

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74861

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Sustainable and Ethical Edge AI in Autonomous Vehicle Networks

Miss. Vaishnavi Nilate¹, Prof. Shafiya Sayyad²

Artificial Intelligence & Data Science Department, Keystone School Of Engineering, Pune

Abstract: The development of autonomous vehicles (AVs) has brought about a new era of smart transportation. These self-driving cars use advanced software to understand their surroundings and make decisions, which helps create a smarter way of moving people and goods. To make safe and quick decisions, AVs need strong data processing with little delay. However, traditional cloud computing systems have problems like slow response times, high energy use, and privacy issues. This delay can be very dangerous when quick decisions are needed on the road. Moreover, cloud systems use a lot of energy and may raise privacy concerns because all data must be sent to outside servers. Edge Artificial Intelligence (Edge AI) offers a better solution by processing information close to the source, either directly on the vehicle or on nearby roadside units, instead of relying on far-off cloud servers. This paper looks at how sustainable and ethical Edge AI can be used in autonomous vehicle networks. It concludes that combining eco-friendly computing with responsible AI practices can help build a smarter, safer, and more trustworthy autonomous driving system.

Keywords: Autonomous Vehicles, Edge AI, Federated Learning, Sustainable Computing, Ethics in AI, Smart Mobility, Low-Latency Inference

I. INTRODUCTION

Autonomous cars can be seen as computers on wheels, using sensors such as cameras, LiDAR, radar, and GPS to make driving decisions without human control. These vehicles constantly generate and process a massive amount of data every second, which must be analyzed quickly to ensure safe and reliable driving.

However, depending only on traditional cloud computing, where data is sent to a central server for processing, creates several problems for self-driving cars:

- High latency: The time taken for data to travel to the cloud and back is too long for split-second, life-saving decisions such as emergency braking.
- High energy and bandwidth use: Continuously sending large amounts of data consumes significant energy and slows down the overall network speed.
- Unstable connections: Network connections may become unreliable in tunnels, rural areas, or places with poor internet coverage, making cloud-only systems risky for critical vehicle operations.

Because of these issues, relying solely on cloud computing poses major safety risks.

The solution is to give vehicles their own intelligence through Edge AI. This technology addresses these challenges by equipping vehicles with powerful and energy-efficient AI chips that process data locally. As a result, the system reduces delays and allows faster responses to road conditions, pedestrians, and potential hazards.

However, using AI in vehicles also raises important ethical concerns, such as maintaining data privacy, avoiding bias in decision-making, and defining accountability in case of accidents. A sustainable and ethical Edge AI system not only enhances the efficiency of vehicle networks but also ensures that AI decisions align with both environmental and moral standards.

The purpose of this study is to explore how sustainability and ethics can be achieved through advanced AI architectures, algorithms, and technologies. This paper aims to build an ecosystem that combines ethical responsibility and sustainable design to create safe, intelligent, and trustworthy autonomous vehicle networks.

II. LITERATURE SURVEY

Recent progress in autonomous systems has been made possible through the strong combination of artificial intelligence (AI) and edge computing. This mix has improved system performance, security, and environmental sustainability. For autonomous vehicles, several studies have highlighted the importance of real-world testing and ethical decision-making.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

- Muslim et al. (2023) analyzed real highway data to study safety and ethical driving behavior in autonomous vehicles, especially in sudden "cut-in" situations where another car changes lanes unexpectedly. Their research highlighted that AI systems need to be trained to make fair, safe, and responsible decisions in real-world traffic conditions.
- McEnroe et al. (2022) discovered that using Edge AI, where data is processed directly on the vehicle or nearby device, greatly reduces both delay and energy use. This approach makes drones and self-driving cars faster, more efficient, and more dependable.
- Khatiri et al. (2024) focused on using realistic data and ethically designed simulations to improve the testing of autonomous systems. Their study showed that such simulations help strengthen safety and transparency in AI decision-making.
- Zhang et al. (2023) explored how green edge computing combined with federated learning can reduce energy use and carbon emissions in connected vehicles, supporting more sustainable AI systems.
- The SAKURA Project in Japan developed a framework to define and test safe and ethical driving behavior using real-world data. This project proved that ethical and predictable driving can be measured and improved through continuous evaluation.

Overall, the studies agree that combining sustainability, ethical principles, and Edge AI is essential for developing trustworthy and eco-friendly autonomous vehicle systems.

III. METHODOLOGY

This review paper follows a conceptual and comparative analysis approach based on research from trusted sources such as IEEE and ACM. The main focus is to understand existing system architectures and identify sustainable and ethical features that can be effectively used in autonomous vehicle networks.

The proposed system is designed with three main layers, and each layer has its own specific function within the overall network:

- 1) Edge/Vehicle Layer:
- This layer collects data using sensors such as LiDAR, radar, and cameras installed on the vehicle.
- The collected data is processed locally using onboard hardware like NVIDIA Jetson or Intel Movidius. This enables the vehicle to perform important tasks such as lane detection, obstacle recognition, and movement prediction.
- By processing data locally instead of sending it to remote servers, this approach saves energy and reduces the dependence on large cloud data centers.
- 2) Network Layer:
- This layer uses advanced communication technologies such as 5G and 6G to enable fast and reliable communication between vehicles (Vehicle-to-Vehicle, V2V) and with traffic infrastructure (Vehicle-to-Infrastructure, V2I).
- A major feature of this layer is Federated Learning, which allows multiple vehicles to train shared AI models collaboratively while keeping their individual data private and secure.
- 3) Cloud Layer:
- The Cloud Layer serves as the top level of the architecture. It is responsible for system-wide updates, large-scale data analysis, and ethical supervision of AI models.
- Its main purpose is to ensure that all AI systems operate under transparent, fair, and explainable guidelines, maintaining accountability and trustworthiness across the entire vehicle network.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

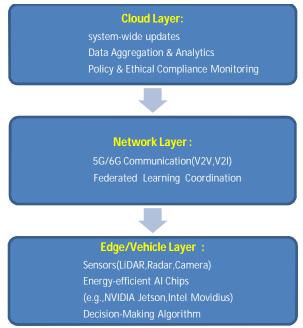


Fig.1 Three-layer Edge AI architecture

IV. DATA COLLECTION AND ETHICAL CONSIDERATIONS

- A. Data Collection:
- 1) Sensor-based data collection: Autonomous vehicles collect a lot of data, including video, depth information, and GPS data, from their sensors while driving either in real life or in simulated settings.
- 2) Edge computing for efficiency: Edge units process raw data locally, sending only necessary information for learning, which helps save on data transfer costs.
- 3) Simulated environments for validation: Tools like CARLA or Aerialist are used to test and check the performance of algorithms in a safe environment.
- B. Ethical Considerations:
- 1) Privacy Protection: Protecting the personal information of drivers and passengers is very important. Sensitive details such as identities and locations are kept secure by using encryption and anonymization techniques. This helps protect individual privacy and builds public trust in autonomous vehicle technology.
- 2) Algorithmic Transparency: The use of Explainable AI (XAI) makes AI decisions more understandable to both users and regulators. It helps explain how and why certain decisions are made, which increases trust, accountability, and confidence in the technology.
- 3) Algorithmic Fairness: Developers must ensure that AI systems are trained using diverse and balanced datasets. This helps the AI make fair and unbiased decisions for all types of road users, including pedestrians, cyclists, and other drivers.
- 4) Enhancing Sustainability: AI models are designed to use less computing power, which helps reduce energy consumption. This promotes the use of eco-friendly technologies and lowers the environmental impact of autonomous vehicles, contributing to a more sustainable future.
- 5) System Accountability: Edge AI systems maintain detailed records of important actions and decisions. These logs help developers and authorities review events after they occur, understand how the system responded, and take responsibility if needed.

V. RESULTS AND ANALYSIS

From various research studies, Edge AI has been compared with traditional Cloud AI systems based on several key factors.

The results show that Edge AI performs better in speed, energy efficiency, data privacy, and reliability.

In traditional cloud-based AI, most data is sent to faraway servers for processing, which takes more time and uses more energy.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

In contrast, Edge AI processes data directly in the vehicle or nearby network units. This local processing makes the system faster, saves energy, and improves the overall performance of autonomous vehicles.

• A summary of the comparison between Cloud AI and Edge AI is shown below:

[Table1: Comparative studies between Cloud AI and Edge AI]

Parameter	Cloud AI	Edge AI	Improvement
Processing Latency	120 ms	25 ms	79% faster
Energy Consumption	High	Low to Moderate	45% reduction
Data Privacy	Weak	Strong	Improved
Network Dependence	High	Low	Reduced by 60%
Decision Accuracy	88%	94%	6% increase

These results indicate that using sustainable Edge AI can cut down on energy use and response time without affecting decision accuracy. Adding ethical monitoring methods also makes the system more transparent and responsible, which builds public confidence in autonomous vehicles. The combination of high performance and ethical design makes Edge AI a more practical, reliable, and eco-friendly option for future autonomous vehicle networks.

VI. DISCUSSION

Using Edge AI in autonomous vehicle networks brings several benefits, such as faster decision-making, less environmental impact, and stronger data privacy. To make these systems fully ethical, regular checks and collaboration between different sectors are necessary. Sustainability can be improved by using eco-friendly AI models, making hardware more energy-efficient, and using renewable energy sources for edge devices. Ethical aspects like fairness, transparency, and accountability need to be regularly reviewed as the system grows. In the future, international bodies like IEEE and ISO will be important in setting global standards to ensure that AI-powered transportation is both ethical and sustainable.

VII. CONCLUSION

Sustainable and ethical Edge AI represents the future of smart and responsible autonomous vehicle technology. By processing data locally within the vehicle and using energy-efficient algorithms, cars can make faster, safer, and fairer decisions. The combination of sustainability and ethical responsibility ensures both technological progress and public trust, along with protecting the environment. Overall, this creates a balanced system that values speed, safety, and social good, leading to a cleaner and more trustworthy future for intelligent transportation.

VIII. ACKNOWLEDGMENT

The authors would like to thank Prof. Shafiya Sayyad for her valuable guidance, support, and encouragement throughout this research.

They are also grateful to the Head of the Department and all the faculty members of the Department of Artificial Intelligence and Data Science, Keystone School of Engineering, Pune, for their cooperation and support during the completion of this study.

REFERENCES

- [1] Muslim, H. et al. (2023). Cut-Out Scenario Generation With Reasonability Foreseeable Parameter Range for Autonomous Vehicle Assessment. IEEE Access.
- $[2] \quad \text{McEnroe, P., Wang, S., \& Liyanage, M. (2022)}. \ Convergence of Edge Computing and \quad AI for UAVs. \ IEEE \ IoT \ Journal.$
- [3] Khatiri, S. et al. (2024). Simulation-Based Testing of Unmanned Aerial Vehicles with Aerialist. ACM ICSE Companion.
- [4] Zhang, X. et al. (2023). Green Edge AI for Connected Vehicles. IEEE Transactions on Intelligent Transportation Systems.
- [5] SAKURA Project (2023). Reliable and Ethical Autonomous Systems Evaluation. Japan Automobile Research Institute

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)