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Abstract: Text-to-image synthesis is a challenging task in artificial intelligence that involves generating realistic images from 
textual descriptions. StackGAN, [1] a generative model with a two-stage architecture, has proven to be effective in improving the 
quality and fidelity of synthesized images. In this study, we implement and evaluate the performance of StackGAN using the 
CIFAR-10 dataset, demonstrating how a multi-stage generation approach can produce high-quality images from textual labels. 
The experimental results show that StackGAN successfully captures the underlying features of the dataset categories and 
provides reasonable image fidelity. 
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I. INTRODUCTION 
Text-to-image synthesis refers to generating realistic images that correspond to given textual descriptions. Traditional generative 
models often struggle to produce high-quality images due to the complexity of aligning text features with visual information. The 
introduction of StackGAN (Stacked Generative Adversarial Network) offers a multi-stage generation process that refines the images 
progressively to overcome these challenges. 
The CIFAR-10 dataset, consisting of 60,000 images across 10 categories such as airplanes, automobiles, birds, and animals, 
provides an ideal playground for testing the effectiveness of text-to-image models. This research focuses on using StackGAN to 
synthesize images conditioned on CIFAR-10 labels. The 
main objective is to assess the feasibility of StackGAN on small-sized datasets and investigate its ability to generate sharp and 
visually coherent images. StackGAN was proposed by Zhang et al. (2017) as a two-stage GAN architecture, where the first stage 
generates low-resolution images, and the second stage refines them for higher quality. Several studies have applied StackGAN to 
datasets like CUB-200 and Oxford-102 Flowers, showing the effectiveness of the model in generating detailed visuals. However, 
the application of StackGAN to CIFAR-10 is relatively unexplored, making this study a novel contribution. 

 
Fig1. Generative Adversarial Networks architecture 

 
II. METHODOLOGY 

A. Dataset: CIFAR-10 
CIFAR-10 is a widely used dataset in machine learning research, consisting of 10 classes: airplane, automobile, bird, cat, deer, dog, 
frog, horse, ship, and truck. Each class contains 6,000 images with a resolution of 32x32 pixels. For this experiment, each image 
label serves as the textual input to the StackGAN. 
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B. StackGAN Architecture 
1) StackGAN Consists of two Stages 
Stage I: Generates a low-resolution (64x64) image conditioned on text input. Uses a text encoder (such as RNN or LSTM) to extract 
text embeddings. Employs a Conditional GAN (cGAN) to generate the first version of the image. 
 
2) Mathematical model behind StackGAN 
x: Real data 
z: Latent vector 
G(z): Fake data 
D(x): Discriminator's evaluation of real data 
D(G(z)): Discriminator's evaluation of fake data 
Error(a,b): Error between a and b 
 
3) Discriminator 
The goal of the discriminator is to correctly label generated images as false and empirical data points as true. Therefore, we might 
consider the following to be the loss function of the discriminator: 
LD = Error(D(x),1) + Error(D(G(z)),0) 
 
4) Generator 
We can go ahead and do the same for the generator. The goal of the generator is to confuse the discriminator as much as possible 
such that it mislabels generated images as being true. 
LG=Error(D(G(z)),1) 
The key here is to remember that a loss function is something that we wish to minimize. In the case of the generator, it should strive 
to minimize the difference between 1, the label for true data, and the discriminator’s evaluation of the generated fake data. 
 
5) Training the discriminator 
When training a GAN, we typically train one model at a time. In other words, when training the discriminator, the generator is 
assumed as fixed. 
The quantity of interest can be defined as a function of GG and DD. Let’s call this the value function: 
V(G,D) = ॱx∼pdata[log(D(x))] + ॱz∼pz[log(1−D(G(z)))] 
In reality, we are more interested in the distribution modeled by the generator than pz. Therefore, let’s create a new variable, 
y=G(z)y=G(z), and use this substitution to rewrite the value function: 
V (G, D) = ॱx ∼ pdata[log(D(x))] + ॱy∼ pg[log(1−D(y))] 
= ∫ x∈χ pdata (x) log(D(x)) + pg(x) log(1−D(x)) dx 
 
6) Training the Generator 
To train the generator, we assume the discriminator to be fixed and proceed with the analysis of the value function. 
V(G, D∗) = ॱx∼pdata [log(D∗(x))] + ॱx∼pg[log(1−D∗(x))]  
= ॱx∼pdata [log pdata(x) pdata(x) + pg(x)] + ॱx∼pg[logp g(x) pdata (x) + pg(x)]  
To proceed from here 
V(G,D∗) = ॱx∼ pdata [log pdata(x) pdata(x) + pg(x)] + ॱx∼ pg [log pg(x) pdata(x) + pg(x)] = −log4+ॱx∼ pdata[log pdata(x) − log 
pdata(x) + pg(x))2] + ॱx∼ pg[log pg(x) − log pdata(x) + pg(x))2] the goal of training the generator, which is to minimize the value 
function V(G,D) we want the JS divergence between the distribution of the data and the distribution of generated examples to be as 
small as possible. This conclusion certainly aligns with our intuition: we want the generator to be able to learn the underlying 
distribution of the data from sampled training examples. In other words, pg and pdata should be as close to each other as possible. 
The optimal generator G is thus one that which is able to mimic pdata to model a compelling model distribution pg. 
Stage II: Refines the Stage I output to a higher resolution (128x128 or more). Captures fine-grained details that were missed in the 
first stage. Minimizes the divergence between real and generated images through adversarial training. The two-stage generation 
process ensures that the model gradually learns to improve image quality and align it with the textual description. 
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 Fig 2: Stack GAN architecture 

 
C. Implementation Details 
1) Text Embeddings: We used pre-trained word embeddings to represent the textual labels. Instead of using traditional RNN-based 

encoders, we leverage Stable Diffusion v1.5 embeddings. [2] The Stable Diffusion text encoder transforms each class label (e.g., 
"airplane", "cat", "truck") into semantic embeddings, which are used as conditional input for the StackGAN generator. 

2) GAN Training: The generator and discriminator were trained alternately for each stage using [12] Adam optimizer with a 
learning rate of 0.0002. 

 
Fig 3.GAN training (Epochs building steps) 
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3) Loss Functions: The Wasserstein loss was employed to ensure stable training of GANs. 100 images per batch, trained over 10 
epochs. [9] The Wasserstein loss with gradient penalty ensures stable GAN training, while the conditional loss aligns the 
generated images with the text embeddings obtained from Stable Diffusion. The reconstruction loss further refines the 
generated images in the second stage, ensuring visual consistency between stages. Together, these loss functions contribute to 
the overall performance of the StackGAN model on the CIFAR-10 dataset, producing realistic and text-aligned images. 

 
Fig 4.Graphical representation of Generator and Discriminator Loss for each epoch 

 
4) Hardware: The experiments were conducted on Apple MacBook M1 GPU, Google Collab Notebook T4 GPU ensuring fast 

convergence of the model. 
 

III. RESULTS AND EVALUATION 
A. Visual Quality of Generated Images 
The generated images from CIFAR-10 textual labels demonstrated reasonable alignment with their corresponding categories. For 
example, the model produced visually distinct airplanes, cars, and animals. However, due to the small resolution of CIFAR-10 
(32x32), the generated images were slightly blurry, even after refinement in Stage II. This suggests that applying StackGAN to low-
resolution datasets presents unique challenges in terms of fine-grained detail generation. 
For stage 1 after training, the images produced by the model are a little blurry. Generated a low-resolution (64x64) image based on 
the text embedding. 

 
Fig 5. 1st stage image generation by using textual description 
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After doing refinement at stage 2 the quality of image generation is phenomenally improved with the textual description provided – 
“blue bird with red tail” 

 
Fig 6. 2nd stage generation by using textual description (“blue bird with red tail”) 

 
B.  Model validation and Latent Space Exploration: 
1) Latent Space Sampling: Visualize samples generated from different points in the latent space. This can help assess whether the 

generator produces coherent outputs from various inputs. 

 
Fig 5: Latent space exploration (In this image shows we have given multiple prompts like - ”Peacock is garden”,” Elephant  in grass” 

etc.) 
 
C. Comparison with other models 
1) Text-Image Alignment: Measures how well the generated image matches the text input. StackGAN achieves high alignment by 

using Stable Diffusion embeddings. 
2) Visual Quality: A subjective rating of the image clarity and aesthetics on a scale of 1-10. StackGAN scores high due to its 

ability to generate realistic, detailed images. 
3) Handling of Complex Classes: Assesses the model's ability to generate challenging objects like "airplanes" and "ships". 

StackGAN performs well, while DCGAN struggles with blurriness in these classes. 
4) Data Requirement: Identifies the type of data needed for training. Pix2Pix needs paired data, limiting its application. StackGAN 

works with unpaired text-image data, enhancing flexibility. 
5) Training Stability: Measures the ease and stability of the training process. WGAN-GP ensures StackGAN has stable training 

compared to standard DCGAN. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue XI Nov 2024- Available at www.ijraset.com 
     

 
1431 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 
Chart 1: Comparison with other model for evaluation 

 
IV. CONCLUSION 

This research demonstrates the effectiveness of combining StackGAN with Stable Diffusion embeddings for text-to-image synthesis 
using the CIFAR-10 dataset. The multi-stage approach of StackGAN ensures progressive refinement, while Stable Diffusion 
embeddings enhance semantic alignment between text and images. The results indicate that advanced text embeddings can 
significantly improve the performance of GAN-based models, even on small and low-resolution datasets. Future work can focus on 
integrating attention mechanisms or exploring diffusion-based models to address the challenges of text-to-image synthesis in more 
complex datasets. 
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