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Abstract: The growing adoption of Intelligent Transportation Systems (ITS) demands reliable real-time monitoring, predictive 
maintenance, and safety-critical responses in smart rail networks. However, embedded devices such as the ESP32 are 
constrained by limited computation, memory, and energy efficiency, restricting their suitability for large-scale deployments. To 
address these challenges, we propose TRANSIT EDGE, a Train–Edge–Cloud (TEC) collaborative framework that distributes 
sensing, computation, and decision-making tasks across train nodes, edge servers, and the cloud. Multi-sensor data—including 
driver health metrics, obstacle detection, fire alertsare dynamically prioritized using a Q-learning reinforcement learning (RL) 
scheduler, while a quantum-inspired optimization layer accelerates convergence.The framework’s modular and scalable design 
further ensures adaptability to future extensions such as predictive maintenance, multi-train coordination, and integration with 
next-generation 5G/6G communication networks. These results establish TRANSIT EDGE as a cost-effective, intelligent, and 
deployment-ready solution for enhancing safety, efficiency, and resilience in modern rail systems. 
Index Terms: Smart rail systems, Train–Edge–Cloud (TEC), ESP32, edge intelligence, reinforcement learning. 

 
I. INTRODUCTION 

The advancement of urban rail transit systems requires intelligent monitoring and control mechanisms to ensure safety, reliability, 
and real-time responsiveness. Traditional onboard systems are limited in computational capacity, making it difficult to process 
diverse sensor data and respond promptly to emergencies. 
To address these challenges, this work introduces TRANSIT EDGE, a Train-Edge-Cloud (TEC) collaborative framework powered 
by ESP32-based hardware. The system integrates multiple sensing and control modules to enhance safety and situational awareness. 
A BPM108 sensor continuously tracks the driver’s temperature and blood pressure to monitor health conditions. TRANSIT EDGE 
achieves up to 45% lower latency, 35% higher throughput, and 92% offloading efficiency compared to baseline methods. T 
Ultrasonic sensors detect trackside obstacles and trigger alerts when hazards are identified. Flame sensors are deployed for fire 
detection, while an emergency button provides immediate manual hazard signalling. To strengthen operational security, the system 
is capable of identifying unauthorized access attempts, ensuring only the designated driver can operate the train. An ESP32-CAM 
module enables real-time video streaming, allowing live monitoring and event verification.  

Fig. 1. Architecture of TRANSIT EDGE: Sensors → Edge Processing → Applications. 
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Ensuring safety in rail transit requires continuous monitoring of drivers, environment, and infrastructure. Conventional on-board 
systems often struggle with multi-source data processing, causing delays in safety-critical scenarios. The TRANSIT EDGE 
framework addresses this gap by leveraging a Train–Edge–Cloud (TEC) architecture with low-power ESP32 nodes and intelligent 
task scheduling. 
As shown in Fig. 1, the system begins at the sensing layer, where BPM108 sensors track driver vitals, ultrasonic and flame sensors 
detect external hazards, and an emergency button provides manual override. The ESP32-CAM adds live video streaming for 
authentication and situational awareness. Data are classified by urgency and computational demand, then scheduled through a 
reinforcement learning engine. A quantum-inspired optimization layer accelerates convergence, ensuring accurate and low-latency 
task allocation. 
The processed outputs enable real-time safety alerts, health assessment, fire and obstacle responses, and remote monitoring through 
an MIT App Inventor–based dashboard. By combining low-cost hardware with adaptive scheduling, TRANSIT EDGE ensures 
scalability, rapid response, and enhanced safety in smart rail systems. 
Fig. 2 illustrates the layered TEC organization of TRANSIT EDGE. At the train layer, ESP32 modules acquire multimodal sensor 
data and video authentication streams. These data are transmitted wirelessly to the edge layer, where tasks undergo classification, 
scheduling, and optimization. Urgent safety events are prioritized for immediate edge execution, while computationally intensive 
tasks are selectively forwarded to the cloud layer. 
The cloud layer supports predictive maintenance, large-scale analytics, and historical health archiving, while also managing real-
time alerts through Firebase. Integration with the MIT App Inventor interface enables supervisors to oversee operations remotely, 
intervene during emergencies, and analyze long-term safety data. This hierarchical design balances latency-sensitive decision-
making at the edge with scalability and resilience at the cloud, ensuring continuous, adaptive, and reliable safety monitoring in 
dynamic rail environments. 

Fig. 2.Train–Edge–Cloud (TEC) architecture 
 

II. LITERATURE SURVEY 
A. Edge Computing in Intelligent Rail Systems: 
Intelligent Transportation Systems (ITS) demand low-latency decision-making. Traditional cloud-only models often fail under real-
time safety needs such as obstacle or intrusion detection. Recent studies propose edge-assisted approaches, reducing latency by 
processing data closer to trains or trackside. However, most works focus on infrastructure monitoring (e.g., track or equipment 
faults) and give limited attention to driver health and passenger safety. 
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B. IoT and ESP32-Based Sensing in Rail Applications: 
Low-power IoT devices, particularly the ESP32, have been adopted for real-time monitoring due to their energy efficiency and 
wireless connectivity. Prior implementations remain largely single-purpose—such as environmental monitoring—without 
integrating multiple sensors for holistic safety. TRANSIT EDGE extends this by combining health tracking, hazard detection, live 
authentication, and emergency overrides into one framework. 
 
C. Reinforcement Learning for Dynamic Task Scheduling: 
Dynamic scheduling in edge computing has shifted from heuristic algorithms to reinforcement learning (RL), enabling adaptive task 
allocation under varying workloads. Yet, traditional RL suffers from slow convergence in large decision spaces, limiting real-time 
responsiveness. TRANSIT EDGE addresses this through quantum-inspired optimization, accelerating RL convergence and 
improving accuracy in safety-critical scenarios. 
 
D. Quantum-Inspired Optimization in Edge Computing: 
Quantum-inspired techniques are increasingly applied to accelerate machine learning and avoid suboptimal outcomes. While 
explored in traffic and vehicular networks, their use in rail safety is scarce. By embedding such optimization into RL-based task 
scheduling, TRANSIT EDGE introduces a novel application of this method for intelligent rail systems. 
 
E. Train–Edge–Cloud (TEC) Collaborative Architectures: 
Collaborative TEC frameworks distribute computation across train, edge, and cloud layers, reducing delays while enabling 
predictive analytics. Existing studies often remain simulation-based or lack rail-specific validation. TRANSIT EDGE differentiates 
itself with an ESP32 hardware prototype, quantum-augmented scheduling, and a Firebase backend, offering both practicality and 
scalability. 
 
Literature Survey Comparison 
As shown in Fig. 3, prior studies highlight several limitations, including reliance on simulation-only validation, single-purpose 
ESP32 deployments, slow reinforcement learning convergence, and limited adaptation to rail-specific safety requirements. Many 
frameworks also overlook human-centric monitoring, focusing primarily on infrastructure-level diagnostics while neglecting driver 
health, authentication, or real-time emergency interventions. 
TRANSIT EDGE addresses these shortcomings by integrating multi-sensor ESP32-based monitoring, reinforcement learning with 
quantum optimization, and collaborative Train–Edge–Cloud scheduling. This enables rapid response to safety-critical events, while 
ensuring scalability, interoperability, and hardware-level feasibility—positioning the framework as a practical step beyond 
theoretical models toward real-world intelligent rail deployment. 
 

Title/Topic Technology Used Limitations 

Edge Intelligence for 
Smart Rail Systems 
(Zhang et al., 2023) [1] 

Train–Edge–Cloud 
(TEC), Reinforcement 
Learning (RL), 
Simulation Models 

Validated only in 
simulation; no hardware 
implementation; lacks real 
sensor integration. 

ESP32 in IoT-Based 
Transportation (Kumar et 
al., 2022) [2] 

ESP32 Microcontroller, 
IoT Cloud Dashboard 

Limited to environmental 
monitoring; no multi-
sensor fusion or task 
prioritization. 

Driver Health & Safety 
Monitoring (Lee & Park, 
2024) [3] 

Wearable Biosensors, 
ML Classifiers 

Focused only on driver 
health; does not address 
environmental hazards or 
emergency alerts. 
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Fig. 3. Literature survey comparison of related works in edge intelligence, IoT sensing, and collaborative rail computing. 
 

III. COMPARATIVE ANALYSIS OF SCHEDULING APPROACHES 
Figure 4 compares conventional methods with TRANSIT EDGE. Heuristic and IoT-based systems provide only basic sensing or 
limited adaptability. RL improves decision-making but suffers fromdelayed convergence. TRANSIT EDGE achieves superior 
performance in latency, throughput, and resource efficiency, validating its suitability for safety-critical rail applications. 

Fig. 4. Performance comparison of heuristic scheduling, IoT-based monitoring, RL scheduling, and the proposed TRANSIT EDGE 
framework 

IV. RESULTS AND DISCUSSION 
A. System Successes and Performance 
The evaluation of the TRANSIT EDGE framework, conducted through ESP32-based hardware deployment and simulated edge–
cloud environments, confirmed its effectiveness in meeting real-time safety requirements for railway systems. The framework 
consistently achieved low-latency decision-making, with average task execution times ranging between 85 and 95 ms, which is well 
within the operational thresholds for safety-critical applications. The BPM108 sensor demonstrated high reliability for driver health 
monitoring, maintaining accuracy within ±2% of medical benchmarks, while ultrasonic and flame sensors provided obstacle and fire 
detection accuracies of 91% and 95%, respectively. Manual hazard reporting through the emergency button consistently responded 
within 70 ms, reinforcing its utility in emergency overrides. The ESP32-CAM supported continuous live video streaming and driver 
authentication with 85–90% uptime, though minor disruptions were observed under bandwidth limitations.  

RL for Task Scheduling in 
Edge Computing (Wang et 
al., 2023) [4] 

Q-learning, Vehicular 
Edge Computing 

Slow convergence in large 
action spaces; limited real-
time adaptability. 

Quantum-Inspired 
Optimization in 
Transportation (Chen et 
al., 2021) [5] 

Quantum-Inspired 
Learning, Traffic Flow 
Optimization 

Theoretical model; no 
embedded hardware 
deployment; not rail-
specific. 

Cloud-Edge Collaboration 
for Safety Systems (Jing et 
al., 2022) [6] 

Edge–Cloud Hybrid 
Model, Emergency 
Response 

Designed for autonomous 
cars; lacks driver 
authentication, live video 
streaming, and rail-specific 
adaptation. 
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Reinforcement learning–based task scheduling allowed for adaptive and efficient resource allocation, while the integration of 
quantum-inspired optimization accelerated convergence by approximately 40%, further enhancing scheduling accuracy. 
Collectively, these results validate the capacity of TRANSIT EDGE to integrate multi-sensor data acquisition, intelligent 
scheduling, and responsive alerting into a robust safety pipeline. 
 
B. Identified Challenges and Limitations 
Despite its strong performance, testing revealed several challenges. Ultrasonic sensors occasionally produced false alarms in rainy 
conditions or reflective environments, and BPM108 readings exhibited minor deviations under high vibration. While the ESP32 
platform proved cost-efficient, it struggled with scalability when processing multiple data streams simultaneously, limiting its 
capacity for more complex workloads at the node level. Network dependency also emerged as a concern, with latency rising up to 
350 ms under congested 4G conditions. Reinforcement learning, though effective for adaptive scheduling, showed slower adaptation 
during highly dynamic workloads. Additionally, video streaming interruptions due to bandwidth fluctuations sometimes hindered 
continuous driver authentication. These limitations indicate the need for enhanced fault-tolerance, improved scalability, and more 
resilient communication mechanisms. 
 
C. Failure Scenarios 
Evaluation of the system highlighted specific failure scenarios. Under conditions of network congestion, synchronization delays 
resulted in late alert notifications, reducing the timeliness of responses to critical events. Sensor fusion conflicts occasionally 
emerged when multiple triggers, such as obstacle and fire detection, occurred simultaneously and competed for processing priority, 
causing delays in decision execution. Authentication failures also occurred when the ESP32-CAM experienced stream freezes, 
temporarily preventing verification of driver identity. These failures underscored the importance of redundancy and more resilient 
system designs in mission-critical deployments. 
 
D. Proposed Solutions and Improvements 
To mitigate identified issues, sensor calibration with redundancy and adaptive filtering can reduce false alarms. TinyML-based 
anomaly detection enhances local intelligence while lowering cloud dependence. 
Network resilience may be improved through LTE/LoRa fallback and local caching for critical alerts. Transitioning from Q-learning 
to deep reinforcement learning improves adaptability, while lightweight encryption and multi-factor authentication secure live video 
streams. 

Fig.5.  illustrate the comparative performance of heuristic scheduling, RL-based scheduling, and the proposed TRANSIT EDGE 
framework 
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Fig. 6. Success–failure analysis of TRANSIT EDGE with proposed solutions 

 
E. Comparative Performance 
As shown in Fig. 5, TRANSIT EDGE outperformed both heuristic and RL-only scheduling. Latency was reduced by 95%, 
compared to 70% and 55% for RL and heuristic methods, respectively. Throughput reached 90%, edge utilization 85%, and 
offloading efficiency 92%, all higher than baseline approaches. These results confirm the framework’s capability to sustain real-
time, safety-critical rail operations. 
The figure 6 highlights system strengths such as low latency, high throughput, and efficient offloading, alongside challenges 
including network dependency and sensor fusion conflicts. Proposed improvements—like TinyML-based anomaly detection, multi-
path communication, and lightweight security—address these gaps to ensure resilient and scalable deployment. 
 

V. CONCLUSION 
The proposed TRANSIT EDGE framework offers a practical and future-ready approach to enhancing railway safety and 
performance. By combining ESP32-based sensing, Train–Edge–Cloud (TEC) collaboration, reinforcement learning (RL), and 
quantum-inspired optimization, it achieves low-latency, scalable, and resource-efficient operations. 
Experimental validation confirmed its effectiveness, with latency reduced to 120 ms (45% faster than conventional IoT systems) and 
throughput reaching 95 events/min. Intelligent task distribution—65% at the edge, 25% in the cloud, and 10% locally—prevented 
hardware overload, while quantum-inspired optimization improved decision accuracy by 12%. The framework also attained a 92% 
offloading success rate, enabling continuity even under fluctuating network conditions. 
At the application level, TRANSIT EDGE provides sub-150 ms emergency alerts, continuous driver health monitoring using 
BPM108, and real-time video authentication via ESP32-CAM and Firebase. This integration establishes a layered defence 
mechanism, combining environmental hazard detection with human-centric safety assurance. 
Unlike simulation-heavy studies, TRANSIT EDGE has been validated on real hardware, confirming feasibility in dynamic railway 
environments. Its lightweight, cost-effective, and modular design makes it suitable for wide-scale adoption, particularly in 
developing regions. Moreover, it is adaptable to future advancements such as 5G networks, predictive maintenance, and multi-train 
coordination. 
By shifting focus from infrastructure-only monitoring to a human–machine collaborative safety ecosystem, TRANSIT EDGE 
strengthens trust, resilience, and long-term sustainability in modern rail networks. 
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Fig. 6. Conclusion flow of the TRANSIT EDGE framework. 

 
The diagram summarizes how multi-sensor data collection, edge–cloud collaboration, and intelligent scheduling converge into real-
time applications for railway safety, demonstrating TRANSIT EDGE as both a deployable solution and a scalable foundation for 
future smart rail systems. 
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