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Abstract: Agricultural robotics is constantly evolving in an effort to address the problems caused by urbanisation, population
increase, high cost of high-quality goods, environmental preservation, and shortage of skilled workers. The primary current
applications of agricultural robotic systems are reviewed in this study, which include their use in land preparation prior to
planting, sowing, planting, plant treatment, harvesting, yield calculation, and phenotyping. The criteria used to evaluate all
robots include their locomotion system, intended use, whether they had sensors, robotic arm, or computer vision algorithm, level
of development and the nation or continent to which they belong. Four key areas that require further research to advance the
state of the art in smart agriculture were identified after evaluating all similar characteristics, exposing research trends, common
pitfalls, and characteristics that impede commercial development. The findings of this review indicate that investment in
agricultural robotic systems enables the achievement of short-term goals (harvest monitoring) and long-term goals (yield
estimation).

Keywords: Agricultural robots, Automation, Internet of Things, phenotyping, algorithms

L. INTRODUCTION

Although each of the 193 countries that have formally joined the United Nations faces its own unique challenges, the UN
emphasizes that all these nations must prioritize addressing a common concern that is global population growth. Earth's current
population is approximately 7.6 billion and it is predicted that by 2050, that number will rise to 9.8 billion (Cazzola et al., 2020), a
28.94% increase, with half of that growth is concentrated in just nine countries that is India, Nigeria, the Democratic Republic of the
Congo, Pakistan, Ethiopia, the United Republic of Tanzania, the United States of America, Uganda, and Indonesia. As people are
searching for healthier foods, free of pesticides and herbicides (Ayaz et al., 2019), farmers are being forced to make adjustments to
the way they control, monitor, and manage their farms in order to meet the growing demand for high-quality food, which is
expected to double the current capacity for food production by 2050 (Zhang et al., 2018). However, by 2050, 68% of people will
live in urban areas due to the global urbanisation trend that is changing rural landscapes into urban ones (United nations 2018).
Since the percentage of world arable land was approximately 9.6 % in 1991 and 10.7% in 2022, which represents a slight increase in
the amount of arable land available, rural producers are therefore searching for innovative methods to produce their food in
progressively smaller habitats (Zhang et al., 2018).

A. Global Socioeconomic Issues

Human labour is still a major component of agricultural activities, and is prone to health issues like the global public health crisis
caused by the coronavirus pandemic (COVID-19), which has not only resulted in a significant number of deaths worldwide
(2,527,891 deaths have been confirmed as of January 3, 2021) (WHO, 2020), but has also imposed various forms of social and
economic activity restrictions (Buheji et al., 2020).

Similarly, the pandemic will have the greatest effect on developing nations that rely mostly on food supplied by small farmers,
livestock producers and artisanal fishermen (Delardas et al., 2022). The Food and Agriculture Organisation (FAO) claimed that
recent COVID-19's social isolation policies increase post-harvest losses, which hinder farmers' access to markets for products and
inputs (FAO, 2020). However, in wealthy nations like the US, where farming is viewed as "hard work™ and low-profitability, young
people are searching for work in cities, while farmers are searching for innovative ways to automate their farms and minimize losses
(CFBF 2019).
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B. Precision Agriculture

Fortunately, scientific advancements in various fields of human knowledge are changing the way agricultural activities are
managed, reducing the need for human intervention in order to overcome the challenges posed by population growth, accelerated
urbanisation, high competition for high-quality products, shortage of skilled labourers and the vulnerability of human labour to
health risks (Shafi et al., 2019). According to Mc Bratney et al., 2005, we need to adopt Precision Agriculture (PA) which is defined
as "That kind of agriculture that increases the number of (correct) decisions per unit area of land per unit time with associated net
benefits”. This definition is more inclusive, allowing both humans and artificial equipment to make decisions (Singh et al., 2024).
However, the PA is defined as "a management strategy that uses electronic information and other technologies to gather, process,
and analyse spatial and temporal data for the purpose of guiding targeted actions that improve efficiency, productivity, and
sustainability of agricultural operations” (Lowenberg-DeBoer et al., 2019). This concept makes it very evident how technologies
can be used to enhance agricultural operations. These technologies are divided into three primary categories in this assessment
work: robotics, artificial intelligence (Al), and the Internet of Things (l1oT) (Sanyaolu et al., 2024). As shown in Fig 1, these
technologies can be utilised separately or in combination. The employment of robotic equipment and electrical gadgets in
agricultural chores like planting, sowing, harvesting, pest management, and land preparation has made PA more well-known
(Tarannum et al., 2015). According to estimates, the precision agriculture industry was worth $3.67 billion in 2016 and is expected
to expand at a rate of 14.7% to reach $7.29 billion by 2025 (Santesteban et al., 2019).
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Fig 1. Graphic Abstract

Although this analysis will focus on the use of robots in agriculture, as illustrated in Figure 1, the technological domains of artificial
intelligence (Al) and the Internet of Things (IoT) are frequently included in the subsystems of an application that uses robots to
carry out agricultural tasks. Zha, who reviewed Al's application in agriculture, claims that Al may be used to control weeds, manage
soil, and work with 10T technology (Carpio et al., 2020; Zha et al., 2020). He explains that in complex environments that is, with
changing ambient lighting, background complexity, capturing angle, variations in shapes and colours of fruits and weeds, computer
vision algorithms like Deep Belief Networks (DBN) and Convolution Neural Networks (CNN) show promise in fruit classification
and weed detection. A review of the advantages of 10T and data analytics in agriculture was conducted by (Elijah et al., 2018). They
claim that loT technologies enable farm monitoring using a variety of sensors, including optical, mechanical, electrochemical,
dielectric, soil moisture, and location sensors. These sensors function as a data source for prediction, storage management, decision-
making, farm management, and precise application algorithms because of the availability of short- and long-range communication
technologies (Rajak et al., 2023). Safety and fraud protection, competitive advantages, wealth creation and distribution, cost
reduction and waste, operational efficiency, awareness and asset management are some of the benefits of using 1oT in agriculture
(Paul et al., 2022). The authors list several unresolved issues, including the necessity for technological advancements,
implementation of applications in actual large-scale settings (pilot project), and standardisation, regulation, and cost reduction of
IoT technologies that make their use in agriculture easier. An additional review of loT-based smart agriculture is provided by Ayaz
et al., 2019, who also discussed how various electronic sensors might be used to enhance agricultural control and monitoring
activities. One similarity among the aforementioned survey papers is that they all discussed the use of robots as instruments for
agricultural technological advancement. The kind of task that the robot is designed to accomplish determines its success in
agriculture, in addition to the kind of crop. The employment of robots in agriculture to carry out general tasks, including harvesting
high-value crops (Bac et al., 2014) and resolving navigation issues for wheeled mabile robots (Gao et al., 2018), or to enhance the
performance of specialised jobs, like these, covered in review works (Fountas et al., 2020; Oliveira et al., 2020).
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Il.  APPLICATION OF ROBOTICS IN AGRICULTURE
Many agricultural processes are divided into the following subsections: phenotyping, yield estimation, plant treatment,
sowing/planting, harvesting, and land preparation prior to planting. Thus, the many kinds of robotic systems applications in distinct
agricultural situations will be covered in the ensuing subsections.

A. Utilizing Robots in Agriculture to Prepare Land for Planting

One of the first agricultural job is preparing the field before planting, which includes fertiliser application and ploughing. Although
ploughing the field (inverting the soil layers) provides higher entry of oxygen and an expulsion of carbon dioxide, it can also
negatively impact future crops by significantly lowering the carbon stocks in the soil, depending on the local climate (Mahmud et
al., 2020). The construction of a finely controlled robotic system is one of the primary obstacles in the development of robots that
operate in rough terrain, such as a ploughed field (Sistler et al., 1987 & Oliveira et al., 2021). A robot called Casar, Fig 2a, was
developed in 2014 by the German company Raussendorf to help rural workers with soil fertilisation, pest control, soil management,
harvesting, and transportation. The commercially available César robot can fertilise the soil independently or with a remote control.
With a location accuracy of up to 3 cm, it uses Real-Time Kinematic (RTK) technology for the Global Navigation Satellite System
(GNSS) to carry out tasks automatically. The GNSS is the navigation device, but it can use various services, such as Global
Positioning Systems (GPS) (North American), GLONASS (Russian) or GALILEO (European) (Siciliana et al., 2016; Khan et al.,
2018). The Casar robot, was made to operate alongside humans on the farm, features a collision detection system that uses
ultrasonic sensors to ensure that it stops instantly. Its maximum detection distance is five meters (Oliveira et al., 2021).

Greenbot robot, Fig2b, which is also commercially available, can perform duties including seeding, ploughing, and fertilising. It can
carry up to 750 kg in its front compartment and 1500 kg in its back compartment due to its 100 HP diesel engine and four-wheel
Steering (4WS) technology. The Greenbot contains collision detection sensors, just like the César robot, to identify things in front of
it and stop in an emergency. The Chinese company DJI created an Unmanned Aerial Vehicle (UAV) to perform agricultural tasks,
in contrast to the terrestrial robots, César and Greenbot. Since UAVSs are terrestrial, obstacles such as rocks, holes, altitudes, and
branches do not interfere with their ability to fly over farms (Bergerman et al., 2016). However, UAVs have a limited flying period
due to battery power, are susceptible to collisions with high-vegetation branches or power lines and have trajectories that are
significantly impacted by wind and rain. In this way, the UAV's increased efficiency in doing agricultural duties without coming
into touch with the soil which was made possible by improvements in its energy consumption and consequently, its flight duration
(Shamshiri et al., 2018). A UAV's load and control capacity increase with the number of rotors. As a result, DJI created the AGRAS
MG-1P octocopter in 2016 to precisely apply liquid pesticides, herbicides, and fertilisers. It has a 6 ha/h spraying capacity, can carry
up to 10 | of payload over a maximum distance of 3 km, and can control up to 5 UAVs with a single remote control. It contains an
anti-collision system that uses omni-directional radar with a maximum detection distance of up to 15 m to prevent collisions with
high vegetation or high voltage cables. It demonstrates how to integrate an Inertial Measurement Unit (IMU) (gyroscope,
accelerometer, and compass) with the RTK GPS to perform spraying precisely, ensuring an accuracy of 1 cm + 1 ppm. UAV
incorporates propeller rotor redundancy, which can continue to fly steadily even if one of its rotors malfunctions (Nonami et al.,
2010).

a) Casar robot | b) Green bot c) AgBot
Fig 2. Examples of robots used in agriculture for land preparation before planting

AgBot robot, Fig 2c, is still in the research stage, in contrast to the robots previously discussed. The robot was created to apply
herbicide and fertiliser on a corn farm using a Two-Wheel Drive (2WD) system. AgBot robot's contain four separate reservoirs for
fertiliser or herbicide.
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Its navigation and control system is made up of platforms and parts for creating inexpensive embedded systems (Raspberry Pi and
Arduino). The robot can identify three typical weeds in corn fields: giant ragweed, redroot pigweed and cocklebur. It does this by
employing a cheap Red Green Blue (RGB) camera and the machine learning algorithm known as Haar feature-based cascade
classifiers (Kim et al., 2022). Despite weed recognition, the inexpensive RGB camera that was employed was not suitable for
outdoor application, necessitating further research (Khan et al., 2018).The comparison of discussed robots is described in Table 1.

Table 1: A comparison of the updated land preparation robotic applications

Robots Locomotion Final Application | Navigation sensors | Obstacle Development Year
system Detection sensors | stage
Casar 4WD Orchard or RTK GNSS Ultrasonic sensor | Commercial 2014
vineyard
Greenbot 4WD Horticulture, fruit | RTK GPS Bump sensor Commercial 2015
and arable
farming
AGRAS MG- | UAV Rice, soy and RTK GPS, RGB Omnidirectional | Commercial 2016
1P Octocopter corn CAMERA,, radar
gyroscope,accelero
meter and compass
AgBot 2WD Corn RTK GPS,RGB - Research 2017
camera, campass
and accelerometer

Since the farm is regarded as semi-structured environment, all of the robots that were previously described demonstrate the
integration of the RTK system and the GNSS in order to travel the entire farm with precision in its location data. Therefore, since
RTK technology first appeared in the mid-1990s, it was observed that, when it comes to the control of robots in actual agricultural
environments, the use of RTK/GNSS technologies has greatly improved (Sistler et al., 1987 & Valente et al., 2020).

B. Robotic Applications in Agriculture for Sowing and Planting

Conventionally, sowing and planting tasks are carried out using specialized planting equipment, which is typically attached to the
rear of a tractor. Tractors are heavy equipment, though, and as a result, their continuous movement around the farm exacerbates soil
compaction (Mahmud et al., 2020). In addition to affecting the chemical properties and biogeochemical cycles, soil compaction
activity has a number of detrimental effects on agricultural environments, including increasing apparent density, soil resistance,
decreasing porosity, accelerating water infiltration and aeration, influencing plant growth and soil biodiversity (Nawaz et al., 2012
& Oliveira et al., 2021). To overcome this problem, Sakaue et al., in 1996 created robotic systems to automate the planting and
sowing process in Japan. Its simple design, can plant 2200 plants of celery, cauliflower, broccoli, lettuce, or cabbage each hour.
Ladybird, an autonomous field robot designed at the Australian Centre for Field Robotics and data set contains weekly scans of

cauliflower and broccoli (Brassica oleracea) covering a 10 week growth cycle from transplant to harvest (Bender et al., 2020).
BTN \ 7 / = s — - ¥ T TR ARl
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a) Lumai5 b) Di- Wheel c) Sowing Robot 1
Fig 3. Examples of Robots used in Agriculture for sowing and planting
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The Lumai-5 robot, depicted in Fig 3a, was created with the goal of creating a compact, highly precise robot that could move
quickly and effortlessly through Chinese wheat fields (Bale et al., 2024) and must ensure that the sowing procedure stays same for
this kind of operation, regardless of the detachment pace. The Lumai-5 robot can precisely plant wheat due to its 4WS, closed-loop
control system, and speed, angle, and pressure sensors (Lin et al., 2016). The primary variables that directly impacted the seeding
quality were the planting tray size, vacuum chamber pressure, and planting speed (Haibo et al., 2015). The Di-Wheel robot, Fig 3b,
was developed by Australian academics with the goal of creating a robotic system using the idea of off-the-shelf components, both
digital and physical (Koleosho et al., 2019). A 2WD robot that only supports and moves on two wheels makes up the Di-Wheel
concept, which reduces the robot's size, weight, mechanical complexity and also making assembly and transportation easier (about
15 minutes). With all electronic components housed in its centre, the robot was made to carry out the duties of precision sowing,
spraying, and weeding (Samantaray et al., 2022). The distance between the wheels can be changed to accommodate different crop
varieties. The Di-Wheel has the ability to mount smartphones at a height which permits use of the device's internal sensors,
including RGB cameras, gyroscopes, accelerometers, GNSS devices, and sensors for temperature, light, and humidity (Pulgarin et
al., 2024). Thus, Di-Wheel robot is the only robot featuring a modular physical and digital framework, despite its reliance on
inexpensive gadgets. By utilizing off-the-shelf technology, it eliminates the need for additional sensors, as it leverages the
embedded sensors in cellphones (Sarkar et al., 2023). Despite such advantages, the primary obstacle preventing small producers
from using robotic systems is the cost (Sukkarieh et al., 2017; Onwude et al., 2016).

A 4WD seeding robot, Fig 3c, developed in Pakistan was utilized to plant corn using a separate seed selector that could distribute
the quantity of seeds in appropriate manner for planting (Chang et al., 2023). The prototype can sow 90 seeds every minute, or 0.66
acres per hour, which is five times faster than the traditional method (Hassan et al., 2016). Using a locomotion system with tracked
drives to carry heavy loads on uneven soils, Indian researchers demonstrated a prototype of a small seed drill robot in 2016 that
could transport a reservoir with up to 17 kg of payload, maximizing the robot's weight versus soil compaction ratio (Raikwar et al.,
2022; Srinivasan et al., 2016). The comparison of robots for planting and sowing are discussed in Table 2.

Table 2. A comparison of the updated robotic planting and sowing applications

Robots Locomotion Final Guidance sensors | Seeding mechanism | Development year
system Application stage
Lumai-5 4WS Wheat Angle and speed Seeding motor and | Research 2010
vacuum fan
Di-Wheel | 2WD Horticultural in Smartphone Roll type seeder Research 2015
general embedded sensors

Sowing 4WD Corm Ultrasonic Linear actuator and | Research 2016
robot 1 vacuum motor

Sowing Track Seeds in general | Ultrasonic and Solenoid actuator Research 2016
robot 2 magnetometer

C. Robotic Applications in Agriculture for Plant Treatment

After the seeding stage, the farmer must continuously monitor plant growth to ensure it remains healthy and free from diseases and
pests. According to FAO data, pests and diseases account for the loss of 20 to 40 percent of global crop production. Weed
infestation severely impairs crop growth and can even lead to crop destruction (Mahmud et al., 2020). In addition to attracting pests,
weeds can harbor small creatures such as mice and snakes. Therefore, the sooner weeds are removed, the greater the reduction in
financial losses. For example, the cost of weed control in Australia amounts to approximately $4 billion annually (Sindin et al.,
2004). Herbicides and pesticides (fungicides and insecticides) are frequently used to treat plants. Automation of the plant disease
identification and weed detection processes is not a new endeavor; research in this field dates back to 1998 (Meshram et al., 2022).
A robotic tomato weed control system based on the Bayesian classifier algorithm was presented by Lee et al., in 1999. In the
validation set of field photos, the system accurately detected 73.1% of tomatoes and 68.8% of weeds. Instead of using the Bayesian
classifier to increase plant identification, researchers Lee and Slaughter decided to create a hardware-based neural network (Lee et
al., 1998). The robotic system successfully recognized 85.7% of weeds and 38.9% of tomato cotyledons using this novel
classification technique (Anand et al., 2024). Out all the robots that have been created over the years, these were just the first to be
used for weed management.
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Thus, with an emphasis on recent advancements, a robotic system was created to detect tomato spotted wilt virus and powdery
mildew in greenhouses using a 6 Degrees of Freedom (DoF) manipulator arm, an RGB camera, and a laser distance sensor (DT35,
SICK) that is fixed on a platform (Schor et al. 2016). To capture photos from various perspectives and prevent collisions with the
plant, the RGB camera and laser sensor were mounted on the manipulator's last actuator, Fig 4a, (Schor et al. 2015). The pictures
were utilized in the Principal Component Analysis (PCA) and Coefficient of Variation (CV) methods for illness identification. The
method achieved an accuracy rate of up to 90% in case of tomato spotted wilt virus and 64% for the categorization of plants with
powdery mildew disease in an early stage of evolution, allowing for precise disease diagnosis in its early stages (Schor et al., 2016
and Hemming et al., 2024). The mobile robot eAGROBOT, Fig 4b, was employed for the same objective, identifying pests in
groundnut and cotton crops (Solanke et al., 2018). The robot achieved a precision of 83-96% for disease identification in normal
images and 89% for wide images by applying artificial intelligence algorithms, such as artificial neural networks and K-means, to
images captured by an RGB camera of crops during the initial sowing stage (when diseases like leaf spot and anthracnose are
beginning to emerge) (Pilli et al., 2015; Al-Mashhadani et al., 2020).

; ¥ - Ry ) . ‘) o e
j) K-Weedbo! k) Aigamo-Robot 1) Weeding robot 2
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Fig 4. Examples of robots used in agriculture for plant treatment
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Concerning weed control, the robots can perform the detection and its subsequent removal, through the application of herbicides in
the weeds and/or through mechanical tools. Robotic system with RGB-Depth (RGB-D) Kinect v2 camera, Fig 4c, was developed
for weed detection in lettuce and broccoli crops (Fu et al., 2020; Kusumam et al., 2017). The Random Sample Consensus
(RANSAC) approach, plant extraction (two-dimensional connected-component method), resource extraction (leaf length, width, and
height, rib arrangement, and area), and plant categorization (based on attributes) were the four phases of image processing (Moreno
et al., 2020). This robotic system obtained a detection rate of 90.8% for lettuce and 91.7% for broccoli when evaluated in a real time
(Gai et al., 2020).

According to Jorgensen et al. (2006), 90% of Denmark's total outdoor gardening area can be managed using mechanical weed
control in conjunction with herbicides. Additionally, 10% of the area can be managed entirely through mechanical weed control.
This idea was expanded upon in this review, which separated weed control into two categories: mechanical equipment and
chemicals (herbicides).

According to this idea, the Australian AgBot Il robot, Fig 4d, uses three different kinds of tools—an arrow-shaped hoe, a toothed
tool, and a cutting tool—to mechanically remove weeds from crops in addition to detecting them. In order to identify weeds, the
AgBot Il employs image processing methods including Local Binary Pattern (LBP) and Covariance Feature, which are gathered by
the RGB camera (Mccool, 2018). The French robots Oz, Fig 4e, Dino, Fig 4f, and Ted Fig 4g are examples of autonomous robots
being used in commercial weed control. They are all made for the markets (vegetables, nurseries, and horticulture), large-scale
vegetable farms (vegetables in a row and on beds), and wine growers (vines—row width > 150 c¢cm/60 inches), respectively
(Robert et al., 2020).

Depending on the kind of tool and the soil, these robots can operate independently for up to eight hours while using mechanical
tools to remove weeds. They are all powered solely by lithium batteries (Saint-Aimé et al., 2011). 70 Oz robots were sold in 2018
alone, with 80% of those sales going to the French domestic market, 15% to European nations, and 5% to the rest of the world
(Abbas et al., 2020).

Since they are advanced robots with RTK/GPS sensors, RGB cameras, and Light Detection and Ranging (LiDAR) that can work
independently in large crops without human supervision, they are all monitored and equipped with a communication protocol that
allows them to send SMS messages in the event of theft (Engwall et al., 2022 & Clabaugh et al., 2019). The VITIROVER and
Tertill robots, Fig 4h and 4i, respectively, are lightweight, compact robots with photovoltaic panels built into their mechanical
constructions. These use mechanical cutting tools and can work in both rainy and sunny environments, and pull weeds
(Oliveira et al., 2021).

It enables both robot information monitoring and control via a mobile application examining 10T ideas (Sarkar et al., 2023). Tertill,
the first robot made to clear weeds from residential gardens, includes wheels made to help with weed removal in addition to a
cutting tool (Farooq et al. 2023). In paddy fields, small robots with automated weeding were also employed. Both the rice seed and
the weed seed grow underwater when rice is planted in a field that has been inundated with arable land. In order to prevent
collisions with the plants, the 4WS K-Weedbot robot, Fig4j, was designed to remove weeds while moving under the guidance of a
high precision image processing system that employs grayscale images, median filters, the Otsu method, noise elimination, image
segmentation, and K-means clustering (Oliveira et al., 2021). K-Wheedbot has gears rather than wheels to enhance weed extraction.
The robot navigates the rice field with a maximum deviation of 1" in its course using a common RGB camera and a row
identification algorithm (Chaoi et al., 2015 & Bale et al., 2024). The AIGAMO-ROBOT, Fig 4k, was designed simple to be small,
battery-operated (to stop oil leaks and the release of harmful gasses into the atmosphere)(Nakamura et al., 2019). It pulls weeds with
its tracked movement technology.

As a result, the robot lessens the emergence of weeds within and across ranks (Mitsui et al., 2008). Japanese researchers, examined
how weeds developed in rice fields and how to eradicate them using a robot and herbicide application, Fig 41. Larger roots, stems,
leaves, height, and weight of the rice are just a few of the enhancements for crop productivity and growth that can be achieved by
combining the robotic system with more widely spread rice fields, as shown in Fig 5 (Sori et al., 2018). In contrast to the K-
Weedbot (4WS) and AIGAMO-ROBOT (track) robots, a robotic device, Fig 4m, was utilized to float on the surface of paddy fields
to disturb water, making it murky in order to lower the incidence of sunlight and decrease weed photosynthesis, (Takayanagi et al.,
2017). The researchers employed uniformly spaced chains that were fastened to the back of the robot to create the water
disturbances. The weed species separate from the soil surface and move toward the water surface as these chains are dragged across
the drenched soil's surface. The robot was also successful in reducing the emergence of weeds,

despite the fact that it is not autonomous (Uchida et al., 2019).
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Weeded area

Non-weeded area

(a) Weeding method. (b) Growth of the seedlings.  (c) Height of the rice plant.
Fig 5. Crop yield effect of each area

Pesticides are not only expensive, but they are also bad for people's health. A rural worker needs wear multiple pieces of personal
protective equipment in order to apply the pesticide to the plants. Researchers created two robots, AgriRobot and SAVSAR, Fig 4n,
40, to remotely spray pesticides on vineyards using a Human Machine Interface (HMI) in order to move the rural worker who
applies the pesticides to a safe environment through human—machine interaction (Gonzalez, 2017; Adamides et al., 2017). A 45%
reduction in pesticide material was achieved by using a different mobile robot, Fig 4p, which uses an RGB camera and distance
sensors to automatically open the pesticide spray valve based on the machine vision Foliage Detection Algorithm (FDA) and Grape
Clusters Detection Algorithms (GDA) (Berenstein et al., 2018; Mallas et al., 2020). Herbicides are an additional method of
controlling weeds. Fig 4q and 4r illustrate how the RIPPA (Bogue et al., 2016) and Ladybird (Underwood et al., 2015) robots were
created to eradicate weeds, respectively. RIPPA uses some of Ladybird's technology, but it is smaller. In contrast to the AgBot II,
the RIPPA and Ladybird robots capture Hyperspectral photos and eliminate weeds by spraying pesticide where it is needed, in
addition to having a photovoltaic panel built into their mechanical components (Sarkar et al., 2023). Plant health can be inferred
from spectral data (using machine learning methods). That means same system will apply the proper amount of fertilizer to a plant
that has been identified as having a poor health rating (Oliveira et al., 2021). Therefore, it should be mentioned that robotic systems
with a liquid spraying system can be utilized to boost crops by applying fertilizer in addition to pulling weeds (Hammou et al.,
2023). The BoniRob robot, Fig 4s, is more comprehensive since it can detect weeds using cameras, ultrasonic sensors and remove
them by applying herbicide in addition to mechanical tools (Wu et al., 2020). The Swagbot robot, Fig 4t, was created by Australian
researchers at ACFR, just like the RIPPA and Ladybird robots. The robot was designed to do a variety of tasks, including
autonomous weed detection, spraying, examination of soil and pasture, assessment of biomass and livestock monitoring (Wallace et
al., 2019). Establishing a method of standardization and modularization of robotic systems is the aim of creating robots
with a broad range of uses. A UAV was utilized to travel the farm and evaluate the soil and irrigation system management
effectiveness utilizing an IMU and GPS service (Turner et al., 2011). The UAV's multispectral camera calculates the wine-growing
vegetation indices using the Normalized Difference Vegetation Index (NDVI) to assess when the irrigation system needs to be
turned on (Eiffert et al., 2021). In addition to avoiding the use of satellites and airplanes, UAVs monitor crops at low altitudes free
from cloud disturbance. It can help maximize crop management efficiency and minimize usage of pesticides (Ayaz et al., 2019; Kin
et al., 2019). A model was proposed to assist with weed identification, planting, and monitoring. In this, a behavioral analysis of
plants was conducted in wheat fields both before and after herbicide treatment, for which variety of indexes were used, including
CIVE, ExG, ExGR, Woebbecke Index, NGRDI, and VEG, to perform multi-temporal mapping of a portion of the vegetation at the
start of the season (Sanchez et al.,2014; Xiang et al.,2011).

For steep slopes, Italian researchers created the UAV Bly-c-agri, Fig 4u, to perform the controlled administration of pesticides in
crops. It can carry up to 10 liters of pesticide in its tank, removing any issues with land locomotion (Badeka et al., 2020; Sarri et al.,
2019). Urea, an organic chemical, was sprayed inside predetermined areas using a different UAV. This kind of application, which
has a maximum load capacity of 5 L, also enables cost savings through the widespread use of herbicides (Meivel et al., 2016).
For pollination, a CNN-based machine vision system, Fig 4v, was developed to carry kiwifruit pollination and regulate the spray
duration of a mechanical system made up of 20 nozzles. At a speed of 3.5 km/h, the robot successfully pollinated almost 79.5% of
the kiwi blossoms (Barnett et al., 2017; Williams et al., 2020; Abutalipov et al., 2016). Verbiest et al., (2020) and H L, Schupp,
(2018), conducted research in pome orchards and stated that pruning of plants is an essential activity, despite the fact that it is
difficult for a robot to complete. The primary difficulties for robots are measuring and scanning the plant structures to determine the
precise location for pruning. Therefore, adjusting the crop's geometric properties to the technical specifications of robotic systems is
one method of enhancing pruning performance (Bloch et al., 2018; Karkee et al., 2014).

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

249



International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue Il Feb 2025- Available at www.ijraset.com

A mobile platform, Fig 4w, with a 6-DoF manipulator, Light-Emitting Diode (LED), and three RGB cameras are installed in order
to prevent the interference of changes in natural lighting and the background landscape (Bolterill et al., 2017) which describes a
robot system for the automatic pruning of grape vines. A saw attached to the robotic arm's end is used for pruning, and the Rapidly
Exploring Random Tree (RRT), RRT-Connect, and Support Vector Machine (SVM) learning algorithms are used to classify the
branches that need to be trimmed (Majeed et al., 2021). Automatic green shoot thinning in vineyards was carried out using a
platform made up of a 3-DoF prismatic manipulator fitted with inexpensive RGB-D cameras. In this instance, the system design
consists of a control system (6th order polynomial-based) to run the thin end-effector and a Faster R-CNN-based method to extract
the cordon trajectories. At a forward speed of 6.6 cm/s, the robotic platform achieved a thinning end-effector position with a Root
Mean Square Error (RMSE) of 1.47cm. The Thorvald 11 modular robotic system, Fig 4x, was created by SAGA Robotics in order to
standardize the parts frequently seen in agricultural robotic systems. It also possesses a number of general-purpose robotic systems
and models with two options for a differential motor drive with caster wheels for support, models with varying track widths, with or
without suspension modules, varying heights and models with three to six wheels (Grimsted et al., 2017). Last but not least, Avrora
Robotics, a Russian business, created the AgroBot universal control system, which can be mounted on any tractor or special
equipment. Comparison between the analyzed robotic applications for plant treatment are illustrated in Table 3.

Table 3. Comparison between the analyzed robotic applications for plant treatment.

Task Robots Locomotion Final Location Sensors used Computer
system application Sensors to perform the | vision
task Algorithm
Disease Disease robot Not included Bell pepper - RGB camera PCA and CV
identification and laser
eAGROBOT 4WD Cotton and - RGB camera k-means and
groundnut neutral
networks
Weeding robot | 4WD Broccoli and RGB-D RANSAC
1 lettuce camers
AgBot I 4WS Cotton, - RGB- camera LBP
sow, thistle,
feather top
Rhodes grass
and wild oats
0Z 4WS Vegetables, LIDAR RGB- camera -
nurseries and
horticulture
Dino 4WS Vegetablesin | TK/GPS RGB camera -
row and on
beds
Mechanical Ted 4WS Grape RTK/GPS RGB camera -
Weeding
VITIROVER 4WD Soail grass RTK/GNSS - -
Tertill 4WD Residential - Capactive -
gardens sensors
K-Weedbot 4WS Paddy feild RGB camera - Hough
transform
AIGAMO- Track Paddy feild - - -
ROBOT
Weeding robot | 4WD Paddy feild Capactiveand | - -
2 azimuth
sensors
Weeding robot | Boat Paddy feild GPSand IMU | - -
3
Chemical Agribot 4WD Grape RGB camera - FDA and GDA
weeding and LIDAR
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SAVSAR 4WD Grape RGB camera FDA and GDA
and LIDAR
Robotic 4WD Grape RGB camera FDA and GDA
sprayer and LIDAR
RIPPA 4WS Lettuce, RTK/GPS/INS | Hyperspectral | ExG-ExR
cauliflower AND LiDAR and thermal
and broccoli cameras
Lady Bird 3WS Lettuce, RTK/GPS/INS | Hyperspectral | ExG-ExR
cauliflower AND LiDAR and thermal
and broccoli cameras
BoniRob 4WS Sugar beet - RGB NIR CNN
cameras and
ultrasonic
sensor
Arial robot UAV Grape GPS ani IMU Multispectral NDVI
(octocopter) cameras
Bly-c-agri UAV Grape GNSS - -
(Hexacopter)
Pollination Pollinator 4WD Kiwi Odometry RGB camera CNN
robot
Pruning Pruning robot | Mobile Grape - RGB camera SVM
1 plataform
Pruning robot | Mobile Grape - RGB-D Faster R-CNN
2 plataform camera
General Swagbot 4WS General farms | GPS and RGB-D, IR NDVI
purpose LIDAR and
hiperspectral
cameras
Thorvaid 11 Many forms General farms | Depends on Depends on Depends on
the application | the application | the application
Clearpath Many forms General farms | Depends on Depends on Depends on
robots application the application | the application
Agrobot 4wd Genral farms - - -

The following topics covered in Table 3 include:

> Disease identification: Researchers (Schor et al., 2016) and (Pilli et al., 2015) were identified plant diseases with hit rates
ranging from 64 to 96% using traditional RGB cameras.

» Mechanical weeding: A number of projects, both in the research stage and commercially available, employ mechanical
instruments to get rid of weeds, removing the need to apply expensive herbicidal treatments and enabling the production of
organic products. As previously mentioned, researchers (Sori et al., 2018) report the several advantages produced by the
mechanical removal of weeds using a low-cost robot.

» Chemical weeding: To cut costs associated with excessive spraying, the majority of robots that carry out this activity use a
particular computer vision technique or algorithm. Crop features were extracted and further classified using vegetation indices
like NDVI and ExG-ExR. The herbicide is applied to the weed by the particular spray system once it has been properly
classified. As a result, plants deemed to have low health value can get precise fertilizer applications using the same spraying
technique utilized for herbicidal agents (Bogue et al., 2016; Underwood et al., 2015).

» General tasks: The robots utilized have terrestrial (4WD, 4WS, track), aerial (hexacopter, octocopter), and marine (boat)
locomotion systems, as shown in Table 3's "Locomotion Systems"” column. SwagBot platforms, Thorvald Il, Clearpath, and
AgroBot were created to do various jobs in various agricultural situations in order to prevent the replication of current systems
and expedite the process of moving from research to the commercial stage.
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D. Robotic Applications in Agriculture for Harvesting

Harvesting is not only a repetitious task that needs to be done with agility, but it also takes a lot of work on the part of the harvester.
In Japan, harvesting activities account for around 25% of total agricultural work hours (Hayashi et al., 2014). In terms of financial
expenses, which are a significant determinant in farmers' decision-making, labor rent account for 20% to 75% of total production
costs and is rising yearly (Abares, 2014; Jie et al., 2019). Due to this reason number of studies, as shown in Fig 6, are being
conducted that suggest using robotic systems to carry out agricultural harvesting tasks. Numerous scholarly publications discuss
various image processing methods used in various cultural contexts. Fruit-harvesting robot was designed and implemented by Cere
et al., (1998). They discovered that the primary challenges in the development of such systems were guiding the robot from tree to
tree and row to row in the field; identifying and locating fruits; and grasping and releasing specific targets. The autonomous mobile
robot AURORA, Fig 6a, for greenhouse operation, which was developed in the 1990s, was another pertinent study. It was able to
navigate the greenhouse corridors on its own with the use of ultrasonic sensors (Mandow et al., 1996). The robot was designed to be
a multipurpose platform that could carry out activities including fruit transportation, harvesting, and inspection planning. The
project criteria in this instance were cheap cost, adaptability, multifunctionality, supervisable autonomous operation, user-friendly
interface, and navigation in intact greenhouses. Bac et al. (2014) examined approximately 50 robotic applications used for
agricultural harvesting tasks across various regions. Their study, along with the findings of Emmi et al. (2021), highlighted that
despite widespread recommendations for using robots in harvesting, significant improvements were observed only in the task of
fruit capture. When compared to advancements made between 1984 and 2014, other harvesting tasks did not show a similar trend of
improvement. Moreover, as of yet, the evaluated robotic systems have not surpassed human harvesters in overall performance. To
endure various weather conditions seen in the field, the Agrobot E-Series robot, Fig 6b, is constructed entirely of military-grade
aluminum and stainless steel. To pick up strawberries, it uses 24 autonomous Cartesian robotic arms that move around the robot's
body. With three wheels in total (the electric motor is in the middle), the robot's mechanical construction can be adjusted to fit the
size of the crop. It uses information from the LiDAR sensor to prevent collisions with any farm workers due to its huge size.

- o o

> " ¥ °
. . ¢ e

b5
il b bl

Agri Tech

B

g) Aubergine robotics h) Strawberry harvester

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

252



International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue Il Feb 2025- Available at www.ijraset.com

j) Harvester robot 4

m) Amaran
Fig 6. Examples of robot s used in agriculture for harvesting

With a picking speed of 8 seconds per fruit and a speed of 1.6 km/h, the Berry 5 robot can harvest up to eight acres of strawberries
every day, which is equivalent to the produce of 25 to 30 human harvesters. Created by the American company Harvest CROO
Robotics, Fig 6¢, this automatic harvester is making progress towards commercialization (Robert et al., 2020). Similar to the
Agrobot E-Series, the Berry 5 robot's numerous mechanisms are patent-protected, making scientific research challenging. A green
asparagus harvesting robot called GARGotics, Fig 6d, was created by researchers (Crocetti et al., 2023; Leu et al., 2017), for the
market to accept asparagus, as it must be harvested when it reaches a height of 15.24 to 20.32 cm. Automating the harvest of
asparagus is challenging because the stalks are delicate and need to gather together before marketing. Therefore, two robotic arms
with specially designed grippers were created in this instance to capture the asparagus without causing any harm to it. A single
pneumatic cylinder in the robotic arms converts linear action into a circular motion. The robot's RGB-D camera provides the
planting data for its vision module, which includes the following functions: point cloud generation, camera calibration (using
Template Point Cloud (TPC) and Model Point Cloud (MPC)), and online asparagus tracking (using RANSAC and Euclidean
clustering methods) in order to identify asparagus that is ready for harvesting in real-time. Due to the effort, the German robot was
able to move at an average pace. 90% of harvests were successful using a harvest cycle of 2 seconds per robotic arm at a speed of
0.2 m/s (Leu et al., 2017). Vegebot, a robotic lettuce harvesting device, Fig 6e, was developed by English researchers in 2018
(Birellel et al., 2020). Since lettuce is a very delicate produce, the task's obstacles are correctly identifying it and removing it
without causing any damage. The Region-based Convolutional Neural Network (R-CNN) was used to identify the lettuce head
using two RGB cameras that were positioned above and 45° from the vegetation. VVegebot uses a 6-DoF robotic arm and a gripper
device with closed-loop force monitoring to locate the lettuce and then extract it. The algorithm achieved an 82% accuracy rate in
correctly classifying vegetables and 91% success rate in locating lettuces (Hu, N et al., 2022; Birellel et al.,2020). Ge et al., (2019)
created an algorithm to find and gather strawberries using a robot (made by Noronn AS) that has an RGB-D camera, as shown in
Fig 6f. The collision-free path-planning technique was based on 2D pictures and the 3D point cloud, and R-CNN was used to
recognize strawberries. After several tests in real environments, 74.1% of the identified ripe strawberries were successfully
harvested (Ge et al., 2019; Badwal and Bhardwaj, 2020). Dual-arm manipulation for robotic aubergine harvesting was studied by
Sepulveda et al., (2020) & Korostynska et al., (2018). The robotic system was utilized to examine the advantages produced by the
cooperative action of the manipulators using two 6-DoF robotic arms, under actuated grippers with a set of three flexible fingers
(off-the-shelf), and two cameras, Fig 6g. The robotic system identified potential aubergines that were partially obscured by leaves
and lifted the leaves so that the camera could catch the fruit, just how a human picker would typically use one hand to clear the path
to reach the fruit and collect it with the other. The image was divided into four classes—aubergines, leaves, branches, and
background—using an algorithm based on the SVM classifier.
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The suggested occlusion method generates a vector, indicating the direction in which the leaf must be raised in order to unblock the
aubergine by comparing the distances between the centroids of the aubergines and the leaves that were recognized in the picture.
Following a number of experimental testing, the harvesting robot's success rate was 80% for an occluded part and 95% for two
isolated pieces, both of which used two arms. Fruit processing time (image processing, inverse kinematics, and action) was reduced
by the system from 42.90 seconds with one arm to 26.54 seconds with two arms. The primary difficulties faced by the strawberry
picker robot in Fig 6h, uses the Thorvalds Il robots' locomotion system, which is made by the Saga Robotics group, and is based on
the modularization concept. It has a 3-DoF Cartesian-type dual-arm mechanism to extend its harvest time. The two Cartesian robotic
arms were utilized to maximize harvesting efficiency and prevent collisions by using simplified inverse kinematics to compute. For
cluster choosing, a novel active obstacle-separation path planning technique was developed (Xiong et al., 2020). A common issue in
many harvesting robot applications is the occlusion of fruits (by leaves, branches, or other immature fruits). Thus, the picker robot
recognizes strawberries using an RGB-D camera and an algorithm based on Hue Saturation Value (HSV) color-thresholding. Less
sensitivity to variations in ambient lighting is possible using the HSV color-thresholding technique. The mechanism tries again if the
robotic arm fails to pluck the fruit on the first try. The strawberry picker robot's success rate on the first try was 97.1% for isolated
strawberries and 5% for strawberries that were entirely encircled by unripe strawberries. On the second try, the robot's success rate
was 100% and 20% for the same scenarios as previously mentioned. By using a twin arm system, the robot can handle fruit in 4.6
seconds instead of 6.1 seconds when using just one robotic arm (Xiong et al., 2020). Improvements in visual perception are
becoming more widespread. In order to accomplish the following tasks: vision perception, motion planning, fruit verification, and
fruit detachment, created a prototype of an apple harvesting robot that includes a 6-DoF robotic arm, a soft-finger-based gripper (so
as not to damage the apples' surface), and an RGB-D camera, Fig 6i (Kang et al., 2020; De Jong et al., 2022). The Dasnet deep
convolution neural network was used for fruit recognition, and the 3D Sphere Hough Transform (3D-SHT) was used to calculate the
fruit's pose. The authors used the distance-based denoising approach on points to address the issue of ambient light significantly
interfering with the RGB-D camera’s distance estimations. Therefore, all fruits with a significant length imbalance on the X, Y, and
Z axes or insufficient points are eliminated from the list of fruits found. The environment where the apples are located was modeled
using the RGB-D camera’'s point cloud; in this instance, the authors employed an octree-based description of occupied space in work
contexts. The authors recommend identifying ripe and damaged fruits as enhancements after the system's fruit detection accuracy
achieved an F1 score of 0.871 (Kang et al., 2020). Rotate-YOLO (R-YOLO) approach, a variant of the original YOLO deep
learning algorithm, was suggested to carry out real-time visual localization of the picking sites for a strawberry harvesting robot that
plants strawberries on ridges (Xiong et al., 2020; Yu et al., 2020). The pick point can be more precisely located by rotating the
bounding box by an angle a to follow the orientation of the strawberry. The robot Fig 6j, is specially designed to work on a
strawberry ridge-planting and incorporates fiber sensors on its end-effector to speed up control without requiring real-time distance
measurement (Yu et al., 2020). For 640 x 480 photos taken with a standard RGB camera, the robot's strawberry detection accuracy
rate was 94.43% at a speed of 0.056 s utilizing R-YOLO recognition method. The Harvey platform and SWEEPER, depicted in Fig
6k and I, respectively, are two examples of harvesting robots that employ artificial intelligence algorithms as well. These robots are
installed on a mobile platform and are utilized to harvest sweet pepper in protected cropping areas. While the SWEEPER robot
employed deep learning, a shape and color-based detection algorithm, and Hough Transform (HT), the Harvey platform chose to use
Deep Convolutional Neural Networks (DCNN) (Lehnert et al., 2020; Arad et al., 2020; Lehnert et al., 2017). Both have 6-DoF
robotic arms, but their cutting systems and capturing techniques differ. For example, SWEEPER uses flexible fingers to grip the
sweet pepper, whereas Harvey uses a vacuum pump to suction it. Consequently, the Harvey platform required roughly 3.7 seconds
and 2.2 seconds to do the same tasks as the SWEEPER robot, which took an average of 4.3 seconds to detect sweet pepper and 14.5
seconds for detachment.

In developing nations, harvesting coconuts is sometimes carried out without any safety gear. A coconut tree can fall and cause
fatalities in addition to severe injuries (Wibowo et al., 2016). Amaran, Fig 6m, is an autonomous robotic coconut tree climber and
harvester that was created in this regard by Indian researchers (Megalingam et al., 2020). The Amaran robot climbs the coconut
trees using a lightweight mechanical framework consisting of eight wheels, four at the top and four at the bottom.
A certain activation sequence allows Amaran to move left, right, up, or down. It uses a 4-DoF robotic arm and a cutting tool as an
end-effector to separate the coconuts. Both components are lightweight and designed to maintain the robot's mobility around the
coconut tree. The robot's RGB camera helps the human operator, who is situated in a secure area of the ground, with remote control
and robot monitoring without the need of any kind of computer vision system. Using the Bluetooth communication protocol and an
application for smartphones, the Amaran robot may be operated, leveraging the Internet of Things concept. Following multiple
testing,

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

254



International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue Il Feb 2025- Available at www.ijraset.com

Amaran demonstrated the ability to successfully scale trees up to 15.2 m in height, with diameters ranging from 0.66 m to 0.92 m
and slopes of 30° (Megaligam et al., 2020). Even though the Amaran's entire harvest time (21.9 minutes) is longer than that of a
professional climber (11.8 minutes), the robot can climb as many coconut trees as needed without putting the human operator in
danger of illness or even death. Table 4 illustrates the comparison of harvesting robots.

Table 4. Comparison of the examined harvesting robotic applications

Robot Robotic Final Location Sensors Used Computer Success Rate
Arm Application Sensors to Perform Vision (Cycle Time)
the Task Algorithm
Agrabot E-Series 24 Cartesians Strawberry LiDAR RGB camera, - -
arms ultrasonic and
inductive sensors
Berry 5 Multiple robotic Strawberry GPS and RGB camera - -
components LiDAR
GARuotics Pneumatic Green - RGB-D camera RANSAC and 90%
cylinder asparagus euclidean (259)
with two blades clustering
Vegebot 6-DoF and Lettuce - RGB camera R-CNN 88.2%
a custom (31.759)
end effector
Noronn AS 5-DoF Strawberry - RGB-D camera R-CNN 74.1%
Harvester robot 1 | 6-DoF dual-arm Aubergines - RGB-D and SVM 91.67%
ToF cameras (26 5)
Harvester robot 2 | 3-DoF cartesian Strawberry LiDAR RGB-D camera HSV 50-97.1%
dual-arm and color- (4.65)
encoder thresholding
Harvester robot 3 | 6-DoF soft-finger Apple - RGB-D camera Dasnet, 3D- F1F1:0.81
based gripper SHT (79)
and Octree
Harvester robot 4 6-DoF Strawberry - RGB and R-YOLO 84.35%
laser sensors
Harvey 6-DoF Sweet - RGB-D camera, DCNN 76.5%
plataform pepper pressure and (36.959)
separation sensors
SWEEPER 6-DoF with Sweet - RGB-D camera Deep learning, 61%
custom designed pepper shape, color- (24 35)
end effector based
detection and
HT
Amaran 4-DoF Coconut - RGB camera - 80-100%
(21.9 min)

On interpreting the data in Table 4, the following is recorded:
» Challenges: Even with ongoing technology advancements, issues like fruit occlusions and variations in ambient lighting still
need to be investigated scientifically in order to make it possible to utilize robots in agricultural settings.
» Simplicity and efficiency: The ease of construction and effectiveness of the robotic system, in addition to the difficulties of
occlusion and variations in ambient lighting, enable the commercialization process to go more quickly. The effectiveness of the
robotic system as a whole will rise with the advancement of computer vision algorithms, which are directly linked to the
system's efficiency. Only Agrobot E-Series and Berry 5 robots are in the commercialization phase.
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» Evolution between 2014-2023: As previously mentioned, Bac et al., (2014) conducted a thorough analysis of harvesting robot
evolution over the last 30 years (1984-2014). The values (average; minimum—maximum) of his work are thus contrasted with
the analyses of the current work (which range from 2013-2023). He reached the following values: percent of harvest success
(66%; 40-86%), cycle time (33 s; 1-227 s), and the results of this study were as follows: success rate of harvest (81.17%; 50—
100%) and cycle time (2—-36.9 s; 18.88 s). Since the Amaran robot's cycle time depends on the operator's skill level, it was
ignored. Therefore, overall, the average harvest success rate has increased by 22.98%, and the average cycle time value has
decreased by 42.78%, suggesting that the harvesting robots' performance has improved.

E. Robotic Applications in Agriculture for Yield Estimation and Phenotyping

Farmers can better manage their crops by using more advanced equipment that provide precise data on the growth of fruits in terms
of number and quality. Monitoring the entire crop and estimating the amount of fruit produced is all that yield estimation entails. On
the other side, a number of factors, including soil quality and climate change, might impede plant growth. Therefore, it is feasible to
determine the ideal growing conditions by connecting the plants' phenotype to their corresponding genotype. However, it should be
highlighted that a robot needs both effective computer vision algorithms and trustworthy sensory inputs in order to estimate
phenotyping or yield. Researchers were already suggesting the use of sensors and machine vision algorithms to identify crop rows
and collect field data (Noguchi et al.,1998; Noguchi et al., 2001). In this instance, an RTK/GPS device and a camera were mounted
on a tractor to produce spatial maps that connected the crop's width and height. 84% success rate was achieved by the robotic system
using ANN, suggesting that a machine vision system might be employed as a crop prediction sensor. Dong et al., (2020) used RGB-
D cameras to create a semantic map of an orchard. These maps contain more information than just coordinates which could be used
for phenotyping, yield estimation and to build a 3D reconstruction of the canopy. Apple orchard yield was estimated using the
Shrimp robotic system, Fig 7a, which has six RGB cameras, in natural illumination. The Shrimp platform uses the integration of a
GPS and an Inertial Navigation System (INS) to pinpoint each sampled image. Watershed (WS) segmentation and the Circular
Hough Transform (CHT) were used to detect the apples in the image processing, which is based on Multiscale Multilayer
Perceptron (MLP) and CNN. Using CNN and WS, the Shrimp platform achieved an apple identification rate of 82.5%, an F1 of
0.791, and a coefficient of determination r2 of 0.826 (Bargoti et al., 2017). Silwal et al. (2017) used ToF to identify apples for their
proof-of-concept robotic harvester. Onishi et al. (2019) used a three-fingered gripper that encases the apple. Cramer et al. (2018)
investigated hybrid grippers containing magnetorheological fluids that could be used as a solution between soft, forceless grippers
and rigid, damaging grippers, with picking apples as potential application.
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k) Pheno-copter 1) Ara ecRobotix
Fig 7. Examples of robots used in agriculture for yeild estimation and phenotyping

Due to soil, climate, variety, and the methods used by individual farmers, the output of vines might differ from one area to another
in a highly competitive market. In this way, the quality of the harvested grapes may be measured by keeping an eye on the grapes
throughout the crop (Vrochidou et al., 2021). In this field, VINBOT and VineRobot, two projects supported by the European
Union's Seventh Framework Program, are displayed in Fig 7b and 7c, respectively. After detecting grapes using CNN, VINBOT
calculates the area occupied by the grapes in the pictures and calculates each one's weight in kilos (Lopes et al., 2016).
VineRobot uses the following methods to track variables such as grape yield, vegetative growth, vineyard water status, grape
composition, RGB machine vision, thermography, and fluorescence based on chlorophyll (Botterill et al., 2017). Likewise, we know
that Brazil is one of world’s biggest exporters of food.
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In order to provide a modular robotic platform for data collection and yield estimation in orange and sugar cane crops, the Brazilian
Agricultural Research Corporation (EMBRAPA) funded the development of the AgriBOT agricultural robot, Fig 7d (Sutera et al.,
2020). The navigation efficiency of algorithms D* and Focused D*, which AgriBOT uses with 4WS, was compared by Abrahdo et
al. in (2011). In situations where maps were erroneous or lacking, the Focused D* method outperformed D* in terms of efficiency.
Based on the extraction of objects from actual natural scenes, Lulio and Lugli et al., (2016) implemented a J Segmentation (JSEG)
algorithm, statistical Artificial Neural Networks (ANN) image segmentation techniques, and sensory fusion in the AgriBOT robot.
This allowed them to identify objects like fruits, grasses, stems, branches, and leaves (Lulio et al., 2016; Lugli et al., 2011; Farooq
et al., 2023).The 4WD Agrob V14 robot, Fig 7e, was created to keep an eye on the vineyards in Portugal's Douro area, which has
steep slopes. The robot is equipped with RGB cameras, LIDAR, IR sensors, and encoders. It was made to function independently
even when the GNSS signal is unavailable (Santos et al., 2016). The odometer and IMU statistics are affected by the high
concentration of stones in the soil. In order to address these issues, the information produced by Radio Frequency IDentification tags
(RFID) at the start and finish of each vineyard line was combined with Simultaneous Localization and Mapping (SLAM) techniques
(Santos et al., 2015; Kalampokas et al., 2020). Agrob V14 can traverse slopes with an inclination of up to 30%, rocks, and ditches
(Santos et al., 2015). Based on a wireless sensor network, the robot Agrob V16, Fig 7f, designed for yield estimate and trimming
operations, took a different strategy to enhance the robot's location and positioning. Combining the ideas of SLAM and the Internet
of Things, the Agrob V16 reads the Received Signal Strength Indication (RSSI) signals produced by a Bluetooth Low Energy (BLE)
transmission module and estimates the position of the signal source based on the received signal strength (Verbiest et al., 2020). An
Extended Kalman Filter (EKF) was used to fuse encoder data with distance signals based on RSSI. The standard deviation of the
robot's trajectory might be reduced by 25% with the usage of RSSI following the deployment of the EKF filter (Reis et al., 2018).
A hexapod robot with biological inspiration was created to track the wholesome development of agricultural fields, including
agronomic data on soil nutrients. However, because of the hexapod's size and power supply limitations, using high-precision
navigation systems (RTK/GNSS) is not practical (lida et al., 2008). The researchers demonstrated a novel method of controlling the
robot without the use of RTK/GNSS by utilizing the insect's sense of smell, much like the locomotion mechanism was biologically
inspired by insects. The hexapod follows the wind direction and CO, sources as it moves independently around the crop using an
anemoscope and CO, gas sensors. The tripod gait was employed by the hexapod robot in Fig 7g, which changed step length and/or
speed in response to update control time. The hexapod can be guided by air currents on its own while also tracking the amount of
CO2 gas released from soil and crops (lida et al.,2008).Similar to the hexapod robot, the TerraSentia robot is compact, keeps an eye
on the crops, and lacks an RTK/GNSS system. With only one LIiDAR for light detection beneath the canopy and ranging-based
autonomous navigation, the TerraSentia robot, shown in Fig 7h, was utilized in this instance to navigate between the high-height
vegetation of maize and sorghum crops (Higuti et al.,2019). TerraSentia uses a navigation system based on LiDAR and reads the
LiDAR input data, filters it by eliminating outlier points, and then uses least squares and a series of heuristics to predict its
trajectory. Over 6 km of straight rows were traversed by the robot on its own during a number of testing. In order to create a
globally recorded ray cloud, researchers used AgScan3D, a mobile vehicle-mounted 3D spinning LiDAR system, to estimate the
canopy density at four different locations in South Australia (Lowe et al., 2021). The AgScan3D is a 3D spinning LiDAR, 3DM-
Gx3 IMU, and GPS unit that is mounted on the back of a Kubota farm truck. In order to estimate the canopy density, the AgScan3D
system uses the variable resolution approach, extracts and segments the ground and vine rows, and applies a Continuous-Time
SLAM algorithm to a globally registered 3D ray cloud (He L, Schupp, 2018). Approximately 93,000 vines were scanned across a
160 km traverse in experimental tests, yielding repeatability with a root mean square error of 3.8% for the vehicle moving at an
average speed of 5 to 6 km/h.

Plant height, weight, biomass, form, color, volume, light absorption, and temperature are just a few of the ways that plant
phenotyping can be derived (Shafiekhani et al., 2017). As seen in Fig 7i and 7j, respectively, two robotic platforms; Vinobot and
Vinoculer, were combined to extract the phenotypic traits of maize plants.
Vinobot moves across the entire crop to extract the unique phenotypic traits of each plant, while as Vinoculer is a stationary
platform that continuously measures height and gathers 3D data from the crop (reconstructed using Visual Structure From Motion,
or Visual SFM, as shown in Fig 8). Correlation between the overall data from Vinoculer and the individual data from Vinobot is
thus feasible. These robots use a variety of sensors to evaluate air temperature and light intensity, as well as to compute the Leaf
Area Index (LAI) and track plant height. Unwanted vegetation, including weeds, can be less of interference by filtering the point
cloud according to vegetation height. Consequently, the phenotyping process is significantly accelerated by gathering such data
from the farm (Cui, 2020).
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Two robotic platforms make up the architecture: a mobile observation tower (Vinoculer) and an autonomous ground vehicle

(Vinobot). The observation tower monitors a whole field and identifies particular plants for the Vinobot to examine further, the

ground vehicle gathers data from individual plants. This architecture has three benefits:

o It enables the system to examine vast swaths of a field at any time of day or night while pinpointing particular areas impacted
by biotic and/or abiotic stresses;

o It offers high-throughput plant phenotyping in the field by acquiring precise and detailed data from groups or individual plants
in a comprehensive or selective manner;

o It does away with the need for costly and unwieldy aerial vehicles or similarly costly and constrained field platforms.

M e i s :
Fig 8. Comparison between the 3D reconstruction of a corn plant by Visual SFM generated using different ways of collecting data
(shafiekhani et al., 2018).

Using concepts from RANSAC and Digital Elevation Models (DEM), a customized helicopter, Pheno-Copter, shown in Fig 7k, was
used to estimate variations in the land cover of sorghum (early season), the temperature of cover in sugar cane (mid-season), and
three-dimensional measures of crop lodging in wheat (late season). This demonstrated the ability to meet various levels of needs and
image coverage (Chapman et al., 2014). The Ara robot from ecoRoboticx, Fig 71, which is intended for scouting and phenotyping
applications, can correct RTK/GPS via GSM/3G communication; however, it lacks algorithms and sensor solutions because it is
made to be integrated with multiple sensors from various manufacturers. The robot, which weighs about 130 kg, can be controlled
by a smartphone over WiFi or 3G/4G. A summary of the previously described works is presented in Table 5.

Table 5: Comparison of the robotic applications for phenotyping and yield estimation that were studied.

Task Robot Final Location Sensors Used to Computer Vision
Application Sensors Perform the Task Algorithm
Yield Shrimp Apple - RGB camera MLP and CNN
Estimation VINBOT Grape RTK, DGPS RGB and NIR NDVI
and LiDAR cameras
VineRobot Grape - FA-Sense LEAF, Chlorophyll-based
FA-Sense ANTH, fluorescence and
ultrasonic and RGB machine vision
RGB camera
AgriBOT Orange and GPS/INS RGB camera -
sugar cane and LiDAR
Agrob V14 Grape LiDAR RGB camera SVM
Agrob V16 Grape RTK/GPS/INS Stereo, RGB-D hLBP and SVM
and LiDAR and RGB cameras
Hexapod General farms - C02CO2 gas module, -
anemoscope and
infrared distance
sensor
Kubota farm vehicle Grape GPS and IMU LiDAR Continuous-Time SLAM
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Phenotyping TerraSentia Corn RTK/GPS RGB camera LiDAR-based navigation
and LiDAR
Vinobot Corn DGPS and LiDAR Stereo camera VisualSFM
and environmental
Sensors
Vinoculer Corn - Stereo RGB VisualSFM

and IR cameras
and air temperature

Sensors
Pheno-Copter Sorghum, - RGB and thermal RANSAC and DEM
sugarcane and cameras and LiDAR
wheat
Ara ecoRobotix General farms RTK/GPS RGB camera -

and compass

» Sensors: Whether for phenotyping or yield estimate, the micro observation of each plant's biological phenomena necessitates
specialized and extremely dependable sensors, such as RGB cameras, multispectral, Near-Infrared (NIR), IR, environmental,
and fluorescence level detection sensors.

» SLAM: The lack of GNSS-based systems, whether as a result of physical limitations, power supply restrictions, or vegetation
height, drives advancements in SLAM approaches. Robots thus employ both natural (such as the creation of trajectories based
on the average distance between rows and the direction of the airflow) and artificial (such as the use of RFID tags and wireless
sensors) features to enhance navigation under these situations. Santos et al., (2020); Aguiar et al., (2020); Igbal et al., (2020)
provided detailed descriptions of a number of SLAM algorithms and path planning strategies for agricultural and forestry
robots.

» Artificial Intelligence: Vegetation indices (such NDVI and chlorophyll-based fluorescence) and artificial intelligence
algorithms (like MLP, CNN, and SVM) can be applied based on the unique traits of each crop. As a result, it is necessary to try
to strike a balance between the anticipated efficiency or outcome and the computational complexity level of the suggested
strategy.

1. DISCUSSION
Following the identification and discussion of the primary robotic systems now in use or under investigation, a number of data were
gathered for analysis. Thus, the research trends, typical challenges, indicators impeding commercial development, which nations are
funding the development of these kinds of solutions, and, lastly, the ideal specifications for robotic agricultural systems will all be
covered in this section.

A. Agricultural Robots

The majority of robotic systems applications in agricultural settings are focused on creating 4WD robots without robotic arms that
are used to pull weeds and make use of RGB cameras, respectively. According to the research, even if 32.23% of the works employ
RGB cameras, the majority of them lack or do not disclose the use of computer vision algorithms (Otsu method, HT, and CV). 86 %
of the 62 initiatives that were examined are still in the research phase.

Although Australia does not currently dominate the global market for agricultural output, its agricultural sector has been expanding
every decade, according to FAO (2019). Notably, a significant portion of the research reviewed was conducted by Australian
academics and businesses. Another intriguing finding is the distribution of research output by continent, highlighting the
contributions of corporations and researchers worldwide. It is noteworthy that no research was conducted by researchers or
businesses from Africa, a continent known for having the greatest rates of famine, poverty, and a shortage of skilled workers
worldwide.
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B. Unsolved Issues

A number of suggestions are made to help future researchers to enhance the agricultural robotic systems that are now in use. The
majority of agricultural robots, are 4WD; nevertheless, since the agricultural environment is categorized as semi-structured, as
previously indicated by Santos et al. (2015), 4WD robots are significantly impacted by soil properties in this situation. According to
Khan et al., (2018), there is still a significant trade-off between the price and quality of agricultural cameras. In contrast to the work
done in the previous century, a variety of computer vision algorithms can now be used in high-performance embedded systems;
nonetheless, there is still room for improvement in selecting the best algorithms for each kind of scenario. The 10T devices must be
utilized in tandem with the robots since they are electronic systems that function in the same environment as the robots. Thus, the
proposals can generally be categorized into four areas: communication technologies, sensors, computer vision techniques, and
locomotion systems.

C. Locomotion Systems

The majority of agricultural robot mobility systems are 4WD.

However, the features of the local terrain, including rocks and branches which have a significant impact on wheeled systems.
Additionally, the continuous movement of these robots across the farm causes a high rate of soil compaction. Improvements in UAV
flight duration may lead to a rise in their application in agricultural settings (Kim et al., 2019). Legged robots provide an additional
option for moving around in unstructured areas (Oliveira et al., 2020; Bac et al., 2014). These robots have the advantage of being
able to navigate in challenging areas since they don't require continuous touch with the ground to move about and may modify their
posture in accordance with the terrain's slope (Oliveira et al., 2018; Selva et al., 2012). These robots are small, autonomous,
relatively light, and have environment-adaptive movement patterns. The robots' feet have a tiny contact area, which puts a lot of
pressure on the foot placement location even while it permits less damage to the ground. In this regard, legged robots must have
specially designed foot-ground contact areas (based on the principles of soil mechanics) to decrease pressure (increasing the foot-
ground contact area) under the soil during locomotion in order to keep their feet from penetrating soft soils and becoming trapped.
They are therefore less likely to be rejected by the agricultural market because they are widely used robotic platforms.

T P

Fig 9. Commercially accessible quadruped off-the-shelf legged robots

D. Sensors

The RGB camera was the most often utilized sensor in the examined works. Despite offering more information (depth, temperature,
and more spectrum data), the RGB-D, thermal, hyperspectral, and multispectral cameras are more expensive, which prevents their
widespread use. Temperature, humidity, and dust incidence can all directly affect how well sensors work in an agricultural setting.
The trade-off between quality and financial cost must be determined based on the minimal system which is needed to be
constructed. In this regard, the creation of sensors with high Ingress Protection (IP) (IP65, IP66, or IP67), which function in a wide
range of temperatures and humidity levels and are primarily inexpensive, may help in building agricultural robotic systems that are
more resilient to changes in weather (rain and sun), thus prolonging their useful lives.

E. Computer Vision Algorithms

By using artificial intelligence algorithms (like MLP, CNN, R-CNN, R-YOLO, and SVM) and crop characteristics (like ExG-EXR,
NDVI, Chlorophyll-based fluorescence, and RGB/thermal/hyperspectral/multispectral images), diseases, weeds can be detected,
herbicides and pesticides can be applied selectively, fruits and vegetables can be located, ripeness (ripe/unripe) can be classified and
yield can also be estimated. Once more, the efficacy of the computer vision algorithm may be hampered by the crop's short-term
(ambient lighting) and long-term (seasons) fluctuations. Therefore, it is suggested to develop new computer vision algorithms or
enhance existing ones that can adjust to the short-term and long-term changes of the crops and are designed to run on low-cost and
processing-power devices.
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F. loT-Based Smart Agriculture

The idea of smart agriculture must be closely related to the usage of 10T technology, just as the idea of smart cities (Oliveira et al.,
2020; Oliiveira et al., 2019). A high degree of adaptation to the quick changes in natural illumination, seasons, and crop growth was
shown by the application of several artificial intelligence systems, including CNN. Therefore, the many ways that 10T devices are
integrated into agricultural activities along with the different kinds of Al algorithms and the many robotic systems that are reviewed
and discussed in this article, may help to improve process control, monitoring, preservation, and standardization (Neumann et al.,
2018; Cui et al., 2020). Accurate multipurpose systems that address both short-term (harvest monitoring) and long-term (yield
estimation) issues may be developed. Furthermore, 10T sensors allow for the exchange of Machine-to-Machine (M2M) data,
integrating them with mobile robots holds significant promise for advancing the ideas of parallelism and swarming of robots.

IV.  CONCLUSIONS

In order to determine the actual needs for changes, it is necessary to first understand the major existing works in the field of smart
agriculture, highlighting their benefits, drawbacks, and typical faults before proposing new technical and scientific advancements.
37% of agricultural robotic systems are 4WD, 64.52% lack a robotic arm, 22.06% are used for weeding tasks, 32.23% use RGB
cameras, 35.48% do not include/report computer vision algorithms, 80.65% are in the research stage, 16.67% are designed by
Australian companies/researchers, and 41.94% are developed by countries on the European continent, according to a systematic
review of agricultural robotic systems used in the execution of land preparation before planting, sowing, planting, plant treatment,
harvesting, yield estimation, and phenotyping. Simple and effective computer vision algorithms, parallelism, the swarm of robots,
the limited use of the off-the-shelf concept, and multipurpose platforms that suitably adjust to the crop type under study were the
primary features noted. Four primary areas have been suggested for further research in order to enhance the current agricultural
robotic systems: sensors, computer vision algorithms, locomotion systems, and Internet of Things-based smart agriculture. This
study examined numerous agricultural robotic systems. Given that the average harvest success rate increased by 22.98% and the
average harvesting robot cycle decreased by 42.78% between 2014 and 2021. Thus, it is anticipated that as the aforementioned areas
improve, agricultural robotic systems will continue to advance in terms of efficiency and robustness. Therefore, it is thought that
this work was able to correlate the benefits of investing in technologies that serve as instruments for changing nature in addition to
demonstrating the noteworthy advancements in the field of mobile robots.
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