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Abstract: According to recent studies, feed-forward Deep neural networks (DNNs) perform better than text-to-speech (TTS) 
systems that use decision-tree clustered context-dependent hidden Markov models (HMMs). The feed-forward aspect of DNN-
based models makes it difficult to incorporate the long-span contextual influence into spoken utterances. Another typical 
strategy in HMM-based TTS for establishing a continuous speech trajectory is using the dynamic characteristics to constrain the 
production of speech parameters. Parametric time-to-speech synthesis is used in this study by capturing the co-occurrence or 
correlation data between any two points in a spoken phrase using time aware memory network cells. Based on our experiments, 
a combination of DNN and BLSTM-RNN is the best system to use. Upper hidden layers of this system use a bidirectional RNN 
structure of LSTM, the low layers use a simple, one way structure followed by additional layers. On objective and subjective 
metrics, it surpasses both the traditional decision-based tree HMM’s and the DNN-TTS system. Dynamic limitations are 
superfluous since the BLSTM-RNN TTS produces very smooth speech trajectories. 
Keywords: Bidirectional Long Short-Term Memory(BLSTM),Deep_Neural_Network, Recurrent_Neural_Network, Stastical 
parametric voice synthesis, hidden Markov model 
 

I.   INTRODUCTION 
Data Analysis using Parameters A few of the ways in which the TTS Synthesis system excels above the competition are its compact 
size, durability, and adaptability to different voice types [1]. Because of these benefits, parametric TTS synthesis based on GMM-
HMM has become the standard for many speech synthesis applications, especially on mobile devices [2]. By treating the spoken 
audio as random-like series of the sound detail vectors, a parametric hidden Markov model (HMM) is able to accurately describe 
their development. For HMM-based voice recognition, many methods have been devised, such as context-dependent modeling, 
speaker adaption, and grouping states for speech creation. They have also proven effectivein generating the speech parameter 
trajectories in HMM-based TTS. Concatenation mistakes are rare in unit-selective synthesis, even though trained HMMs often 
provide very smooth trajectories. One issue is that when training HMMs statistically, parameter trajectories are unduly smoothed, 
which might make the synthetic speech seem less natural than it really is. 
Recent DNN research has focused on improving vocoder-based voice synthesis. In their proposal to use DNN for voice synthesis, 
Zen et al. [3,23] addressed the shortcomings of the traditional HMM-based method, including decision-tree based contextual state 
grouping. Given an equivalent number of model parameters, it demonstrates that, when modeling the link between the input texts 
and their associated acoustic properties, a DNN-based strategy may perform better than an HMM-based technique. Qian et al. [4] 
investigated training parameters, including activation functions and weights initialization in "pre-training," for DNN based TTS 
synthesis using a modest size corpus, which is more typical for parametricTTS training. In their DNN-based synthesis, Lu et al. [5] 
used continuous or binary data such as phone numbers, letters, and Vector Space Models (VSMs) as input characteristics. Either 
"frame" or "state" were the predicted outputs. One may model the simultaneous distribution of auditory and linguistic input in 
speech synthesis using stacked restricted-Boltzmann-machines (RBMs) in a Deep Belief Network (DBN). In order to avoid over-
fitting during the discriminative "fine-tuning" phase of speech recognition, these networks may identify a region of the weight-space 
that is conducive to generative "pre-training" of the input data [6]. The reason RBM's mode is used to represent the spectrum 
envelop distribution for each HMM state in [8] is because it produces higher-quality produced voices compared to GMM's 
mean.With contrast to its HMM-based alternative, DNN sidesteps the issues associated with contextual state grouping based on 
decision trees. Improving context forecasting for testing is the goal of this approach, which employs extended context states linked 
to more general ones. In addition to compactly modeling very complicated mapping functions, DNN effectively represents high-
dimensional and linked characteristics. Unfortunately, DNN is still flawed since it relies on simplistic modeling units such as states 
or frames.  
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Particularly targeted contexts are used as input characteristics to capture co-articulation effects and imitate actual intonation. 
Synthesizing smooth parameter trajectories for speech is possible by mixing dynamic model parameters with their static equivalents 
[2]. 
We explore the possibility of using RNNs with bidirectional Long Short Term Memory (LSTM) cells [9–13] as a model for TTS 
synthesis since they may possibly receive input from any point in the feature sequence. By retrieving the hidden states that unfolded 
before to or subsequent to RNNs, a complete temporal framework may be constructed. Similar to DNNs, RNNs may develop deep 
spatial structures via layer stacking.. 
 

II.   DEEP BIDERECTIONAL-LSTM (DBLSTM) 

 
At this instancebias vectors, which make up the hidden state vectors, reflect the weight matrices, which are composed of both input 
and hidden vectors. For hidden nodes, the nonlinear activation function can be expressed as ^. ℋ is frequently the 
hyperbolic/sigmoid curve function in regular RNNs. However, RNNs are unable to explain extended connections in sequence data 
due to the gradient disappearing issue.Figure 1 shows the long short term memory (LSTM) network, which is one way to fix the 
issues with regular RNNs [11]. This network can represent signals with low- and high-frequency components by hand-constructing 
an internal memory cell. The following routines are used to implement ℎ in LSTM [12]: 

 
 
 
 
 
 

 
in where sigmoid is the relevant function, # is the output gate symbol, and is the input gate symbol. 

 
Fig.1. Long Short Term Memory Bidirectional RNN 

 
 [13]may be able to access both of the scenarios shown in Figure 2. It tells the difference between the forward state sequence (ℎ%�) 
and the backward state sequence (ℎ⃖%) of the hidden layer. This approach is iterative. 

 
 
A deep-bidirectional-RNN may have been built by forming many RNN_hidden layers. In the iterative process, the two way hidden 
states, denoted as ℎ�̅݊, ℎ⃖ƅ݊, respectively, are substituted for each hidden state. 
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The DBLSTM is the product of merging LSTM with deep bidirectional RNN. In order to mimic the long-span deep feature 
representation, it combines the finest features of DNN and LSTM. 
 

 
Fig.2. Bidirectional RNN 

 
 

III.   DBLSTM-RNNBASEDTTSSYNTHESIS 
Words, learn their phonetics, and then use the articulators to produce speech. So it is an ongoing 
 (4)(݂ܾ+1−ݐW݂ܿܿ+1−ݐWℎ݂ℎ+ݐݔ݂ݔW)=ݐ݂
c݊ܽݐݐ݅+1−ݐܿݐ݂=ݐℎ(Wݐݔܿݔ+Whcℎ1−ݐ+ܾc)(5) 
 (6)(ܾ+ݐܿWܿ+1−ݐℎWℎ+ݐݔݔW)=ݐ
hݐ=o݊ܽݐݐℎ(cݐ)(7) 
substances' shifting compositions. When given language data, the deep layered hierarchical network (DBLSTM-RNN) may generate 
speech that sounds frighteningly like human speech. Since a TTS synthesis system often receives an entire phrase as input, it would 
be imprudent ignoring wide-range context from both past and future words. We suggest synthesizing TTS using DBLSTM-RNN. 
Figure 3 shows the structure of the TTS synthesis utilizing DBLSTM-RNN. 

 
Fig.3.DBLSTM-RNNbasedTTSsynthesis 

 
The DBLSTM-RNN based TTS synthesis takes input features from several rich contexts. In categorical situations, binary 
information may take the form of phone numbers, word POS labels, or TOBI labels; in numerical circumstances, it can take the 
shape of the sentence's word count or the current phone frame's position. Features of sound, such as the frequency range of audible 
sounds andvital frequency (FF).  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue VII July 2025- Available at www.ijraset.com 
    

273 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

You may use a well-trained HMM model to time-align the input and output attributes frame-by-frame. If the input-output alignment 
is uncertain, RNN may be a valuable tool for modeling sequential data in Sequence Transduction [15] and Connectionist Temporal 
Classification [14]. The objective of learning DNN weights from training data using input/output pairs is to reduce the mismatch 
between the mapped and intended outputs as much as possible. 
Mean-Square-Error, disparity between the model resultsalong with the(GT)ground truth, is what RNN training is all about. When 
training RNNs, backward propagation through the time is a common technique. Unfolded network ready for back--propagation 
training, BPTT gradually converts the RNN into a feed-forward network. A deep bidirectional LSTM employs the BPTT method of 
back-propagation by use of layers on both the forward and backward hidden nodes. To train a DNN, one uses a back-propagation 
technique in conjunction with a stochastic gradient descent algorithm.  
This methodology uses a "mini-batch" selection method to randomly choose frames from data used to help the modernlearning 
weights. It is common practice to calculate weight gradients constantly during speech while training RNNs. The RNN weights are 
updated simultaneously for each update by randomly selecting tens of utterances. The procedure is accelerated since this enables 
parallelization. 
By analyzing the text input, a trained DBLSTM-RNN may create an input feature vector, which it can then utilize to create output 
vectors during synthesis. With the help of the contextual label, HMM-based TTS is able to enter the learning-trees and get the 
context based HMM sequences of state. Parameter generation module uses corresponding-means and measure of joint variable of 
HMM quantities to build smooth parameter trajectories for speech based on the dynamic information. As part of DNN-based TTS, 
the sound characteristic extractor may be used to create steady speech feature paths that meet the requirements of both static and 
dynamic features. A vocalization marker will be set according to a DNN decision boundary. This is accomplished by using pre-
computed (global) variances for all training data and mean vectors that reflect the DNN's predicted output features. Our proposed 
DBLSTM-RNNbasedTTSsynthesis makes use of RNN's parameter generation module, which it uses for sequential problem 
modeling. Timbre contour, Loudness level, core pitch, and voicing marker are the static output properties of the RNN that we 
immediately feed into a vocoder in order to generate the final voice waveform. 
With DBLSTM-RNN's better learning capabilities, TTS voice synthesis should be improved. To put it another way, multi-layered 
architectures may be able to depict changes across great distances with relative ease [16].K-tier deep design, in contrast to the low 
depth network design and parameter rich model, may enable the functions to be more compactly represented and increase 
performance. The decision tree, often used in HMM-based TTS to group together related context-dependent states, is an example of 
a shallow architecture. According to the conditional independence requirement, every observation is completely dependent on the 
states that generate them. It's possible that HMMs, similar to RNNs and DNNs, may overcome this limitation. Inputted with either 
the FTT or HMM state, DNN is limited to simulating the connection between text and voice at the frame level and can only generate 
speech by alternating between the FTT states. By using the same infinite states as input, random NNs may learn from nearby 
frames, extract several hidden states from a single input, and avoid limitations imposed by discrete input states. 

 
IV.   EXPERIMENTS 

A. Experimental Setup 
A collection of American English samples spoken by innate female speakers is used to administer our examinations. There is a 
wealth of prosodic and phonetic data in this corpus. Five hours' worth of training utterances make up the corpus, with an additional 
200 utterances used for testing purposes. Every 5 milliseconds, the speech signals are shifted, and every 25 milliseconds, they are 
windowed. The samples are taken at 16 kHz. A 40th-order LPC is created, both dynamically and statically. Examples of phonetic 
and prosodic contexts include quin-phones, syllable and word placements within phrases and sentences, word and phrase length, 
syllable stress, TOBI, and POS of words. 
One Gaussian diagonal covariance output distribution is used for each of the five states in the most basic TMS phone models based 
on HMM. The prosodic and phonetic scenarios employed in the role of a query collection for constructing trees which are choice 
trees. (MDL)Minimal Description Length criterion is being used to decide when to stop condition for grouping the states in a 
decision tree development to strike balance the amount of training data with complexity of the models. Two training stages—highest 
probability criterionand lowest output power strategy—are used to fine-tune the HMM parameters.To reduce the generation error 
between the original parameter trajectories of the training data and the synthetic ones, it tweaks the HMM parameters constrained by 
the traditional EM technique [18]. For numerical linguistic settings, 319 of the 355 dimensions in the input feature vector of the 
DNN-based TTS are binary features, while the remaining dimensions are characteristics for categorical linguistic contexts. Includes 
voicing indicator flag, logF0, LSP, gain, and their time varying versions; the output feature vector has 127 dimensions.  
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The voicing of the present frame is indicated by the binary feature known as voiced/unvoiced flag. The interpolation of F0 is 
accomplished using an exponential decay function [19] to fill in the gaps in voiceless speech. Removing 80% of the quiet frames 
reduces computational effort and ensures that the training data is balanced [3]. Researchers found that excluding silence frames from 
DNN training helped prevent them from being very adept at speech recognition tasks including the silence label. The input and 
output characteristics are centered and scaled into one. We employ a back-propagation procedure and a stochastic gradient descent 
method based on "mini-batch" to train the weights. 
A feature vector is used as input in DBLSTM-RNN-based TTS, much as in DNN-based TTS. The difference is that the output 
feature vector does not include the dynamic versions of voiced/unvoiced flag, logF0, LSP, or gain; instead, it remains with 43 
dimensions. In addition, we can solely use the information from the present frame data as the feed without surrounding levels.  
Not eliminating quiet levels during RNN training preserves the continuity of acoustic properties within a phrase. We use the 
CURRENT RNN machine learning library [21] in our research. 
To create dynamic constrained smooth features, the testing utterances are fed into a module that creates parameters together with the 
outputs of the HMM and DNN. Applying this step to RNN outputs is not required. 
To address the problem of over-smoothing in statistical parametric modeling and the resulting "muffled" speech, a technique called 
tonal landmark uplift [24] is being utilized. The last stage involves feeding the generated speech parameters into an LPC 
synthesizer, which will then generate waves of synthetic speech. 
Training DBLSTM-RNN still requires much more computing power than training DNN, even with the use of GPGPU. In 
comparison to DNN, DBLSTM-RNN uses a much larger number of model parameters, although having similar total quantity of 
hidden nodes and hidden layers in each layer. In order to keep the parametercount comparable to the HMM and DNN models, we 
run our tests by replacing and wrapping the context layers of BLSTM. Preliminary results on a 1,000-word training corpus imply 
that DBLSTM-RNN's deeper structures don't always attain better performance, even when "layer-wise BP" is used during training 
[20]. We postulate that, particularly when faced with inadequate training data, DBLSTM-RNN's inherent temporal and spatial depth 
leads to an incorrect gradient descent computation. 
To train TTS systems using HMM, DNN, and DBLSTM-RNN, you may follow these steps: 
1) Applying Hidden Markov Models (HMM) with MDL=1 to LSP and F0 decision trees  

Two, a DNN A with six hidden layers and 512 hidden nodes 
2) Utilizing a 1024-nodesper layer in one of DNN_B's three hidden layers 
3) Hybrid_A combines DNN with BLSTM-RNN. In a feed-forward configuration, the first three 512-node hidden layers use 

sigmoid activation functions; the fourth, a bidirectional RNN with LSTM, has 256-ahead and behind processors. 
4) Hybrid_B: this variant is quite similar to Hybrid A, but instead of two bottom-level hidden layers using sigmoid activation 

functions, it has two upper-level layers using BLSTM-RNN, with 256-ahead and behind processors, respectively. 
 
B. Evaluation Results and Analysis 
Based on the results of the tests, we evaluate three TTS systems using both measurable and personal assessments. One way to 
objectively synthesis quality check by contrasting the distorted synthesized speech to the original speaker's legitimate test utterances 
using oracle state durations, which are created by forcing the alignment of real speech. Finding the root-mean-squared error 
(RMSE), spectrum standard deviation in log spectral distance (LSD), and amount of voiced/unvoiced (V/U) switching mistakes are 
all desirable results. As a subjective criterion, we assess the two selected systems' ability to synthesize pairs of spoken phrases using 
an AB preferencetest.The outcomes of the objective metrics collected during the Hybrid, DNN, and HMM training periods are 
shown in Table 1. Once MDL reaches 1, we no longer use sound pitch state grouping trees that train HMM. Our prior practice run 
has shown that HMM inner adjustments are taught from a learning point of view and then changed via error reduction learning, 
objective measurements are poorer with either bigger or smaller MDL parameters. We discovered that all three objective measures 
stayed close to the same while training DNNs with three or six hidden layers, each with 512 or 1024 nodes [...]. via analyzing and 
comparing the outcomes of several maximize performance on spectra by using the hybrid system to increase the LSD of created and 
naturally occurring spectra trajectories by more than 0.1 dB. Similar to DNN, hybrid employs both simulated and actual F0 
trajectories to calculate the root-mean-squared error. 
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Table 1. The outcomes of HMM, DNN, and hybrid trainings using objective measurements of various configurations (the 
quantity of system parameters) 

 
 
 
 
 
 
 
 
 
 
 
To further subjectively assess the efficacy of HMM, DNN, and Hybrid systems, perceptual tests are available. Sixty people took part 
in the study by completing three AB preference tests on Amazon Mechanical Turk. In order to synthesize, we randomly selected 
utterances from the testing set and employed the best baseline HMM system (MDL=1), DNN system (DNN_B), and hybrid systems 
(Hybrid_A and Hybrid_B) [22]. Each person wears a headset and tests fifty pairings. I can give you three options: Three potential 
results exist: There are three potential outcomes: 1) the first is superior, 2) the second is superior, and 3) neither is preferred nor 
neutral; in other words, it's hard to determine which sentence is better. Image 4 displays the preference-based ratings. At the p < 
0.001 level, the findings show that the Hybrid system's synthesized speech performs much better than the top HMM and DNN 
systems. The DNN system and the HMM system both have preference ratings of 20%, however this one is 55% higher and 59% 
higher, respectively. Thefollowing URLs provide examples of synthetic speech: 
http://research.microsoft.com/en-us/projects/dnntts/default.aspx. 

 
Fig.4. The preference scores of the HMM, DNN and Hybrid systems 

 
V.   CONCLUSION 

This work aims to use BiLSTM-RNN in training a data driven model for the TTS. Nodes in the first or second internal processing 
layers of a DNN can be swapped out for bidirectional LSTM RNN nodes while maintaining the same amount of model parameters. 
The experiment's findings showing how the Hybrid BLSTM-RNN and DNN system performs better than both HMM and DNN in 
gathering complex details in a sentence. Our long-term goal is to study DBLSTM-RNN with a more comprehensive structure and a 
larger corpus. 
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