach, because it enables the 
entire process to map from raw input images to the final classification, eliminating the need for hand-crafted features. Although the 
development of segmentation techniques has been studied for a long time, segmentation of objects is still challenging, especially for 
complicated objects, subtle objects, and objects in a complex background. In addition, defining and extracting relevant features for a 
given task is a challenging task, as calculated features may not have the discrimination power that is sufficient for classifying objects 
of interest. Because deep learning can avoid errors caused by the inaccurate feature calculation and segmentation that often occur for 
subtle or complex objects, the performance of deep learning is generally higher for such objects than that of common classifiers (i.e., 
ML with feature input or object/ feature-based MLs). 

Fig. 4 Changes in ML approaches before and after the introduction of ML with image input (image-based ML) including “deep 
learning”. Compared to ML with feature 
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Input, ML with image input including deep learning skips steps of segmentation of objects, feature extraction from the segmented 
objects, and feature selection for determining “effective features”, which offers an end-to-end ML paradigm. 
It is interesting to note that people do not refer to the use of MLP with deep layers in the object/feature-based approach as deep 
learning, and they still call a shallow CNN with only a few layers deep learning, which is the evidence that people are confused by 
the terminology, deep learning. As shown in Figs. 1 and 3, the major and essential difference between ML with feature input 
(feature-based ML) and “deep learning” is the use of pixels in images directly as input to ML models, as opposed to features 
extracted from segmented objects. This is true for ML approaches before and after the introduction of deep learning. Therefore, the 
terminology “deep learning” may mislead people to think that the power of deep learning comes from its depth. A proper 
terminology for the “deep learning” that people use right now would be ML with image input or image-based ML. The depth of 
MLs is still an important attribute that determines the characteristics or properties of ML models or applications. When the 
architecture is deep, the ML model should be called deep ML with image input (image-based ML) or deep ML with feature input 
(feature-based ML). 
It is interesting to note that people do not refer to the use of MLP with deep layers in the object/feature-based approach as deep 
learning, and they still call a shallow CNN with only a few layers deep learning, which is the evidence that people are confused by 
the terminology, deep learning. As shown in Figs. 1 and 3, the major and essential difference between ML with feature input 
(feature-based ML) and “deep learning” is the use of pixels in images directly as input to ML models, as opposed to features 
extracted from segmented objects. This is true for ML approaches before and after the introduction of deep learning. Therefore, the 
terminology “deep learning” may mislead people to think that the power of deep learning comes from its depth. A proper 
terminology for the “deep learning” that people use right now would be ML with image input or image-based ML. The depth of 
MLs is still an important attribute that determines the characteristics or properties of ML models or applications. When the 
architecture is deep, the ML model should be called deep ML with image input (image-based ML) or deep ML with feature input 
(feature-based ML). 
A class of ML with image input or image-based ML was proposed and developed in the field of medical image analysis before the 
introduction of the term “deep learning”. Suzuki et al. invented and developed massive-training artificial neural networks 
(MTANNs) for classification between lesions and non-lesions in medical images in 2003 before the introduction of “deep  
learning”. MTANNs use images as input, as opposed to features extracted from a segmented lesion, and they are capable of deep 
layers. MTANNs are an end-to-end ML paradigm that does the entire process from input images to the final classification. 
 
C. History of ML in Computer Vision and Medical Image Analysis 
Figure 5 summarizes the history of ML in the fields of computer vision and medical image analysis. Before the popularity of “deep 
learning” starting in 2013, ML with feature input (feature-based ML) was dominant in the fields. Before 1980, even when the term 
“machine learning” did not exist, classical classifiers such as LDA, QDA, and a k- nearest neighbour classifier (k-NN) were used 
for classification. In 1986, MLP was proposed by Rumelhart and Hinton [26]. The introduction of the MLP created the 2nd neural 
network (NN) research boom (by the way, the 1st one was in 1960’s). In 1995, Vapnik proposed an SVM [27] and became the 
most popular classifier for a while, partially because of publicly available code on the Internet in the Internet age. Various ML 
methods were pro- posed, including random forests by Ho et al. in 1995 [28], and dictionary learning by Mairal et al. in 2009. 

 
Fig. 5    The history of ML in the fields of computer vision and medical imaging. There are two distinct ML approaches in these 
fields. Before the popularity of “deep learning” starting in 2013, ML with feature input (feature-based ML) was dominant in the 

fields. After that, ML with image input (image-based ML) including deep learning gained enthusiastic popularity, but it has a long 
history 
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On the other hand, various ML with image input (image- based ML) techniques were proposed before the introduction of the term 
“deep learning”. It started from the Neocognition by Fukushima in 1980. In 1989, Le Cun et al. simplified the Neocognition and 
proposed a CNN, but he did not study CNNs very much until recently. In 1994, Suzuki et al. applied an MLP to cardiac images in a 
convolutional way. Two years later, Suzuki et al. proposed neural filters based on a modified MLP to reduce noise in images, and in 
2000, they proposed neural edge enhancers. Suzuki et al. proposed MTANN for classification of patterns in 2003, detection of 
objects in 2009, separation of specific patters from other patterns in x- ray images in 2006, and reduction of noise and artifacts 
on CT images in 2013. Hinton et al. proposed a deep brief network (DBN) in 2006 [29], and they created the term “deep learning” a 
year later. Deep learning was not recognized much until late 2012. In late 2012, a CNN won in the ImageNet competition [23]. 
Among them, Neocognitron, MLP, CNN, neural filters, neural edge enhancers, MTANNs, and DBN are capable of deep 
architecture. Thus, “deep learning”, which is ML with image input (image-based ML) with deep architecture, to be accurate, has a 
long history. “Deep learning” does not offer new ML models, but rather it is essentially a collection of earlier work on ML (namely, 
ML with image input) that was recently recognized again with a different terminology. 

III. MACHINE LEARNING MODELS IN “DEEP LEARNING” 
A. Convolutional Neural Networks (CNNs ) 
A CNN can be considered as a simplified version of the Neocognitron model that was proposed to simulate the human visual system 
in 1980 by Fukushima. LeCun et al. developed a CNN called LeNet for handwritten ZIP-code recognition. The LeNet has 5 layers 
(1 input, 3 hidden, and 1 output layer). The input layer has a small 16×16 pixel image. The 3 hidden layers consist of 2 
convolutional layers and one fully connected layer. The architecture of a general CNN is illustrated in Fig. 2. The input to the CNN 
is an image, and the outputs are class categories such as cancer or non-cancer. The layers are connected with local shift-invariant 
inter-connections (or convolution with a local kernel). Unlike the Neocognitron, the CNN has no lateral interconnections or 
feedback loops; and the BP algorithm [26] is used for training. Each unit (neuron) in a subsequent layer is connected with the units 
of a local region in the preceding layer, which offers the shift- invariant property; in other words, forward data propagation is 
similar to a shift-invariant convolution operation. The data from the units in a certain layer are convolved with the weight kernel, 
and the resulting value of the convolution is collected into the corresponding unit in the subsequent layer. This value is processed 
further by the unit through an activation function and produces an output datum. The activation function between two layers is a 
nonlinear or quasi-nonlinear function such as a rectified linear function and a sigmoid function. As layers go deeper (close to the 
output layer), the size of the local region in a layer is reduced in a pooling layer. In the pooling layer, the pixels in the local region 
are sub-sampled with a maximum operation. For deriving the training algorithm for the CNN, the generalized delta rule [26] is 
applied to the architecture of the CNN. For distinguishing an image containing an object of interest from an image without it, a class 
label for the object, the number 1, is assigned to the corresponding output unit, and zeros to other units. A softmax function is often 
used in the output layer, called a softmax layer. 
 
B. Massive-Training Artificial Neural Network (MTANN)  
Predecessors of MTANNs that belong to the class of ML with image input or “deep learning” were proposed in the field of signal 
and image processing. Suzuki et al. proposed supervised nonlinear filters based on an MLP model (or a multilayer NN), called 
neural filters. The neural filter employs a linear-output-layer NN regression model as a convolution kernel of a filter. The inputs to 
the neural filter are pixels in a subregion (or local window, image patch, kernel). The output of the neural filter is a single pixel. The 
neural filter is trained with input images and corresponding “teaching” (desired or ideal) images. The class of neural filters is used 
for image-processing tasks such as edge- preserving noise reduction in radiographs and other digital pictures, edge enhancement 
from noisy images, and enhancement of subjective edges traced by a physician (“semantic segmentation”) in left ventriculograms . 
An MTANN was developed by extending of neural filters to accommodate various pattern-recognition tasks, including 
classification, pattern enhancement and suppression, and object detection. In other words, neural filters are a subclass or a special 
case of MTANNs. A two-dimensional (2D) MTANN was first developed for distinguishing a specific pattern from other patterns in 
2D images. The 2D MTANN was applied to reduction of FPs in CAD for detection of lung nodules on 2D CT slices in a slice-by-
slice way, and in chest radiographs (chest x-ray; CXR) , the separation of bones from soft tissue in CXR, and the distinction between 
benign and malignant lung nodules on 2D CT slices [45]. For processing of three-dimensional (3D) volume data, a 3D MTANN 
was developed by extending of the structure of the 2D MTANN, and it was applied to 3D CT Colonography data. Various MTANN 
architectures were developed, including multiple MTANNs, a mixture of expert MTANNs, a multi-resolution MTANN, a Laplacian 
Eigen function MTANN, as well as a massive-training support vector regression (MTSVR) and a massive-training nonlinear 
Gaussian process regression [50]. 
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The general architecture of an MTANN for classification is illustrated in Fig. 6. An MTANN consists of an ML model such as 
linear-output-layer artificial NN (ANN) regression, support vector regression, and nonlinear Gaussian process regression, which is 
capable of operating on pixel data directly. The core part of the MTANN consists of an input layer, multiple hidden layers, and an 
output layer. The linear- output-layer ANN regression model employs a linear function instead of a sigmoid function as the 
activation function of the unit in the output layer because the characteristics of an ANN were improved significantly with a linear 
function when it was applied to the continuous mapping of values in image processing. Note that the activation functions of the 
units in the hidden layers are a sigmoid function for nonlinear processing. The input to the MTANN consists of pixel values in a sub 
region (image patch), R, extracted from an input image. The output of the MTANN is a continuous scalar value, which is associated 
with the center pixel in the sub region, represented by 
O(x, y, z)=ML{I(x−i, y−j, z−k)∣(i, j, k)∈R}, (1) 
where x, y, and z are the coordinate indices, ML(•) is the output of the ML model, I(x, y, z) is a pixel value of the 

Fig. 6 Architecture of an MTANN consisting of an ML model (e.g., linear-output-layer ANN regression) with sub region (or image 
patch, local kernel) input and single-pixel output. The entire output image representing a likelihood map is obtained by scanning 

with the input sub region of the MTANN in a convolutional manner on the entire input image. A scoring layer is placed in the end 
to convert the output likelihood map into a single score that represents the likelihood of being a certain class for a given input image. 
 
Input image, and (i, j, k) is a coordinate in a sub region, R. The structure of input units and the number of hidden units in the ANN 
may be designed by use of sensitivity-based unit- pruning methods. The entire output image is obtained by scanning with the input 
sub region of the MTANN in a convolutional manner on the entire input image, as illustrated in Fig. 6. This convolutional operation 
offers a shift-invariant property that is desirable for image classification. The input sub region and the scanning with the MTANN 
are analogous to the kernel of a convolution filter and the convolutional operation of the filter, respectively. The output of the 
MTANN is an image that may represent a likelihood map, unlike the class of CNNs. 
For use of the MTANN as a classifier, a scoring layer is placed at the end to convert the output probability map into a single score 
that represents a likelihood of being a certain class for a given image, as shown in Fig. 6. A score for a given image is defined as a 
product of the image and a weighting function. The weighting function combines pixel- based output responses from the trained 
MTANN into a single score, which may often be the same distribution function used in the teaching images. 
The MTANN is trained with input images and the corresponding “teaching” (desired or ideal) images for enhancement of a specific 
pattern and suppression of other patterns in images. For enhancement of objects of interest (e.g., lesions), L, and suppression of 
other patterns (e.g., non- lesions), the teaching image contains a probability map for objects of interest. For enrichment of training 
samples, a training region, extracted from the input images is divided pixel by pixel into a large number of overlapping sub regions. 
Single pixels are extracted from the corresponding teaching images as teaching values. The MTANN is massively trained by use of 
each of a large number of input sub regions together with each of the corresponding teaching single pixels; hence the term “massive-
training ANN”. The MTANN is trained by a linear-output-layer back propagation (BP) algorithm which was derived for the linear-
output-layer ANN model by use of the generalized delta rule [26]. After training, the MTANN is expected to output the highest 
value when an object of interest is located at the center of the sub region of the MTANN, a lower value as the distance from the sub 
region center increases, and zero when the input sub region contains other patterns. 
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C. Similarities and Differences Between the two “Deep Learning” Models 
1) Architecture: CNNs and MTANNs are in the class of ML with image input (image-based ML) or “deep learning”. Both models 

use pixel values in images directly as input information, instead of features calculated from segmented objects; thus, they can 
be classified in an end-to-end ML paradigm that do the entire process from input images to the final classification. Both models 
can have deep layers (>4 layers). There are major differences between CNNs and MTANNs in (1) architecture, (2) output, and 
(3) the required number of training samples. (1) In CNNs, convolutional operations are performed within the network, whereas 
the convolutional operation is performed outside the network in MTANNs, as shown in Figs. 2 and 6. (2) The output of CNNs 
consists, in principle, of class categories, whereas that of MTANNs consists of images (continuous values in a map). (3) 
Another major difference is the required number of training samples. CNNs require a huge number of training images (e.g., 
1,000,000 images) because of a large number of parameters in the model, whereas MTANNs require a very small number of 
training images (e.g., 12 images for classification between lung nodules and non-nodules in CAD for detection of lung 
nodules in CT ; and 4 images for separation of bone components from soft-tissue components in CXR) 

2) Performance: The performance of well-known CNNs (including the AlexNet, the LeNet, a relatively deep CNN, a shallow 
CNN, and a fine-tuned AlexNet (FineTunedAlexNet) which used transfer learning from a computer-vision-trained AlexNet) and 
MTANNs was compared extensively in focal lesion (i.e., lung nodule) detection and classification problems in medical 
imaging. Comparison experiments were done for detection of lung nodules and classification of detected lung nodules into 
benign and malignant in CT with the same databases. The experiments demonstrated that the performance of MTANNs was 
substantially higher than that of the best-performing CNN under the same condition. With a larger training dataset used only 
for CNNs, the performance gap became less evident, even though the margin was still significant. Specifically, for nodule 
detection, MTANNs generated 2.7 FPs per patient at 100% sensitivity, which was significantly (p<0.05) lower than that for the 
best-performing CNN model (Fine Tuned Alex Net), with 22.7 FPs per patient at the same level of sensitivity. For nodule 
classification, MTANNs yielded an area under the receiver- operating-characteristic curve (AUC) of 0.881, which was 
significantly (p<0.05) greater than that for the best- performing CNN model, with an AUC of 0.776. 

 
IV. APPLICATIONS OF “DEEP LEARNING” TO ANNOTATION IMAGING 

A. Classification Between Lesions and Non-Lesions 
Before the introduction of the term, deep learning, deep CNNs had been used for false positive (FP) reduction in CAD for lung 
nodule detection in CXRs. A convolution NN was trained with 28 CXRs for classifying between lung nodules from non-nodules 
(i.e., FPs produced by an initial CAD scheme). The trained CNN reduced 79% of FPs (which is equivalent to 2-3 FPs per patient), 
whereas 80% of true- positive detections were maintained. CNNs have been applied to FP reduction in CAD for detection of 
microcalcifications and masses in mammograms. A CNN was trained with 34 mammograms for classifying between 
microcalcifications and FP detections (i.e., non-microcalcifications). The trained CNN reduced 90% of the FPs, which resulted in 
0.5 FPs per image, whereas a true-positive detection rate of 87% was maintained. Shift-invariant NNs which are almost identical to 
CNNs, have been used for FP reduction in CAD for detection of microcalcifications. A shift-invariant NN was trained to detect 
microcalcifications in regions-of-interest (ROIs). Microcalcifications were detected by thresholding of the output images of the 
trained shift-invariant NN. When the number of detected microcalcifications was greater than a predetermined number, the ROI 
was considered as a microcalcification ROI. With the trained shift-invariant NN, 55% of FPs was removed without any loss of true 
positives. 
After the introduction of the term, deep learning, a CNN was used for classification of masses and nonmasses in digital breast 
tomosynthesis images. The CNN for digital breast tomosynthesis was trained by using transfer learning from the CNN for 
mammography. The CNN achieved an AUC of 0.90 in the classification between mass ROIs and non-mass ROIs in digital breast 
tomosynthesis images. A CNN was used for FP reduction in lung-nodule detection in PET/CT. The CNN was used for feature 
extraction, and classification was done by SVM with the CNN-extracted and hand-crafted features. With the FP reduction method, 
the overall performance was improved from a sensitivity of 97.2% with 72.8 FPs/case to a sensitivity of 90.1% with 4.9 FPs/case. 
There are a growing number of papers for applications of CNNs in this area, and all the papers are not reviewed in this paper. 
The class of “deep” MTANNs with 4-7 layers has been used for classification, such as FP reduction in CAD schemes for detection 
of lung nodules in CT and CXR, and FP reduction in a CAD scheme for polyp detection in CT colonography. For enhancement of 
lesions and suppression of non-lesions, the teaching image contains a map for the probability of being a lesion. For example, the 
teaching volume contains a 3D Gaussian distribution with standard deviation for a lesion and zero (i.e., completely dark) for non-
lesions. After training, a scoring method is used for combining of output voxels from the trained MTANNs.  
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With the trained MTANN, nodules such as a solid nodule, a part-solid (mixed-ground- glass) nodule, and a non-solid (ground-glass) 
nodule were enhanced, whereas non-nodules such as different-sized lung vessels and soft-tissue opacity were suppressed. In this 
way, classification between a particular pattern and other patterns is made by enhancement of the particular pattern, which may be 
referred to as “classification by enhancement.” In the application of the MTANN to FP reduction in CAD for lung CT, 83% of the 
false positives that had not been removed by ML with feature input were removed with a reduction of one true positive nodule 
(i.e., a drop in a sensitivity of 1.7%). With the MTANN, the FP rate of a CAD scheme was improved from 27.4 to 4.8 FPs per 
patient at an overall sensitivity of 80.3% [31]. In the MTANN application to FP reduction in CAD for CXR, the MTANN 
eliminated 68.3% of FPs that had not been removed by ML with feature input with a reduction of one true-positive result. The FP 
rate of the original CAD scheme was improved from 4.5 to 1.4 FPs per image at an overall sensitivity of 81.3%. In the MTANN 
application to CT colonography, the MTANN removed 63% of the FPs that had not been removed by ML with feature input without 
the loss of any true positive; thus, the FP rate of the original CAD scheme was improved to 1.1 FPs per patient while the original 
sensitivity of 96.4% was maintained. 

B. Classification of Lesion Types 
After the introduction of the term “deep learning”, a CNN was used for classification between perifissural nodules and non-
perifissural nodules in CT. A pre-trained 2D CNN was used. The CNN achieved a performance in terms of AUC of 0.868. A pre-
trained CNN was used for classification between cysts from soft tissue lesions in mammography. The CNN achieved an AUC 
value of 0.80 in the classification between benign solitary cysts and malignant masses. CNN was used for classification of plaque 
compositions in carotid ultrasound. CNN’s classification achieved a correlation value of about 0.90 with the clinical assessment for 
the estimation of lipid-core, fibrous-cap, and calcified-tissue areas in carotid ultrasound. A CNN was used for classifying of tooth 
types in cone-beam CT. The CNN achieved a classification accuracy of 88.8% in classification of 7 tooth types in ROIs. A CNN 
(AlexNet) with transfer learning was applied to classification among diffuse lung diseases in CT . With transfer learning, the 
weights of the AlexNet that had been trained with natural images were used as autoencoder (or feature extractor), and the classifier 
part in the final stage was fine-tuned to fit medical image data. A lung tissue classification system was developed with a 
convolutional classification restricted Boltzmann machine that learns feature descriptions directly from training data. Before the 
introduction of the term, deep learning, “deep” MTANNs with seven layers were applied to the distinction between benign and 
malignant lung nodules in low-dose screening CT [45]. The MTANNs achieved an AUC value of 0.882 in the classification 
between 76 malignant and 413 benign lung nodules, whereas an AUC value for chest radiologists for the same task with a subset of 
the database was 0.56. 
 
C. Segmentation of Lesions or Organs  
Before the introduction of the term, deep learning, shift- invariant NNs were used for detection of the boundaries of the human 
corneal endothelium in photomicrographs. After the introduction of the term, deep learning, a CNN was used for segmentation of 
the bladder in CT urography. The CNN achieved a Jaccard index of 76.2%+/−11.8% for bladder segmentation, compared with 
“gold-standard” manual segmentation. A CNN was used for segmentation of tissues in MR brain images. The CNN achieved average 
Dice coefficients of 0.820.91 in five different datasets. An automatic organ segmentation method for pancreas in CT images was 
developed with multi-level CNNs. The method achieved a Dice similarity coefficient of 71.87% in segmentation of pancreas. A 
method for segmentation of organs in CT images was developed with CNNs, which accomplishes an end to-end, voxel-wise 
multiple-class prediction to map each voxel in a CT image directly to an anatomical label. Neural edge enhancers (NEEs; 
predecessor of MTANNs) enhanced subjective edges traced by a physician (“semantic segmentation”) in left ventriculograms [44]. 
The NEE that had been trained with the physician’s subjective edges was able to enhance the left ventricle contour very well. The 
edge enhancement performance of the NEE was superior to that of the Marr-Hildreth operator in this challenging segmentation 
problem. The segmentation by the NEE agreed excellently with the “gold-standard” manual segmentation by an experienced 
cardiologist. 
 
D. Detection of Lesions or Clinically Significant Patterns 
After the introduction of the term, deep learning, deep CNNs were used for detection of lymph nodes in CT. Detection of lymph 
nodes is a challenging task, as evidenced by the fact that ML with feature input (feature- based ML) achieved approximately 50% 
sensitivity with 3 FPs/volume. With use of deep CNNs, the performance reached at 70% and 83% sensitivities with 3 
FPs/volume in the mediastinum and abdomen areas, respectively.  
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Automatic detection of cerebral micro-bleeds in MR images was developed by means of 3D convolutional neural networks. A 
computer-aided detection system for pulmonary nodules was developed by means of multi-view convolutional networks, for 
which discriminative features are automatically learnt from the training data. An MTANN-based “lesion-enhancement” filter was 
developed for enhancement of actual lesions in CAD for detection of lung nodules in CT [38]. For enhancement of lesions and 
suppression of non-lesions in CT images, the teaching image contained a probability map for being a lesion. For enhancement of a 
nodule in an input CT image, a 2D Gaussian distribution was placed at the location of the nodule in the teaching image, as a model 
of the lesion probability map. For testing of the performance, the trained MTANN was applied to non-training lung CT images. 
Nodules were enhanced in the output image of the trained MTANN filter, whereas normal structures such as lung vessels were 
suppressed. After large and small remaining regions were removed by use of area information obtained with connected-component 
labeling, accurate nodule detection was achieved with no FP, which means that one MTANN functions as a complete CAD scheme 
with high accuracy. 
 
E. Separation of Bones from soft Tissue in CXR 
Studies showed that 82 to 95% of the lung cancers missed by radiologists in CXR were partly obscured by overlying bones such as 
ribs and/or a clavicle. To prevent such misses, MTANNs were developed for separation of bones from soft tissues in CXR.To this 
end, the MTANNs were trained with input CXRs with overlapping bones and the corresponding “teaching” dual-energy bone 
images acquired with a dual- energy radiography system. With a trained MTANN, the contrast of ribs was suppressed 
substantially, whereas the contrast of soft tissue such as lung vessels was maintained. A filter learning in the class of ML with 
image input (image- based ML) was developed for suppression of ribs in CXR. 
 
F. Analysis of a Trained ML Model 
Some researchers refer to a trained NN as a “black box”, but there are ways to analyze or look inside a trained NN. With such 
methods, trained NNs are not “black boxes”. Analysis of a trained ML model is very important for revealing what was trained in the 
trained ML model. Suzuki et al. analyzed an NEE that was trained to enhance edges from noisy images. The receptive field of the 
trained NEE that was revealed by application of a method for designing the optimal structure of an NN to the trained NEE. The 
receptive field shows which input pixels were used for enhancement of edges from noisy images. Furthermore, they analyzed the 
units in the hidden layer of the trained NEE. They show the analysis results of the internal representation of the trained NEE, which 
indicate the operations for diagonal edge enhancement together with smoothing in a hidden unit, vertical edge enhancement together 
with horizontal smoothing in another hidden unit, and edge enhancement with smoothing for another diagonal orientation in other 
hidden unit. The results of the analysis suggest that the trained NEE uses directional gradient operators with smoothing. These 
directional gradient operators with smoothing, followed by integration with nonlinearity, lead to robust edge enhancement against 
noise. They showed, for the first time, that the ML model was able to acquire the receptive fields of various simple cells, which 
had been discovered by Hubel and Wiesel in the cat and monkey cerebral cortex . 
 

V. ADVANTAGES AND LIMITATIONS OF “MACHINE LEARNING” 
As described earlier, the major difference between ML with image input (image-based ML) including “deep learning” and ML with 
feature input (feature-based ML, common classifiers) is the direct use of pixel values with the ML model. In other words, unlike 
ordinary classifiers (ML with feature input), feature calculation from segmented objects is not necessary. Because the ML with 
image input can avoid errors caused by inaccurate feature calculation and segmentation, the performance of the ML with image 
input can be higher than that of ordinary feature-based classifiers. ML with image input learns pixel data directly, and thus all 
information on pixels should not be lost before the pixel data are entered into the ML with image input, whereas ordinary feature-
based classifiers learn the features extracted from segmented lesions and thus important information can be lost with this indirect 
extraction; also, inaccurate segmentation often occurs for complicated patterns. In addition, because feature calculation is not 
required for the ML with image input, development and implementation of segmentation and feature calculation, and selection of 
features are unnecessary; this offers fast and efficient development. 
The characteristics of the ML with image input which use pixel data directly would generally differ from those of ordinary feature-
based classifiers (ML with feature input). Therefore, combining an ordinary feature-based classifier with ML with image input 
would yield a higher performance than that of a classifier alone or ML with image input alone. Indeed, in previous studies, both 
classifier and ML with image input were used successfully for classification of lesion candidates into lesions and non-lesions. 
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Limitations of “deep” CNNs (in ML with image input) include 1) a very high computational cost for training because of the high 
dimensionality of input data, and 2) the required large number of training images. Because “deep” CNNs use pixel data in images 
directly, the number of input dimensions is generally large. A CNN requires a huge number of training images (e.g., 1,000,000) for 
determining a large number of parameters in the CNN. However, an MTANN requires a small number of training images (e.g., 20) 
because of its simpler architecture. With GPU implementation, an MTANN completes training in a few hours, whereas a deep CNN 
takes several days. 
 

VI. CONCLUSION 
In this paper, deep learning techniques and their applications to medical image analysis are surveyed. Frist, standard ML techniques 
in the computer-vision field, namely, ML with feature input (or feature-based ML), are reviewed to make clear what has changed in 
ML before and after the introduction of deep learning. The comparisons between MLs before and after deep learning revealed that 
ML with feature input was dominant before deep learning, and that the major and essential difference between ML before and after 
deep learning is learning image data directly without object segmentation or feature extraction; thus, it is the source of the power of 
deep learning, although the depth of the model is an important attribute. The survey of deep learning also revealed that there is a 
long history of deep-learning techniques, including the Neocognitron, CNNs, neural filters, and MTANNs in the class of ML with 
image input, except a new term, “deep learning”. “Deep learning” even before the term existed, namely, the class of ML with image 
input was applied to various problems in medical image analysis including classification between lesions and non-lesions, 
classification between lesion types, segmentation of lesions or organs, and detection of lesions. ML with image input including 
deep learning is a very powerful, versatile technology with higher performance, which can bring the current state-of-the-art 
performance level of medical image analysis to the next level, and it is expected that deep learning will be the mainstream 
technology in medical image analysis in the next few decades. 
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