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Abstract: Since the advent of encryption, there has been a steady increase in malware being transmitted over encrypted networks. 

Traditional approaches to detect malware like packet content analysis are inefficient in dealing with encrypted data. In the 

absence of actual packet contents, we can make use of other features like packet size, arrival time, source and destination 

addresses and other such metadata to detect malware. Such information can be used to train machine learning classifiers in 

order to classify malicious and benign packets. In this paper, we offer an efficient malware detection approach using 

classification algorithms in machine learning such as support vector machine, random forest and extreme gradient boosting. We 

employ an extensive feature selection process to reduce the dimensionality of the chosen dataset. The dataset is then split into 

training and testing sets. Machine learning algorithms are trained using the training set. These models are then evaluated 

against the testing set in order to assess their respective performances. We further attempt to tune the hyper parameters of the 

algorithms, in order to achieve better results. Random forest and extreme gradient boosting algorithms performed exceptionally 

well in our experiments, resulting in area under the curve values of 0.9928 and 0.9998 respectively. Our work demonstrates that 

malware traffic can be effectively classified using conventional machine learning algorithms and also shows the importance of 

dimensionality reduction in such classification problems. 
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I. INTRODUCTION 

The transport layer security (TLS) cryptographic protocol is used to safeguard a growing proportion of web, messaging, and 

application data transmission on the Internet. Hypertext transfer protocol secure (HTTPS), the Tor anonymizing network, and virtual 

private networks based on the OpenVPN protocol already use TLS to encrypt and encapsulate their contents, prohibiting them from 

being observed or manipulated in transit. According to Google browser data, HTTPS usage has increased from just over 40% of all 

web page views in 2014 to 98% in March 2021. [1].Malware operators have also been using TLS for effectively the same reasons: 

to prevent defenders from discovering and blocking malware delivery and data theft. In the last year alone, there was a significant 

increase in malware that utilizes TLS to disguise its communications. In 2020, TLS was being used by 23% of malware identified. 

Currently, it is approximately 46% [1]. As a result, it is imperative for network monitoring devices to identify malicious traffic 

disguised behind TLS encryption. 

Early conventional traffic classification models depended on port numbers and deep packet inspection (DPI) [2]. Analysis of 

uniform resource locators (URL) and TLS fingerprinting are two more kinds of conventional traffic analysis. However, these 

methods are inadequate in identifying malicious communications in traffic employing TLS. Other characteristics, such as inter-

packet arrival intervals, transmission control protocol (TCP) headers and flow direction can be used to identify malicious packets 

encrypted using TLS in the absence of the payload content. The integration of these characteristics with machine learning 

algorithms is at the heart of modern traffic analysis approaches. The main objective of our work was to utilize such packet metadata 

in order to accurately classify malware in a stream of encrypted communication.  In this paper, we present an effective malware 

classification technique using multiple machine learning classifiers. We use an extensive feature selection and elimination process to 

improve our classification process. The number of features from the benchmark dataset selected is reduced to make our 

classification models perform better and make it more efficient. 

The rest of the paper is arranged as follows. Section II describes related studies on encrypted traffic analysis. Section III covers the 

proposed methodology for our research study. We describe the dataset that has been chosen for this project. We also go through the 

process of feature selection and elimination. The findings of the experiments are presented in Section IV. In Section V, we 

summarize our work and suggest future research possibilities. 
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II. RELATED WORK 

Traditional traffic classification approaches, such as techniques based on port numbers and payloads, are typically based on packet 

content analysis. However, as the security awareness of the general public grows, use of encryption protocols for communication is 

also increasing by the day. The payloads of the packets are now encrypted, rendering previous approaches obsolete. As a result, 

ways to properly detect encrypted malware has become a research focus in the realm of network security. 

Shhadata et al. [3] developed approaches for detecting unknown malware by employing machine learning techniques. They applied 

the random forest classifier to choose features, and their accuracy ranged from 98.2% to 81.8%. They did not give importance to 

feature engineering which could have improved their model performance. Yoo et al. [4] developed a hybrid technique to detect 

benign and malicious files by using a random forest model and a deep learning model with twelve hidden layers. The model they 

proposed also gave insights into attaining effective detection even with a limited training dataset. But their model resulted in a very 

high false positive rate. Gao et al. [5] developed a unique malware detection model for the cloud based on semi-supervised transfer 

learning, which included detection, prediction, and transfer components. Prasse et al. [6] put forward a method to classify malware 

in HTTPS traffic by making use of neural language model and a long short-term memory (LTSM) network. Their mechanism was 

able to identify malware in traffic which was recorded a couple of months after the training data were recorded and even malware 

which was previously unseen.  

Lucia et al. [7] presented a technique to detect malicious communication using convolution neural networks (CNN) and also support 

vector machines (SVM). Their SVM model outperformed the CNN model and their method required very little feature engineering. 

Shen et al. [8] presented a structured method to refine the feature selection process for effective encrypted traffic classification. Yu 

et al. [9] proposed an encrypted malicious traffic detection model using neural networks. During their research, they found that the 

problem of imbalance in the dataset had an impact on the encrypted traffic detection. Thaseen et al. [10] put forward a system using 

machine learning algorithms which could detect network intrusion. Singh et al. [11] published a comparative study detailing the 

analysis of HTTPS traffic and detection of malware. They proposed that TLS metadata and domain name system (DNS) flow should 

be thoroughly investigated in order to improve malware detection and analysis. 

Agarwal et al. [12] published a study in which they evaluated various machine learning classifiers to detect android malware. They 

were able to achieve a classification accuracy of 93.15% percent using the CatBoost classifier. Susanto et al. [13] proposed an 

Internet of Things (IoT) botnet malware classification method using the weka tool along with scikit-learn machine learning libraries. 

Their results showed that Scikit-learn provided lower false positive rates as compared to weka in such classification problems. 

Goyal et al. [14] performed malware detection on two kinds of datasets, balanced and imbalanced. Their work showed how class 

imbalance can affect model performance. They were able to achieve an accuracy of 90.38% on the balanced dataset and 98.94% on 

the imbalanced dataset using the random forest classifier. 

A significant amount of work has also been done in other related scenarios. For example, Zhu et al. [15] proposed a reverse remote 

access trojan (RAT) detection method using machine learning algorithms. In their approach, they extracted four features from TCP 

headers which were then used to detect RAT in real time. Priya et al. [16] put forward a framework to identify browsers and also 

applications of users by analyzing network traffic in real time using unsupervised machine learning techniques. Hou et al. [17] used 

support vector machine to create a detection system for smart home systems based on edge computing. Shen et al. [18] developed a 

technique for fingerprinting webpages based solely on packet length information, when all webpages are from the same source. 

Using the k-Nearest neighbor method, they attained an accuracy of up to 91.6%. Dong et al. [19] suggested utilizing the k-Nearest 

Neighbor algorithm for video traffic categorization. Conti et al. [20] presented a technique for identifying user behaviors by 

examining the encrypted network of an Android device. They calculated the sequence of data packets and extracted features using 

the dynamic time warping technique. For classifying, a random forest model was employed. In order to accomplish website 

fingerprinting, Wang et al. [21] devised a method for calculating the distance between packet sequences. 

A major drawback in most of the work previously carried out in this area is that the researchers have performed negligible feature 

engineering on the datasets. Without employing any dimensionality reduction techniques, the classification models tend to be very 

complex, resulting in high variance. Due to this, the model ‘overfits’ on the training dataset. Some researchers have even opted to 

use deep learning algorithms on datasets without feature engineering resulting in computationally resource intensive algorithms. The 

research carried out previously also have some other major drawbacks like high false positive rates and inadequate model 

performances. In most of the papers we reviewed, the authors tend to show the model performance using a single performance 

metric like the accuracy score, but this is inadequate. In order to properly evaluate a classifier, multiple metrics must be employed 

so as to present a complete picture of the classification algorithm developed. In our work, we have tackled all of these drawbacks 

and this is presented in the following sections. 
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III. METHODOLOGY 

This section provides a description of our work. Figure 1 shows the block diagram of the proposed methodology. We began with the 

cleaning and preprocessing of the dataset. We then performed feature selection and reduced the dimensionality of the dataset. The 

dataset is then split into training and testing sets. Five different machine learning models are developed to classify malware in the 

training dataset. These models are then evaluated against the testing set in order to assess their respective performances. Based the 

performance metrics, we summarize which model is best suited for malware classification in encrypted traffic. 

We assess classifier performance using several measures such as area under the curve (AUC), precision, accuracy, F1-Score and 

recall. These measures are based on the confusion matrix, which in turn represents the number of predicted cases and actual cases 

generated by any classification algorithm. 

 
Figure 1 Block diagram of the proposed methodology 

A. Dataset 

To conduct this research, we used the MTA-KDD’19 Dataset created by Ivan Letteri et al. [22].  This dataset was produced by 

combining packets with the same source address in each packet capture (pcap) in segments, even if they are not consecutive in time. 

As a result, this dataset enables us to see traffic from a different viewpoint, one that considers the hosts involved in the connection 

rather than just the packets themselves. 

This dataset has a total of 33 features. Each of these features were carefully chosen by the authors of the dataset. The authors 

presented valid and detailed reasons for the selection of each feature in the dataset. Features related to the TCP flags were chosen 

because presence of multiple packets in which such flags are set may indicate malware [23]. Features related to DNS, TCP and user 

datagram protocol (UDP) protocols were chosen because certain attacks exploit specific characteristics of these protocols [24]. 

Features related to the packet number, size and inter-arrival times were chosen because they are helpful in detecting flooding attacks 

[25]. The packet ratio feature helps in detecting distributed denial of service (DDoS) attacks as the number of packets received will 

be much lower than packets sent [26]. The first packet length is an important feature since it reveals useful characteristics of the 

traffic [27]. As it is possible to see sequential transmissions of a significant number of tiny packets in DDoS attacks, characteristics 

relating to packet ratio are chosen [27]. In addition, during a DDoS attack, all of the attackers are linked to one single victim, but 

that victim will open connections with a huge set of other hosts, most of which are the attackers. This is why features related to port 

number and destination address are present in the dataset [28]. 
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B. Feature Selection and Elimination 

We explore the effect of keeping only essential features that can improve prediction accuracy and discarding those features which 

are irrelevant and could impair the performance of the model. By reducing the number of features, we also reduce the model 

complexity. This can help in preventing overfitting. 

Bias and Variance are measurements that assist us to understand how the function's deviance varies. Bias is a measure of the 

function's departure or inaccuracy from its true value. Variance quantifies the variation in the response variable function if it was 

calculated using other training samples from the same dataset. If bias is reduced, the model will fit well on that particular training 

data sample. But it will not be able to detect any previously unseen underlying patterns in the data. As a result, it becomes extremely 

likely that the model's output performance will change when another sample is used for training. A high variance is a result of this. 

Similarly, if we seek lower variance while using different samples, the learning model will not be able fit perfectly on the data 

points, which results in significant bias. Feature selection may be seen as a variance reduction approach that trades off the benefits 

of lower variance (due to dimensionality reduction) with the disadvantage of increased bias (due to the elimination of some of the 

important features) [29].  

In our work, we first check to see if there are any missing values and categorical features in the dataset. Since there are no 

categorical features, there was no need for any feature encoding. We then check the distribution of the dependent variable. 

 
Figure 1 Distribution of the dependent variable 

Figure 2 shows that the data is slightly imbalanced. The class with label ‘0.0’ has comparatively lesser number of data points as 

compared to the label ‘1.0’. Here label ‘0.0.’ represents benign data packets and the label ‘1.0’ represents malicious data packets. 

Based on this, the performance measure which we used is the area under the ROC curve.  Then we checked to see if there were any 

features with zero variance or if there were any duplicated features. There were none. Next, we move into the feature elimination 

phase.  

A critical stage in the feature removal phase is identifying the correlation between the features in the dataset. A positive correlation 

indicates the presence of a distinct association. As a result, features with high correlation are dependent and have a significant 

impact on the development of a machine learning model. Correlation coefficient is represented by r, with its value ranging from -1.0 

to +1.0. The average value of positive correlation coefficient is between 0.5 and 0.7. A value of 0 implies that there is no correlation. 

In order to remove the highly correlated features from our dataset, we set a correlation threshold of +0.8. There were multiple 

groups of correlated features as tabulated in table 1. We observe that there are 13 groups of highly correlated features. Some features 

like AvgLen has high correlation with multiple other features. In such cases we used the concept of feature importance to select just 

one feature from the group. Using this process we eliminated a total of 11 features from our dataset. 
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TABLE I 

Features with high correlation and their respective correlation values 

S. No Feature 1 Feature 2 Correlation 

1. UDPoverIP TCPoverIP 0.985633 

2. UDPoverIP DNSoverIP 0.877538 

3. AckFlagDist FlowLEN 0.957587 

4. AckFlagDist PshFlagDist 0.931598 

5. AckFlagDist SynFlagDist 0.810665 

6. AvgLen AvgWinFlow 0.947299 

7. AvgLen MaxLen 0.858070 

8. AvgLen FlowLen 0.850807 

9. AvgLen StdDevLen 0.837223 

10. DeltaTimeFlow MaxIAT 0.945212 

11. NumCon NUmIPdst 0.930952 

12. AvgIAT AvgIATrx 0.875336 

13. FinFlagDist SynFlagDist 0.827972 

 

The next step was the look at the mutual information among all the 22 remaining features. From the plot in figure 3, we can see that 

there are no features with zero mutual information. 

 
Figure 2 Mutual information present in the features 
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We then leveraged the random forest algorithm to rate features in order to select only the most important features. The random 

forest technique uses tree-based algorithms to rank a node's Gini impurity. The largest impurity occurs near the root, whereas the 

lowest impurity shows at the branches' ends. Furthermore, once trained, a tree can compute how much of the observed impurity in 

the tree is reduced by each feature. Thus we can produce a subset of the most important features by pruning the tree. Figure 4 shows 

the top 10 features in our dataset based on feature importance as calculated by the random forest algorithm. 

 
Figure 3 Top 10 features based on feature importance 

C. Evaluation Metrics 

Performance of machine learning classifiers can be evaluated on the basis of multiple evaluation metrics. As a primary evaluation 

metric, we have chosen the AUC score. Some of the other evaluation metrics are precision, accuracy, recall and F1-score. A receiver 

operating characteristic (ROC) curve is a graph that depicts a classification model's performance over all classification thresholds. 

The AUC score indicates the classifier's ability to correctly discriminate between the classification classes and is used to summarize 

the receiver operating characteristic curve. When AUC = 1, the classifier is capable of accurately distinguishing between all Positive 

and Negative class points. When the AUC = 0, the classifier would predict all Negatives as Positives and all Positives as Negatives. 

The greater a classifier's AUC score, the better its ability to discriminate between positive and negative classifications. 

D. Classifiers Used 

1) Decision Trees: The decision tree algorithm is depicted as a tree in which each nodes represent individual features, branches of 

the tree represents decisions (rules), and leaf nodes indicate outcomes. At our first attempt at modelling a decision tree 

algorithm, we observed that our model was prone to overfitting. Thus, hyper parameter tuning was necessary. In order to tune 

the hyper parameters, we plot graphs depicting the variation of AUC score with the change in the value of the respective hyper 

parameter. The AUC of the training set plotted in blue and that of the test set is plotted in red. The following graphs help choose 

the right values of the hyper parameters for the decision tree classifier. 

 

 
Figure 4 Variation on AUC score with the number of maximum features 
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Figure 5 Variation on AUC score with minimum samples split 

 

 
Figure 6 Variation on AUC score with tree depth 

 

Based on the figures 5, 6 and 7, we set max features, minimum samples split and tree depth to 6, 0.2 and 5 respectively. 

This hyper parameter tuning process resulted in a better performing model. The AUC of the training set was 0.8934 and that of the 

testing set was 0.8923. 

 

2) Naïve Bayes: This is a classification approach based on Bayes' Theorem. It makes the assumption of predictor independence. A 

Naive Bayes classifier assumes that the presence of a feature in a class has no bearing on the presence of any other feature. 

These models are simple to construct and they are helpful for very big data sets. It is named naive because it believes that the 

presence of one characteristic is unrelated to the occurrence of others. This classifier did not perform very well with our dataset 

as compared to the random forest model. The AUC of the training set was 0.8167 and that of the testing set was 0.8167 

3) Random forest:  Random forest is an ensemble learning method which constructs numerous decision trees or weak learners and 

combines them to get a more accurate and reliable results. The hyper parameters of a random forest are virtually identical to 

those of a decision tree. While ‘growing’ these trees, Random Forest adds more unpredictability to the model. The following 

graphs help choose the right values of the hyper parameters for the Random Forest classifier. 

 
Figure 7 Variation on AUC score with maximum features 
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The number of trees to be created before calculating the maximum voting or prediction averages is denoted by N-estimator. A 

greater number of trees results in higher performance but consumes more resources. 

 
Figure 9 Variation on AUC score with the value of n estimators 

 

 
Figure 10 Variation on AUC score with minimum samples split 

 

 
Figure 11 Variation on AUC score with tree depth 

 

Based on the figures 8, 9, 10 and 11, we set the max features, n estimators, minimum samples split and tree depth as 5, 25, 0.2 and 

10 respectively. Hyper parameter tuning further improved the classifier’s performance and the random forest classifier outperformed 

the decision tree classifier. The AUC of the training set was 0.9950 and that of the testing set was 0.9928.  

 

4) Support vector machine: The support vector machine algorithm seeks to find a hyperplane in an n-dimensional space, where n 

represents the number of characteristics that distinguishes the data points. Several such hyperplanes might be used to divide the 

groups of data points. The goal here is to locate the plane with the greatest distance between data points from both classes. 

Hyperplanes are the boundaries that aid in the classification of data items. Support vectors on the other hand, are data points 

which are nearest to the hyperplane and these data points impact the hyperplane's orientation and position. Grid search was used 

to tune the hyper parameters of the support vector machine classifier. Grid search attempts all possible combinations of the 

dictionary values and assesses the model for each one using the cross-validation approach. The resulting optimal values for ‘C’, 

‘gamma’ and ‘kernel’ were 1000, 0.1, and ‘rbf’ respectively, where ‘rbf’ stands for the Radial Bias Function kernel. This 

classifier performed fairly well with our dataset as compared to the random forest model. The AUC of the training set was 

0.9247 and that of the testing set was 0.9246. 
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5) Extreme gradient boosting (XGBoost): Boosting is a method that combines many basic models into a single composite model. 

Gradient boosting considers boosting as a problem of numerical optimization with the goal of minimizing the loss function of 

the model. This is achieved by adding weak learners using gradient descent which is an iterative optimization technique for 

locating a differentiable function's local minima. XGBoost is a framework based on gradient boosting that is tuned to be 

versatile and efficient. XGBoost is used for two reasons: execution speed and model performance. XGBoost was the best 

performing model in our experiments. Without hyper parameter tuning, the AUC of the training set was 0.9972 and that of the 

testing set was 0.9968. We decided to further improve the performance of the classifier using grid search. The resulting optimal 

values for learning rate, number of estimators and maximum depth were 0.1, 140 and 2 respectively.  This further improved our 

model performance and the AUC of the training set was 0.9998 and that of the testing set was 0.9998.       

 

IV. RESULTS AND DISCUSSION 

The findings of our experiment are summarized in this section. On the dataset, we used five different machine learning classifiers: 

Random Forest, Support Vector Machine with the radial bias function kernel, Naive Bayes classifier, Decision Tree, and XGBoost. 

Table 2 lists the comparative metrics of the algorithms that we utilized in this investigation. Performance of the five algorithms is 

compared using five different performance metrics. The XGBoost classifier produced an AUC score of 0.9998, clearly 

outperforming all the other models. The random forest and SVM classifiers also produced very good results with each of their 

performance metric values over 0.9. The Naïve Bayes model was the worst performing out of the five, with comparatively low 

values of AUC and precision. 

Table 2 

Final Results 

 

 

  

 

 

 

 

 

 

Our work has a few limitations which need to be addressed in future studies. Our models were developed in order to classify 

malicious packets from benign packets. We did not implement any method to classify or detect the specific type of malware which 

was encountered. Another drawback in our work is that we did not choose to resample the dataset even though there was class 

imbalance as shown in figure 2. Under sampling of the majority class could have helped in improving the performance of classifiers 

like SVM but it would have led to data loss.   

 

V. CONCLUSION AND FUTURE SCOPE 

As the volume of encrypted communication increases rapidly, detecting malware in traffic which is encrypted has become a difficult 

and complex challenge. Traditional content-based network traffic categorization is becoming difficult due to the rising use of 

encryption. In this paper we propose a malware classification technique by using multiple machine learning classifiers. We use an 

extensive feature selection and elimination process to further help in classification. We removed features based on the correlation 

between them and finally selected only ten best features using the random forest algorithm. The number of features from the dataset 

is reduced to make our classification models perform better and make it more efficient.  

From the results we obtained, we conclude that the extreme gradient boosting algorithm performed the best compared to the other 

algorithms used for the classification of data packets as malicious or benign. The XGBoost classifier produced an AUC score of 

0.9998 outperforming all the other classifiers in our study.  Future work will include models to classify the different types of 

specific malware in encrypted traffic. In future studies, we also plan to generalize our findings by utilizing datasets that we intend to 

develop ourselves. Finally, we recommend that these approaches be extended to other forms of encrypted traffic, such as the 

categorization of malicious traffic in DNS over HTTPS tunnels. 

S. No. Algorithm AUC Accuracy Precision Recall F1 Score 

1 Decision Tree 0.8923 0.8874 0.9811 0.8018 0.8824 

2 Naïve Bayes 0.8167 0.8212 0.7889 0.9021 0.8417 

3 Random Forest 0.9928 0.9927 0.9941 0.9921 0.9931 

4 SVM 0.9246 0.9264 0.9075 0.9580   0.9321 

5 XGBoost 0.9998 0.9998 1 0.9997 0.9998 
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