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Abstract: Agricultural robotics is constantly evolving  in an effort to address the problems caused by urbanisation, population 

increase, high cost of high-quality goods, environmental preservation, and shortage of skilled workers. The primary current 

applications of agricultural robotic systems are reviewed in this study, which include their use in land preparation prior to 

planting, sowing, planting, plant treatment, harvesting, yield calculation, and phenotyping. The criteria used to evaluate all 

robots include their locomotion system, intended use, whether they had sensors, robotic arm, or computer vision algorithm, level 

of development and the nation or continent to which they belong. Four key areas that require further research to advance the 

state of the art in smart agriculture were identified after evaluating all similar characteristics, exposing research trends, common 

pitfalls, and characteristics that impede commercial development. The findings of this review indicate that investment in 

agricultural robotic systems enables the achievement of short-term goals (harvest monitoring) and long-term goals (yield 

estimation). 
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I. INTRODUCTION 

Although each of the 193 countries that have formally joined the United Nations faces its own unique challenges, the UN 

emphasizes that all these nations must prioritize addressing a common concern that is global population growth. Earth's current 

population is approximately 7.6 billion and it is predicted that by 2050, that number will rise to 9.8 billion (Cazzola et al., 2020), a 

28.94% increase, with half of that growth is concentrated in just nine countries that is India, Nigeria, the Democratic Republic of the 

Congo, Pakistan, Ethiopia, the United Republic of Tanzania, the United States of America, Uganda, and Indonesia. As people are 

searching for healthier foods, free of pesticides and herbicides (Ayaz et al., 2019), farmers are being forced to make adjustments to 

the way they control, monitor, and manage their farms in order to meet the growing demand for high-quality food, which is 

expected to double the current capacity for food production by 2050 (Zhang et al., 2018). However, by 2050, 68% of people will 

live in urban areas due to the global urbanisation trend that is changing rural landscapes into urban ones (United nations 2018). 

Since the percentage of world arable land was approximately 9.6 % in 1991 and 10.7% in 2022, which represents a slight increase in 

the amount of arable land available, rural producers are therefore searching for innovative methods to produce their food in 

progressively smaller habitats (Zhang et al., 2018).  

 

A.  Global Socioeconomic Issues 

Human labour is still a major component of agricultural activities, and is prone to health issues like the global public health crisis 

caused by the coronavirus pandemic (COVID-19), which has not only resulted in a significant number of deaths worldwide 

(2,527,891 deaths have been confirmed as of January 3, 2021) (WHO, 2020), but has also imposed various forms of social and 

economic activity restrictions (Buheji et al., 2020).  

Similarly, the pandemic will have the greatest effect on developing nations that rely mostly on food supplied by small farmers, 

livestock producers and artisanal fishermen (Delardas et al., 2022). The Food and Agriculture Organisation (FAO) claimed that 

recent COVID-19's social isolation policies increase post-harvest losses, which hinder farmers' access to markets for products and 

inputs (FAO, 2020). However, in wealthy nations like the US, where farming is viewed as "hard work" and low-profitability, young 

people are searching for work in cities, while farmers are searching for innovative ways to automate their farms and minimize losses 

(CFBF 2019). 
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B. Precision Agriculture 

Fortunately, scientific advancements in various fields of human knowledge are changing the way agricultural activities are 

managed, reducing the need for human intervention in order to overcome the challenges posed by population growth, accelerated 

urbanisation, high competition for high-quality products, shortage of skilled labourers and the vulnerability of human labour to 

health risks (Shafi et al., 2019). According to Mc Bratney et al., 2005, we need to adopt Precision Agriculture (PA) which is defined 

as "That kind of agriculture that increases the number of (correct) decisions per unit area of land per unit time with associated net 

benefits". This definition is more inclusive, allowing both humans and artificial equipment to make decisions (Singh et al., 2024). 

However, the PA is defined as "a management strategy that uses electronic information and other technologies to gather, process, 

and analyse spatial and temporal data for the purpose of guiding targeted actions that improve efficiency, productivity, and 

sustainability of agricultural operations" (Lowenberg-DeBoer et al., 2019). This concept makes it very evident how technologies 

can be used to enhance agricultural operations. These technologies are divided into three primary categories in this assessment 

work: robotics, artificial intelligence (AI), and the Internet of Things (IoT) (Sanyaolu et al., 2024). As shown in Fig 1, these 

technologies can be utilised separately or in combination. The employment of robotic equipment and electrical gadgets in 

agricultural chores like planting, sowing, harvesting, pest management, and land preparation has made PA more well-known 

(Tarannum et al., 2015). According to estimates, the precision agriculture industry was worth $3.67 billion in 2016 and is expected 

to expand at a rate of 14.7% to reach $7.29 billion by 2025 (Santesteban et al., 2019). 

 
Fig 1. Graphic Abstract 

 

Although this analysis will focus on the use of robots in agriculture, as illustrated in Figure 1, the technological domains of artificial 

intelligence (AI) and the Internet of Things (IoT) are frequently included in the subsystems of an application that uses robots to 

carry out agricultural tasks. Zha, who reviewed AI's application in agriculture, claims that AI may be used to control weeds, manage 

soil, and work with IoT technology (Carpio et al., 2020; Zha et al., 2020). He explains that in complex environments that is, with 

changing ambient lighting, background complexity, capturing angle, variations in shapes and colours of fruits and weeds, computer 

vision algorithms like Deep Belief Networks (DBN) and Convolution Neural Networks (CNN) show promise in fruit classification 

and weed detection. A review of the advantages of IoT and data analytics in agriculture was conducted by (Elijah et al., 2018). They 

claim that IoT technologies enable farm monitoring using a variety of sensors, including optical, mechanical, electrochemical, 

dielectric, soil moisture, and location sensors. These sensors function as a data source for prediction, storage management, decision-

making, farm management, and precise application algorithms because of the availability of short- and long-range communication 

technologies (Rajak et al., 2023). Safety and fraud protection, competitive advantages, wealth creation and distribution, cost 

reduction and waste, operational efficiency, awareness and asset management are some of the benefits of using IoT in agriculture 

(Paul et al., 2022). The authors list several unresolved issues, including the necessity for technological advancements, 

implementation of applications in actual large-scale settings (pilot project), and standardisation, regulation, and cost reduction of 

IoT technologies that make their use in agriculture easier. An additional review of IoT-based smart agriculture is provided by Ayaz 

et al., 2019, who also discussed how various electronic sensors might be used to enhance agricultural control and monitoring 

activities. One similarity among the aforementioned survey papers is that they all discussed the use of robots as instruments for 

agricultural technological advancement. The kind of task that the robot is designed to accomplish determines its success in 

agriculture, in addition to the kind of crop. The employment of robots in agriculture to carry out general tasks, including harvesting 

high-value crops (Bac et al., 2014) and resolving navigation issues for wheeled mobile robots (Gao et al., 2018), or to enhance the 

performance of specialised jobs, like these, covered in review works (Fountas et al., 2020; Oliveira et al., 2020). 
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II. APPLICATION OF ROBOTICS IN AGRICULTURE 

Many agricultural processes are divided into the following subsections: phenotyping, yield estimation, plant treatment, 

sowing/planting, harvesting, and land preparation prior to planting. Thus, the many kinds of robotic systems applications in distinct 

agricultural situations will be covered in the ensuing subsections. 

 

A. Utilizing Robots in Agriculture to Prepare Land for Planting 

One of the first agricultural job is preparing the field before planting, which includes fertiliser application and ploughing. Although 

ploughing the field (inverting the soil layers) provides higher entry of oxygen and an expulsion of carbon dioxide, it can also 

negatively impact future crops by significantly lowering the carbon stocks in the soil, depending on the local climate (Mahmud et 

al., 2020). The construction of a finely controlled robotic system is one of the primary obstacles in the development of robots that 

operate in rough terrain, such as a ploughed field (Sistler et al., 1987 & Oliveira et al., 2021). A robot called Casar, Fig 2a, was 

developed in 2014 by the German company Raussendorf to help rural workers with soil fertilisation, pest control, soil management, 

harvesting, and transportation. The commercially available Cäsar robot can fertilise the soil independently or with a remote control. 

With a location accuracy of up to 3 cm, it uses Real-Time Kinematic (RTK) technology for the Global Navigation Satellite System 

(GNSS) to carry out tasks automatically. The GNSS is the navigation device, but it can use various services, such as Global 

Positioning Systems (GPS) (North American), GLONASS (Russian) or GALILEO (European) (Siciliana et al., 2016; Khan et al., 

2018). The Casar robot, was made to operate alongside humans on the farm, features a collision detection system that uses 

ultrasonic sensors to ensure that it stops instantly. Its maximum detection distance is five meters (Oliveira et al., 2021).  

Greenbot robot, Fig2b, which is also commercially available, can perform duties including seeding, ploughing, and fertilising. It can 

carry up to 750 kg in its front compartment and 1500 kg in its back compartment due to its 100 HP diesel engine and four-wheel 

Steering (4WS) technology. The Greenbot contains collision detection sensors, just like the Cäsar robot, to identify things in front of 

it and stop in an emergency. The Chinese company DJI created an Unmanned Aerial Vehicle (UAV) to perform agricultural tasks, 

in contrast to the terrestrial robots, Cäsar and Greenbot. Since UAVs are terrestrial, obstacles such as rocks, holes, altitudes, and 

branches do not interfere with their ability to fly over farms (Bergerman et al., 2016). However, UAVs have a limited flying period 

due to battery power, are susceptible to collisions with high-vegetation branches or power lines and have trajectories that are 

significantly impacted by wind and rain. In this way, the UAV's increased efficiency in doing agricultural duties without coming 

into touch with the soil which was made possible by improvements in its energy consumption and consequently, its flight duration 

(Shamshiri et al., 2018). A UAV's load and control capacity increase with the number of rotors. As a result, DJI created the AGRAS 

MG-1P octocopter in 2016 to precisely apply liquid pesticides, herbicides, and fertilisers. It has a 6 ha/h spraying capacity, can carry 

up to 10 l of payload over a maximum distance of 3 km, and can control up to 5 UAVs with a single remote control. It contains an 

anti-collision system that uses omni-directional radar with a maximum detection distance of up to 15 m to prevent collisions with 

high vegetation or high voltage cables. It demonstrates how to integrate an Inertial Measurement Unit (IMU) (gyroscope, 

accelerometer, and compass) with the RTK GPS to perform spraying precisely, ensuring an accuracy of 1 cm + 1 ppm. UAV 

incorporates propeller rotor redundancy, which can continue to fly steadily even if one of its rotors malfunctions (Nonami et al., 

2010). 

      
a) Casar robot                       b)  Green bot                       c)  AgBot 

Fig 2. Examples of robots used in agriculture for land preparation before planting 

 

AgBot robot, Fig 2c, is still in the research stage, in contrast to the robots previously discussed. The robot was created to apply 

herbicide and fertiliser on a corn farm using a Two-Wheel Drive (2WD) system. AgBot robot's contain four separate reservoirs for 

fertiliser or herbicide.  
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Its navigation and control system is made up of platforms and parts for creating inexpensive embedded systems (Raspberry Pi and 

Arduino). The robot can identify three typical weeds in corn fields: giant ragweed, redroot pigweed and cocklebur. It does this by 

employing a cheap Red Green Blue (RGB) camera and the machine learning algorithm known as Haar feature-based cascade 

classifiers (Kim et al., 2022). Despite weed recognition, the inexpensive RGB camera that was employed was not suitable for 

outdoor application, necessitating further research (Khan et al., 2018).The comparison of discussed robots is described in Table 1. 

 

Table 1: A comparison of the updated land preparation robotic applications 

Robots Locomotion 

system 

Final Application Navigation sensors Obstacle 

Detection sensors 

Development 

stage 

Year 

Casar  4WD Orchard or 

vineyard 

RTK GNSS Ultrasonic sensor Commercial 2014 

Greenbot  4WD Horticulture, fruit 

and arable 

farming 

RTK GPS Bump sensor Commercial 2015 

AGRAS MG-

1P  

UAV 

Octocopter 

Rice, soy and 

corn 

RTK GPS, RGB 

CAMERA,, 

gyroscope,accelero

meter and compass 

Omnidirectional 

radar 

Commercial 2016 

AgBot  2WD Corn RTK GPS,RGB 

camera, campass 

and accelerometer 

              - Research 2017 

 

Since the farm is regarded as semi-structured environment, all of the robots that were previously described demonstrate the 

integration of the RTK system and the GNSS in order to travel the entire farm with precision in its location data. Therefore, since 

RTK technology first appeared in the mid-1990s, it was observed that, when it comes to the control of robots in actual agricultural 

environments, the use of RTK/GNSS technologies has greatly improved (Sistler et al., 1987 & Valente et al., 2020).  

 

B. Robotic Applications in Agriculture for Sowing and Planting 

Conventionally, sowing and planting tasks are carried out using specialized planting equipment, which is typically attached to the 

rear of a tractor. Tractors are heavy equipment, though, and as a result, their continuous movement around the farm exacerbates soil 

compaction (Mahmud et al., 2020). In addition to affecting the chemical properties and biogeochemical cycles, soil compaction 

activity has a number of detrimental effects on agricultural environments, including increasing apparent density, soil resistance, 

decreasing porosity, accelerating water infiltration and aeration, influencing plant growth and soil biodiversity (Nawaz et al., 2012 

& Oliveira et al., 2021). To overcome this problem, Sakaue et al., in 1996 created robotic systems to automate the planting and 

sowing process in Japan. Its simple design, can plant 2200 plants of celery, cauliflower, broccoli, lettuce, or cabbage each hour. 

Ladybird, an autonomous field robot designed at the Australian Centre for Field Robotics and data set contains weekly scans of 

cauliflower and broccoli (Brassica oleracea) covering a 10 week growth cycle from transplant to harvest (Bender et al., 2020).  

    
a) Lumai 5                       b) Di- Wheel                   c) Sowing Robot 1 

Fig 3. Examples of Robots used in Agriculture for sowing and planting 
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The Lumai-5 robot, depicted in Fig 3a, was created with the goal of creating a compact, highly precise robot that could move 

quickly and effortlessly through Chinese wheat fields (Bale et al., 2024) and must ensure that the sowing procedure stays same for 

this kind of operation, regardless of the detachment pace. The Lumai-5 robot can precisely plant wheat due to its 4WS, closed-loop 

control system, and speed, angle, and pressure sensors (Lin et al., 2016). The primary variables that directly impacted the seeding 

quality were the planting tray size, vacuum chamber pressure, and planting speed (Haibo et al., 2015). The Di-Wheel robot, Fig 3b, 

was developed by Australian academics with the goal of creating a robotic system using the idea of off-the-shelf components, both 

digital and physical (Koleosho et al., 2019). A 2WD robot that only supports and moves on two wheels makes up the Di-Wheel 

concept, which reduces the robot's size, weight, mechanical complexity and also making assembly and transportation easier (about 

15 minutes). With all electronic components housed in its centre, the robot was made to carry out the duties of precision sowing, 

spraying, and weeding (Samantaray et al., 2022). The distance between the wheels can be changed to accommodate different crop 

varieties. The Di-Wheel has the ability to mount smartphones at a height which permits use of the device's internal sensors, 

including RGB cameras, gyroscopes, accelerometers, GNSS devices, and sensors for temperature, light, and humidity (Pulgarin et 

al., 2024). Thus, Di-Wheel robot is the only robot featuring a modular physical and digital framework, despite its reliance on 

inexpensive gadgets. By utilizing off-the-shelf technology, it eliminates the need for additional sensors, as it leverages the 

embedded sensors in cellphones (Sarkar et al., 2023). Despite such advantages, the primary obstacle preventing small producers 

from using robotic systems is the cost (Sukkarieh et al., 2017; Onwude et al., 2016). 

A 4WD seeding robot, Fig 3c, developed in Pakistan was utilized to plant corn using a separate seed selector that could distribute 

the quantity of seeds in appropriate manner for planting (Chang et al., 2023). The prototype can sow 90 seeds every minute, or 0.66 

acres per hour, which is five times faster than the traditional method (Hassan et al., 2016). Using a locomotion system with tracked 

drives to carry heavy loads on uneven soils, Indian researchers demonstrated a prototype of a small seed drill robot in 2016 that 

could transport a reservoir with up to 17 kg of payload, maximizing the robot's weight versus soil compaction ratio (Raikwar et al., 

2022; Srinivasan et al., 2016). The comparison of robots for planting and sowing are discussed in Table 2. 

 

Table 2. A comparison of the updated robotic planting and sowing applications 

Robots Locomotion 

system 

Final 

Application 

Guidance sensors Seeding mechanism Development 

stage 

year 

Lumai-5  4WS Wheat Angle and speed  Seeding motor and 

vacuum fan 

Research 2010 

Di-Wheel  2WD Horticultural in 

general 

Smartphone 

embedded sensors 

Roll type seeder Research 2015 

Sowing 

robot 1  

4WD Corm Ultrasonic Linear actuator and 

vacuum motor 

Research 2016 

Sowing 

robot 2  

Track Seeds in general Ultrasonic and 

magnetometer 

Solenoid actuator Research 2016 

 

C. Robotic Applications in Agriculture for Plant Treatment 

After the seeding stage, the farmer must continuously monitor plant growth to ensure it remains healthy and free from diseases and 

pests. According to FAO data, pests and diseases account for the loss of 20 to 40 percent of global crop production. Weed 

infestation severely impairs crop growth and can even lead to crop destruction (Mahmud et al., 2020). In addition to attracting pests, 

weeds can harbor small creatures such as mice and snakes. Therefore, the sooner weeds are removed, the greater the reduction in 

financial losses. For example, the cost of weed control in Australia amounts to approximately $4 billion annually (Sindin et al., 

2004). Herbicides and pesticides (fungicides and insecticides) are frequently used to treat plants. Automation of the plant disease 

identification and weed detection processes is not a new endeavor; research in this field dates back to 1998 (Meshram et al., 2022). 

A robotic tomato weed control system based on the Bayesian classifier algorithm was presented by Lee et al., in 1999. In the 

validation set of field photos, the system accurately detected 73.1% of tomatoes and 68.8% of weeds. Instead of using the Bayesian 

classifier to increase plant identification, researchers Lee and Slaughter decided to create a hardware-based neural network (Lee et 

al., 1998). The robotic system successfully recognized 85.7% of weeds and 38.9% of tomato cotyledons using this novel 

classification technique (Anand et al., 2024). Out all the robots that have been created over the years, these were just the first to be 

used for weed management.  
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Thus, with an emphasis on recent advancements, a robotic system was created to detect tomato spotted wilt virus and powdery 

mildew in greenhouses using a 6 Degrees of Freedom (DoF) manipulator arm, an RGB camera, and a laser distance sensor (DT35, 

SICK) that is fixed on a platform (Schor et al. 2016). To capture photos from various perspectives and prevent collisions with the 

plant, the RGB camera and laser sensor were mounted on the manipulator's last actuator, Fig 4a, (Schor et al. 2015). The pictures 

were utilized in the Principal Component Analysis (PCA) and Coefficient of Variation (CV) methods for illness identification. The 

method achieved an accuracy rate of up to 90% in case of tomato spotted wilt virus and 64% for the categorization of plants with 

powdery mildew disease in an early stage of evolution, allowing for precise disease diagnosis in its early stages (Schor et al., 2016 

and Hemming et al., 2024). The mobile robot eAGROBOT, Fig 4b, was employed for the same objective, identifying pests in 

groundnut and cotton crops (Solanke et al., 2018). The robot achieved a precision of 83–96% for disease identification in normal 

images and 89% for wide images by applying artificial intelligence algorithms, such as artificial neural networks and K-means, to 

images captured by an RGB camera of crops during the initial sowing stage (when diseases like leaf spot and anthracnose are 

beginning to emerge) (Pilli et al., 2015; Al-Mashhadani et al., 2020). 

 
a) Robotic disease detection system      b) e-AGROBOT               c) Weeding robot 

 
d) AgBot II                                 e) Oz                               f) Dino 

 
g) Ted                              h) Vitirover                             i) Tertill 

 
j)  K-Weedbot                    k) Aigamo-Robot               l) Weeding robot 2 
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m) Weeding robot 3                 n) Agrirobot                           o) Savsar 

       
p) Robotic sprayer                  q) Rippa                            r) Lady bird 

       
s) Boni-Rob                            t) Swag-bot                          u) Bly-c-agri 

         
v) Pollinator robot              w) Pruning robot              x) Thorvald II 

 
y) Avora robots 

Fig 4. Examples of robots used in agriculture for plant treatment 
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Concerning weed control, the robots can perform the detection and its subsequent removal, through the application of herbicides in 

the weeds and/or through mechanical tools. Robotic system with RGB-Depth (RGB-D) Kinect v2 camera, Fig 4c, was developed 

for weed detection in lettuce and broccoli crops (Fu et al., 2020; Kusumam et al., 2017). The Random Sample Consensus 

(RANSAC) approach, plant extraction (two-dimensional connected-component method), resource extraction (leaf length, width, and 

height, rib arrangement, and area), and plant categorization (based on attributes) were the four phases of image processing (Moreno 

et al., 2020). This robotic system obtained a detection rate of 90.8% for lettuce and 91.7% for broccoli when evaluated in a real time 

(Gai et al., 2020).  

According to Jorgensen et al. (2006), 90% of Denmark's total outdoor gardening area can be managed using mechanical weed 

control in conjunction with herbicides. Additionally, 10% of the area can be managed entirely through mechanical weed control. 

This idea was expanded upon in this review, which separated weed control into two categories: mechanical equipment and 

chemicals (herbicides).  

According to this idea, the Australian AgBot II robot, Fig 4d, uses three different kinds of tools—an arrow-shaped hoe, a toothed 

tool, and a cutting tool—to mechanically remove weeds from crops in addition to detecting them. In order to identify weeds, the 

AgBot II employs image processing methods including Local Binary Pattern (LBP) and Covariance Feature, which are gathered by 

the RGB camera (Mccool, 2018). The French robots Oz, Fig 4e, Dino, Fig 4f, and Ted Fig 4g are examples of autonomous robots 

being used in commercial weed control. They are all made for the markets (vegetables, nurseries, and horticulture), large-scale 

vegetable farms (vegetables in a row and on beds), and wine growers (vines–row width > 150 cm/60 inches), respectively 

(Robert et al., 2020).  

Depending on the kind of tool and the soil, these robots can operate independently for up to eight hours while using mechanical 

tools to remove weeds. They are all powered solely by lithium batteries (Saint-Aimé et al., 2011). 70 Oz robots were sold in 2018 

alone, with 80% of those sales going to the French domestic market, 15% to European nations, and 5% to the rest of the world 

(Abbas et al., 2020).  

Since they are advanced robots with RTK/GPS sensors, RGB cameras, and Light Detection and Ranging (LiDAR) that can work 

independently in large crops without human supervision, they are all monitored and equipped with a communication protocol that 

allows them to send SMS messages in the event of theft (Engwall et al., 2022 & Clabaugh et al., 2019). The VITIROVER and 

Tertill robots, Fig 4h and 4i, respectively, are lightweight, compact robots with photovoltaic panels built into their mechanical 

constructions. These use mechanical cutting tools and can work in both rainy and sunny environments, and pull weeds 

(Oliveira et al., 2021).  

It enables both robot information monitoring and control via a mobile application examining IoT ideas (Sarkar et al., 2023). Tertill, 

the first robot made to clear weeds from residential gardens, includes wheels made to help with weed removal in addition to a 

cutting tool (Farooq et al. 2023). In paddy fields, small robots with automated weeding were also employed. Both the rice seed and 

the weed seed grow underwater when rice is planted in a field that has been inundated with arable land. In order to prevent 

collisions with the plants, the 4WS K-Weedbot robot, Fig4j, was designed to remove weeds while moving under the guidance of a 

high precision image processing system that employs grayscale images, median filters, the Otsu method, noise elimination, image 

segmentation, and K-means clustering (Oliveira et al., 2021). K-Wheedbot has gears rather than wheels to enhance weed extraction. 

The robot navigates the rice field with a maximum deviation of 1◦ in its course using a common RGB camera and a row 

identification algorithm (Chaoi et al., 2015 & Bale et al., 2024). The AIGAMO-ROBOT, Fig 4k, was designed simple to be small, 

battery-operated (to stop oil leaks and the release of harmful gasses into the atmosphere)(Nakamura et al., 2019). It pulls weeds with 

its tracked movement technology.  

As a result, the robot lessens the emergence of weeds within and across ranks (Mitsui et al., 2008). Japanese researchers, examined 

how weeds developed in rice fields and how to eradicate them using a robot and herbicide application, Fig 4l. Larger roots, stems, 

leaves, height, and weight of the rice are just a few of the enhancements for crop productivity and growth that can be achieved by 

combining the robotic system with more widely spread rice fields, as shown in Fig 5 (Sori et al., 2018). In contrast to the K-

Weedbot (4WS) and AIGAMO-ROBOT (track) robots, a robotic device, Fig 4m, was utilized to float on the surface of paddy fields 

to disturb water, making it murky in order to lower the incidence of sunlight and decrease weed photosynthesis, (Takayanagi et al., 

2017). The researchers employed uniformly spaced chains that were fastened to the back of the robot to create the water 

disturbances. The weed species separate from the soil surface and move toward the water surface as these chains are dragged across 

the drenched soil's surface. The robot was also successful in reducing the emergence of weeds,  

despite the fact that it is not autonomous (Uchida et al., 2019).  
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Fig 5. Crop yield effect of each area 

 

Pesticides are not only expensive, but they are also bad for people's health. A rural worker needs wear multiple pieces of personal 

protective equipment in order to apply the pesticide to the plants. Researchers created two robots, AgriRobot and SAVSAR, Fig 4n, 

4o, to remotely spray pesticides on vineyards using a Human Machine Interface (HMI) in order to move the rural worker who 

applies the pesticides to a safe environment through human–machine interaction (Gonzalez, 2017; Adamides et al., 2017). A 45% 

reduction in pesticide material was achieved by using a different mobile robot, Fig 4p, which uses an RGB camera and distance 

sensors to automatically open the pesticide spray valve based on the machine vision Foliage Detection Algorithm (FDA) and Grape 

Clusters Detection Algorithms (GDA) (Berenstein et al., 2018; Mallas et al., 2020). Herbicides are an additional method of 

controlling weeds. Fig 4q and 4r illustrate how the RIPPA (Bogue et al., 2016) and Ladybird (Underwood et al., 2015) robots were 

created to eradicate weeds, respectively. RIPPA uses some of Ladybird's technology, but it is smaller. In contrast to the AgBot II, 

the RIPPA and Ladybird robots capture Hyperspectral photos and eliminate weeds by spraying pesticide where it is needed, in 

addition to having a photovoltaic panel built into their mechanical components (Sarkar et al., 2023). Plant health can be inferred 

from spectral data (using machine learning methods). That means same system will apply the proper amount of fertilizer to a plant 

that has been identified as having a poor health rating (Oliveira et al., 2021). Therefore, it should be mentioned that robotic systems 

with a liquid spraying system can be utilized to boost crops by applying fertilizer in addition to pulling weeds (Hammou et al., 

2023). The BoniRob robot, Fig 4s, is more comprehensive since it can detect weeds using cameras, ultrasonic sensors and remove 

them by applying herbicide in addition to mechanical tools (Wu et al., 2020). The Swagbot robot, Fig 4t, was created by Australian 

researchers at ACFR, just like the RIPPA and Ladybird robots. The robot was designed to do a variety of tasks, including 

autonomous weed detection, spraying, examination of soil and pasture, assessment of biomass and livestock monitoring (Wallace et 

al., 2019). Establishing a method of standardization and modularization of robotic systems is the aim of creating robots 

with a broad range of uses. A UAV was utilized to travel the farm and evaluate the soil and irrigation system management 

effectiveness utilizing an IMU and GPS service (Turner et al., 2011). The UAV's multispectral camera calculates the wine-growing 

vegetation indices using the Normalized Difference Vegetation Index (NDVI) to assess when the irrigation system needs to be 

turned on (Eiffert et al., 2021). In addition to avoiding the use of satellites and airplanes, UAVs monitor crops at low altitudes free 

from cloud disturbance. It can help maximize crop management efficiency and minimize usage of pesticides (Ayaz et al., 2019; Kin 

et al., 2019). A model was proposed to assist with weed identification, planting, and monitoring. In this, a behavioral analysis of 

plants was conducted in wheat fields both before and after herbicide treatment, for which variety of indexes were used, including 

CIVE, ExG, ExGR, Woebbecke Index, NGRDI, and VEG, to perform multi-temporal mapping of a portion of the vegetation at the 

start of the season (Sanchez et al.,2014; Xiang et al.,2011).  

For steep slopes, Italian researchers created the UAV Bly-c-agri, Fig 4u, to perform the controlled administration of pesticides in 

crops. It can carry up to 10 liters of pesticide in its tank, removing any issues with land locomotion (Badeka et al., 2020; Sarri et al., 

2019). Urea, an organic chemical, was sprayed inside predetermined areas using a different UAV. This kind of application, which 

has a maximum load capacity of 5 L, also enables cost savings through the widespread use of herbicides (Meivel et al., 2016).  

For pollination, a CNN-based machine vision system, Fig 4v, was developed to carry kiwifruit pollination and regulate the spray 

duration of a mechanical system made up of 20 nozzles. At a speed of 3.5 km/h, the robot successfully pollinated almost 79.5% of 

the kiwi blossoms (Barnett et al., 2017; Williams et al., 2020; Abutalipov et al., 2016). Verbiest et al., (2020) and H L, Schupp, 

(2018), conducted research in pome orchards and stated that pruning of plants is an essential activity, despite the fact that it is 

difficult for a robot to complete. The primary difficulties for robots are measuring and scanning the plant structures to determine the 

precise location for pruning. Therefore, adjusting the crop's geometric properties to the technical specifications of robotic systems is 

one method of enhancing pruning performance (Bloch et al., 2018; Karkee et al., 2014).  
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A mobile platform, Fig 4w, with a 6-DoF manipulator, Light-Emitting Diode (LED), and three RGB cameras are installed in order 

to prevent the interference of changes in natural lighting and the background landscape (Bolterill et al., 2017) which describes a 

robot system for the automatic pruning of grape vines. A saw attached to the robotic arm's end is used for pruning, and the Rapidly 

Exploring Random Tree (RRT), RRT-Connect, and Support Vector Machine (SVM) learning algorithms are used to classify the 

branches that need to be trimmed (Majeed et al., 2021). Automatic green shoot thinning in vineyards was carried out using a 

platform made up of a 3-DoF prismatic manipulator fitted with inexpensive RGB-D cameras. In this instance, the system design 

consists of a control system (6th order polynomial-based) to run the thin end-effector and a Faster R-CNN-based method to extract 

the cordon trajectories. At a forward speed of 6.6 cm/s, the robotic platform achieved a thinning end-effector position with a Root 

Mean Square Error (RMSE) of 1.47cm. The Thorvald II modular robotic system, Fig 4x, was created by SAGA Robotics in order to 

standardize the parts frequently seen in agricultural robotic systems. It also possesses a number of general-purpose robotic systems 

and models with two options for a differential motor drive with caster wheels for support, models with varying track widths, with or 

without suspension modules, varying heights and models with three to six wheels (Grimsted et al., 2017). Last but not least, Avrora 

Robotics, a Russian business, created the AgroBot universal control system, which can be mounted on any tractor or special 

equipment. Comparison between the analyzed robotic applications for plant treatment are illustrated in Table 3. 

 

Table 3. Comparison between the analyzed robotic applications for plant treatment. 

Task Robots Locomotion 

system 

Final 

application 

Location 

sensors 

Sensors used 

to perform the 

task 

Computer 

vision 

Algorithm 

Disease 

identification 

Disease robot  Not included Bell pepper - RGB camera 

and laser 

PCA and CV 

 eAGROBOT  4WD Cotton and 

groundnut 

- RGB camera k-means and 

neutral 

networks 

 Weeding robot 

1  

4WD Broccoli and 

lettuce 

 RGB-D 

camers  

RANSAC 

 AgBot Ⅱ  4WS Cotton, 

sow,thistle, 

feather top 

Rhodes grass 

and wild oats 

- RGB- camera LBP 

 0Z  4WS Vegetables, 

nurseries and 

horticulture 

LIDAR RGB- camera - 

 Dino  4WS Vegetables in 

row and on 

beds 

TK/GPS RGB camera - 

Mechanical 

Weeding 

Ted  4WS  Grape RTK/GPS RGB camera - 

 VITIROVER  4WD Soil grass RTK/GNSS - - 

 Tertill  4WD Residential 

gardens 

- Capactive 

sensors 

- 

 K-Weedbot  4WS Paddy feild RGB camera - Hough 

transform 

 AIGAMO-

ROBOT  

Track Paddy feild - - - 

 Weeding robot 

2  

4WD Paddy feild Capactive and 

azimuth 

sensors 

- - 

 Weeding robot 

3  

Boat Paddy feild GPS and IMU - - 

Chemical 

weeding 

Agribot  4WD Grape RGB camera 

and LIDAR 

- FDA and GDA 
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 SAVSAR  4WD Grape RGB camera 

and LIDAR 

 FDA and GDA 

 Robotic 

sprayer  

4WD Grape RGB camera 

and LIDAR 

 FDA and GDA 

 RIPPA  4WS Lettuce, 

cauliflower 

and broccoli 

RTK/GPS/INS 

AND LiDAR 

Hyperspectral 

and thermal 

cameras 

ExG-ExR 

 Lady Bird  3WS Lettuce, 

cauliflower 

and broccoli 

RTK/GPS/INS 

AND LiDAR 

Hyperspectral 

and thermal 

cameras 

ExG-ExR 

 BoniRob  4WS Sugar beet - RGB NIR 

cameras and 

ultrasonic 

sensor 

CNN 

 Arial robot  UAV 

(octocopter) 

Grape GPS ani IMU Multispectral 

cameras 

NDVI 

 Bly-c-agri  UAV 

(Hexacopter) 

Grape GNSS - - 

Pollination Pollinator 

robot  

4WD Kiwi Odometry RGB camera  CNN 

Pruning Pruning robot 

1  

Mobile 

plataform 

Grape - RGB camera SVM 

 Pruning robot 

2  

Mobile 

plataform 

Grape - RGB-D 

camera 

Faster R-CNN 

General 

purpose 

Swagbot  4WS General farms GPS and 

LIDAR 

RGB-D, IR 

and 

hiperspectral 

cameras 

NDVI 

 Thorvaid Ⅱ  Many forms General farms Depends on 

the application 

Depends on 

the application 

Depends on 

the application 

 Clearpath 

robots  

Many forms General farms Depends on 

application 

Depends on 

the application 

Depends on 

the application 

 Agrobot  4wd Genral farms - - - 

 

The following topics covered in Table 3 include: 

 Disease identification: Researchers (Schor et al., 2016) and (Pilli et al., 2015) were identified plant diseases with hit rates 

ranging from 64 to 96% using traditional RGB cameras. 

 Mechanical weeding: A number of projects, both in the research stage and commercially available, employ mechanical 

instruments to get rid of weeds, removing the need to apply expensive herbicidal treatments and enabling the production of 

organic products. As previously mentioned, researchers (Sori et al., 2018) report the several advantages produced by the 

mechanical removal of weeds using a low-cost robot. 

 Chemical weeding: To cut costs associated with excessive spraying, the majority of robots that carry out this activity use a 

particular computer vision technique or algorithm. Crop features were extracted and further classified using vegetation indices 

like NDVI and ExG-ExR. The herbicide is applied to the weed by the particular spray system once it has been properly 

classified. As a result, plants deemed to have low health value can get precise fertilizer applications using the same spraying 

technique utilized for herbicidal agents (Bogue et al., 2016; Underwood et al., 2015). 

 General tasks: The robots utilized have terrestrial (4WD, 4WS, track), aerial (hexacopter, octocopter), and marine (boat) 

locomotion systems, as shown in Table 3's "Locomotion Systems" column. SwagBot platforms, Thorvald II, Clearpath, and 

AgroBot were created to do various jobs in various agricultural situations in order to prevent the replication of current systems 

and expedite the process of moving from research to the commercial stage.  
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D. Robotic Applications in Agriculture for Harvesting 

Harvesting is not only a repetitious task that needs to be done with agility, but it also takes a lot of work on the part of the harvester. 

In Japan, harvesting activities account for around 25% of total agricultural work hours (Hayashi et al., 2014). In terms of financial 

expenses, which are a significant determinant in farmers' decision-making, labor rent account for 20% to 75% of total production 

costs and is rising yearly (Abares, 2014; Jie et al., 2019). Due to this reason number of studies, as shown in Fig 6, are being 

conducted that suggest using robotic systems to carry out agricultural harvesting tasks. Numerous scholarly publications discuss 

various image processing methods used in various cultural contexts. Fruit-harvesting robot was designed and implemented by Cere 

et al., (1998). They discovered that the primary challenges in the development of such systems were guiding the robot from tree to 

tree and row to row in the field; identifying and locating fruits; and grasping and releasing specific targets. The autonomous mobile 

robot AURORA, Fig 6a, for greenhouse operation, which was developed in the 1990s, was another pertinent study. It was able to 

navigate the greenhouse corridors on its own with the use of ultrasonic sensors (Mandow et al., 1996). The robot was designed to be 

a multipurpose platform that could carry out activities including fruit transportation, harvesting, and inspection planning. The 

project criteria in this instance were cheap cost, adaptability, multifunctionality, supervisable autonomous operation, user-friendly 

interface, and navigation in intact greenhouses. Bac et al. (2014) examined approximately 50 robotic applications used for 

agricultural harvesting tasks across various regions. Their study, along with the findings of Emmi et al. (2021), highlighted that 

despite widespread recommendations for using robots in harvesting, significant improvements were observed only in the task of 

fruit capture. When compared to advancements made between 1984 and 2014, other harvesting tasks did not show a similar trend of 

improvement. Moreover, as of yet, the evaluated robotic systems have not surpassed human harvesters in overall performance. To 

endure various weather conditions seen in the field, the Agrobot E-Series robot, Fig 6b, is constructed entirely of military-grade 

aluminum and stainless steel. To pick up strawberries, it uses 24 autonomous Cartesian robotic arms that move around the robot's 

body. With three wheels in total (the electric motor is in the middle), the robot's mechanical construction can be adjusted to fit the 

size of the crop. It uses information from the LiDAR sensor to prevent collisions with any farm workers due to its huge size.  

 
a)   AURORA                           b) Agrobot-E- Series                    c) CROO robots 

     
d) GARotics                                    e) Vegebot                             f) Noroon AS 

      
g)   Aubergine robotics                h) Strawberry harvester           i) apple harvester 
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j) Harvester robot 4                           k) Harvey platform                      l) Sweeper 

 
m) Amaran 

Fig 6. Examples of robot s used in agriculture for harvesting 

 

With a picking speed of 8 seconds per fruit and a speed of 1.6 km/h, the Berry 5 robot can harvest up to eight acres of strawberries 

every day, which is equivalent to the produce of 25 to 30 human harvesters. Created by the American company Harvest CROO 

Robotics, Fig 6c, this automatic harvester is making progress towards commercialization (Robert et al., 2020). Similar to the 

Agrobot E-Series, the Berry 5 robot's numerous mechanisms are patent-protected, making scientific research challenging. A green 

asparagus harvesting robot called GARotics, Fig 6d, was created by researchers (Crocetti et al., 2023; Leu et al., 2017), for the 

market to accept asparagus, as it must be harvested when it reaches a height of 15.24 to 20.32 cm. Automating the harvest of 

asparagus is challenging because the stalks are delicate and need to gather together before marketing. Therefore, two robotic arms 

with specially designed grippers were created in this instance to capture the asparagus without causing any harm to it. A single 

pneumatic cylinder in the robotic arms converts linear action into a circular motion. The robot's RGB-D camera provides the 

planting data for its vision module, which includes the following functions: point cloud generation, camera calibration (using 

Template Point Cloud (TPC) and Model Point Cloud (MPC)), and online asparagus tracking (using RANSAC and Euclidean 

clustering methods) in order to identify asparagus that is ready for harvesting in real-time. Due to the effort, the German robot was 

able to move at an average pace. 90% of harvests were successful using a harvest cycle of 2 seconds per robotic arm at a speed of 

0.2 m/s (Leu et al., 2017). Vegebot, a robotic lettuce harvesting device, Fig 6e, was developed by English researchers in 2018 

(Birellel et al., 2020). Since lettuce is a very delicate produce, the task's obstacles are correctly identifying it and removing it 

without causing any damage. The Region-based Convolutional Neural Network (R-CNN) was used to identify the lettuce head 

using two RGB cameras that were positioned above and 45◦ from the vegetation. Vegebot uses a 6-DoF robotic arm and a gripper 

device with closed-loop force monitoring to locate the lettuce and then extract it. The algorithm achieved an 82% accuracy rate in 

correctly classifying vegetables and 91% success rate in locating lettuces (Hu, N et al., 2022; Birellel et al.,2020). Ge et al., (2019) 

created an algorithm to find and gather strawberries using a robot (made by Noronn AS) that has an RGB-D camera, as shown in 

Fig 6f. The collision-free path-planning technique was based on 2D pictures and the 3D point cloud, and R-CNN was used to 

recognize strawberries.  After several tests in real environments, 74.1% of the identified ripe strawberries were successfully 

harvested (Ge et al., 2019; Badwal and Bhardwaj, 2020). Dual-arm manipulation for robotic aubergine harvesting was studied by 

Sepúlveda et al., (2020) & Korostynska et al., (2018). The robotic system was utilized to examine the advantages produced by the 

cooperative action of the manipulators using two 6-DoF robotic arms, under actuated grippers with a set of three flexible fingers 

(off-the-shelf), and two cameras, Fig 6g. The robotic system identified potential aubergines that were partially obscured by leaves 

and lifted the leaves so that the camera could catch the fruit, just how a human picker would typically use one hand to clear the path 

to reach the fruit and collect it with the other. The image was divided into four classes—aubergines, leaves, branches, and 

background—using an algorithm based on the SVM classifier.  
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The suggested occlusion method generates a vector, indicating the direction in which the leaf must be raised in order to unblock the 

aubergine by comparing the distances between the centroids of the aubergines and the leaves that were recognized in the picture. 

Following a number of experimental testing, the harvesting robot's success rate was 80% for an occluded part and 95% for two 

isolated pieces, both of which used two arms. Fruit processing time (image processing, inverse kinematics, and action) was reduced 

by the system from 42.90 seconds with one arm to 26.54 seconds with two arms. The primary difficulties faced by the strawberry 

picker robot in Fig 6h, uses the Thorvalds II robots' locomotion system, which is made by the Saga Robotics group, and is based on 

the modularization concept. It has a 3-DoF Cartesian-type dual-arm mechanism to extend its harvest time. The two Cartesian robotic 

arms were utilized to maximize harvesting efficiency and prevent collisions by using simplified inverse kinematics to compute. For 

cluster choosing, a novel active obstacle-separation path planning technique was developed (Xiong et al., 2020). A common issue in 

many harvesting robot applications is the occlusion of fruits (by leaves, branches, or other immature fruits). Thus, the picker robot 

recognizes strawberries using an RGB-D camera and an algorithm based on Hue Saturation Value (HSV) color-thresholding. Less 

sensitivity to variations in ambient lighting is possible using the HSV color-thresholding technique. The mechanism tries again if the 

robotic arm fails to pluck the fruit on the first try. The strawberry picker robot's success rate on the first try was 97.1% for isolated 

strawberries and 5% for strawberries that were entirely encircled by unripe strawberries. On the second try, the robot's success rate 

was 100% and 20% for the same scenarios as previously mentioned. By using a twin arm system, the robot can handle fruit in 4.6 

seconds instead of 6.1 seconds when using just one robotic arm (Xiong et al., 2020). Improvements in visual perception are 

becoming more widespread. In order to accomplish the following tasks: vision perception, motion planning, fruit verification, and 

fruit detachment, created a prototype of an apple harvesting robot that includes a 6-DoF robotic arm, a soft-finger-based gripper (so 

as not to damage the apples' surface), and an RGB-D camera, Fig 6i (Kang et al., 2020; De Jong et al., 2022). The Dasnet deep 

convolution neural network was used for fruit recognition, and the 3D Sphere Hough Transform (3D-SHT) was used to calculate the 

fruit's pose. The authors used the distance-based denoising approach on points to address the issue of ambient light significantly 

interfering with the RGB-D camera's distance estimations. Therefore, all fruits with a significant length imbalance on the X, Y, and 

Z axes or insufficient points are eliminated from the list of fruits found. The environment where the apples are located was modeled 

using the RGB-D camera's point cloud; in this instance, the authors employed an octree-based description of occupied space in work 

contexts. The authors recommend identifying ripe and damaged fruits as enhancements after the system's fruit detection accuracy 

achieved an F1 score of 0.871 (Kang et al., 2020). Rotate-YOLO (R-YOLO) approach, a variant of the original YOLO deep 

learning algorithm, was suggested to carry out real-time visual localization of the picking sites for a strawberry harvesting robot that 

plants strawberries on ridges (Xiong et al., 2020; Yu et al., 2020). The pick point can be more precisely located by rotating the 

bounding box by an angle α to follow the orientation of the strawberry. The robot Fig 6j, is specially designed to work on a 

strawberry ridge-planting and incorporates fiber sensors on its end-effector to speed up control without requiring real-time distance 

measurement (Yu et al., 2020). For 640 x 480 photos taken with a standard RGB camera, the robot's strawberry detection accuracy 

rate was 94.43% at a speed of 0.056 s utilizing R-YOLO recognition method. The Harvey platform and SWEEPER, depicted in Fig 

6k and l, respectively, are two examples of harvesting robots that employ artificial intelligence algorithms as well. These robots are 

installed on a mobile platform and are utilized to harvest sweet pepper in protected cropping areas. While the SWEEPER robot 

employed deep learning, a shape and color-based detection algorithm, and Hough Transform (HT), the Harvey platform chose to use 

Deep Convolutional Neural Networks (DCNN) (Lehnert et al., 2020; Arad et al., 2020; Lehnert et al., 2017). Both have 6-DoF 

robotic arms, but their cutting systems and capturing techniques differ. For example, SWEEPER uses flexible fingers to grip the 

sweet pepper, whereas Harvey uses a vacuum pump to suction it. Consequently, the Harvey platform required roughly 3.7 seconds 

and 2.2 seconds to do the same tasks as the SWEEPER robot, which took an average of 4.3 seconds to detect sweet pepper and 14.5 

seconds for detachment.  

In developing nations, harvesting coconuts is sometimes carried out without any safety gear. A coconut tree can fall and cause 

fatalities in addition to severe injuries (Wibowo et al., 2016). Amaran, Fig 6m, is an autonomous robotic coconut tree climber and 

harvester that was created in this regard by Indian researchers (Megalingam et al., 2020). The Amaran robot climbs the coconut 

trees using a lightweight mechanical framework consisting of eight wheels, four at the top and four at the bottom.  

A certain activation sequence allows Amaran to move left, right, up, or down. It uses a 4-DoF robotic arm and a cutting tool as an 

end-effector to separate the coconuts. Both components are lightweight and designed to maintain the robot's mobility around the 

coconut tree. The robot's RGB camera helps the human operator, who is situated in a secure area of the ground, with remote control 

and robot monitoring without the need of any kind of computer vision system. Using the Bluetooth communication protocol and an 

application for smartphones, the Amaran robot may be operated, leveraging the Internet of Things concept. Following multiple 

testing, 
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Amaran demonstrated the ability to successfully scale trees up to 15.2 m in height, with diameters ranging from 0.66 m to 0.92 m 

and slopes of 30◦ (Megaligam et al., 2020). Even though the Amaran's entire harvest time (21.9 minutes) is longer than that of a 

professional climber (11.8 minutes), the robot can climb as many coconut trees as needed without putting the human operator in 

danger of illness or even death. Table 4 illustrates the comparison of harvesting robots. 

 

Table 4. Comparison of the examined harvesting robotic applications 

Robot Robotic 

Arm 

Final 

Application 

Location 

Sensors 

Sensors Used 

to Perform 

the Task 

Computer 

Vision 

Algorithm 

Success Rate 

(Cycle Time) 

Agrobot E-Series  24 Cartesians 

arms 

Strawberry LiDAR RGB camera, 

ultrasonic and 

inductive sensors 

– – 

Berry 5  Multiple robotic 

components 

Strawberry GPS and 

LiDAR 

RGB camera – – 

GARotics  Pneumatic 

cylinder 

with two blades 

Green 

asparagus 

– RGB-D camera RANSAC and 

euclidean 

clustering 

90% 

(2 s) 

Vegebot  6-DoF and 

a custom 

end effector 

Lettuce – RGB camera R-CNN 88.2% 

(31.7 s) 

Noronn AS  5-DoF Strawberry – RGB-D camera R-CNN 74.1% 

Harvester robot 1  6-DoF dual-arm Aubergines – RGB-D and 

ToF cameras 

SVM 91.67% 

(26 s) 

Harvester robot 2  3-DoF cartesian 

dual-arm 

Strawberry LiDAR 

and 

encoder 

RGB-D camera HSV 

color-

thresholding 

50–97.1% 

(4.6 s) 

Harvester robot 3  6-DoF soft-finger 

based gripper 

Apple – RGB-D camera Dasnet, 3D-

SHT 

and Octree 

1F1: 0.81 

(7 s) 

Harvester robot 4  6-DoF Strawberry – RGB and 

laser sensors 

R-YOLO 84.35% 

Harvey 

plataform  

6-DoF Sweet 

pepper 

– RGB-D camera, 

pressure and 

separation sensors 

DCNN 76.5% 

(36.9 s) 

SWEEPER  6-DoF with 

custom designed 

end effector 

Sweet 

pepper 

– RGB-D camera Deep learning, 

shape, color-

based 

detection and 

HT 

61% 

(24 s) 

Amaran  4-DoF Coconut – RGB camera – 80–100% 

(21.9 min) 

 

On interpreting the data in Table 4, the following is recorded: 

 Challenges: Even with ongoing technology advancements, issues like fruit occlusions and variations in ambient lighting still 

need to be investigated scientifically in order to make it possible to utilize robots in agricultural settings. 

 Simplicity and efficiency: The ease of construction and effectiveness of the robotic system, in addition to the difficulties of 

occlusion and variations in ambient lighting, enable the commercialization process to go more quickly. The effectiveness of the 

robotic system as a whole will rise with the advancement of computer vision algorithms, which are directly linked to the 

system's efficiency. Only Agrobot E-Series and Berry 5 robots are in the commercialization phase. 
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 Evolution between 2014–2023: As previously mentioned, Bac et al., (2014) conducted a thorough analysis of harvesting robot 

evolution over the last 30 years (1984–2014). The values (average; minimum–maximum) of his work are thus contrasted with 

the analyses of the current work (which range from 2013–2023). He reached the following values: percent of harvest success 

(66%; 40–86%), cycle time (33 s; 1–227 s), and the results of this study were as follows: success rate of harvest (81.17%; 50–

100%) and cycle time (2–36.9 s; 18.88 s). Since the Amaran robot's cycle time depends on the operator's skill level, it was 

ignored. Therefore, overall, the average harvest success rate has increased by 22.98%, and the average cycle time value has 

decreased by 42.78%, suggesting that the harvesting robots' performance has improved. 

 

E. Robotic Applications in Agriculture for Yield Estimation and Phenotyping 

Farmers can better manage their crops by using more advanced equipment that provide precise data on the growth of fruits in terms 

of number and quality. Monitoring the entire crop and estimating the amount of fruit produced is all that yield estimation entails. On 

the other side, a number of factors, including soil quality and climate change, might impede plant growth. Therefore, it is feasible to 

determine the ideal growing conditions by connecting the plants' phenotype to their corresponding genotype. However, it should be 

highlighted that a robot needs both effective computer vision algorithms and trustworthy sensory inputs in order to estimate 

phenotyping or yield. Researchers were already suggesting the use of sensors and machine vision algorithms to identify crop rows 

and collect field data (Noguchi et al.,1998; Noguchi et al., 2001). In this instance, an RTK/GPS device and a camera were mounted 

on a tractor to produce spatial maps that connected the crop's width and height. 84% success rate was achieved by the robotic system 

using ANN, suggesting that a machine vision system might be employed as a crop prediction sensor. Dong et al., (2020) used RGB-

D cameras to create a semantic map of an orchard. These maps contain more information than just coordinates which could be used 

for phenotyping, yield estimation and to build a 3D reconstruction of the canopy. Apple orchard yield was estimated using the 

Shrimp robotic system, Fig 7a, which has six RGB cameras, in natural illumination. The Shrimp platform uses the integration of a 

GPS and an Inertial Navigation System (INS) to pinpoint each sampled image. Watershed (WS) segmentation and the Circular 

Hough Transform (CHT) were used to detect the apples in the image processing, which is based on Multiscale Multilayer 

Perceptron (MLP) and CNN. Using CNN and WS, the Shrimp platform achieved an apple identification rate of 82.5%, an F1 of 

0.791, and a coefficient of determination r2 of 0.826 (Bargoti et al., 2017). Silwal et al. (2017) used ToF to identify apples for their 

proof-of-concept robotic harvester. Onishi et al. (2019) used a three-fingered gripper that encases the apple. Cramer et al. (2018) 

investigated hybrid grippers containing magnetorheological fluids that could be used as a solution between soft, forceless grippers 

and rigid, damaging grippers, with picking apples as potential application. 

 

 
a)  Shrimp                                              b)Vinbot 

 

 
c) VineRobot                                                  d) Agri-BOT 
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e) Agrob V14                                             f) Agrob V16 

 
g) Hexapod                                                     h) TerraSentia 

 
i) Vinobot                                                             j) Vinoculer 

 

 
k) Pheno-copter                                  l) Ara ecRobotix 

Fig 7. Examples of robots used in agriculture for yeild estimation and phenotyping 

 

Due to soil, climate, variety, and the methods used by individual farmers, the output of vines might differ from one area to another 

in a highly competitive market. In this way, the quality of the harvested grapes may be measured by keeping an eye on the grapes 

throughout the crop (Vrochidou et al., 2021). In this field, VINBOT and VineRobot, two projects supported by the European 

Union's Seventh Framework Program, are displayed in Fig 7b and 7c, respectively. After detecting grapes using CNN, VINBOT 

calculates the area occupied by the grapes in the pictures and calculates each one's weight in kilos (Lopes et al., 2016).  

VineRobot uses the following methods to track variables such as grape yield, vegetative growth, vineyard water status, grape 

composition, RGB machine vision, thermography, and fluorescence based on chlorophyll (Botterill et al., 2017). Likewise, we know 

that Brazil is one of world’s biggest exporters of food.  
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In order to provide a modular robotic platform for data collection and yield estimation in orange and sugar cane crops, the Brazilian 

Agricultural Research Corporation (EMBRAPA) funded the development of the AgriBOT agricultural robot, Fig 7d (Sutera et al., 

2020). The navigation efficiency of algorithms D* and Focused D*, which AgriBOT uses with 4WS, was compared by Abráhão et 

al. in (2011). In situations where maps were erroneous or lacking, the Focused D* method outperformed D* in terms of efficiency. 

Based on the extraction of objects from actual natural scenes, Lulio and Lugli et al., (2016) implemented a J Segmentation (JSEG) 

algorithm, statistical Artificial Neural Networks (ANN) image segmentation techniques, and sensory fusion in the AgriBOT robot. 

This allowed them to identify objects like fruits, grasses, stems, branches, and leaves (Lulio et al., 2016; Lugli et al., 2011; Farooq 

et al., 2023).The 4WD Agrob V14 robot, Fig 7e, was created to keep an eye on the vineyards in Portugal's Douro area, which has 

steep slopes. The robot is equipped with RGB cameras, LiDAR, IR sensors, and encoders. It was made to function independently 

even when the GNSS signal is unavailable (Santos et al., 2016). The odometer and IMU statistics are affected by the high 

concentration of stones in the soil. In order to address these issues, the information produced by Radio Frequency IDentification tags 

(RFID) at the start and finish of each vineyard line was combined with Simultaneous Localization and Mapping (SLAM) techniques 

(Santos et al., 2015; Kalampokas et al., 2020). Agrob V14 can traverse slopes with an inclination of up to 30%, rocks, and ditches 

(Santos et al., 2015). Based on a wireless sensor network, the robot Agrob V16, Fig 7f, designed for yield estimate and trimming 

operations, took a different strategy to enhance the robot's location and positioning. Combining the ideas of SLAM and the Internet 

of Things, the Agrob V16 reads the Received Signal Strength Indication (RSSI) signals produced by a Bluetooth Low Energy (BLE) 

transmission module and estimates the position of the signal source based on the received signal strength (Verbiest et al., 2020).  An 

Extended Kalman Filter (EKF) was used to fuse encoder data with distance signals based on RSSI. The standard deviation of the 

robot's trajectory might be reduced by 25% with the usage of RSSI following the deployment of the EKF filter (Reis et al., 2018).  

A hexapod robot with biological inspiration was created to track the wholesome development of agricultural fields, including 

agronomic data on soil nutrients. However, because of the hexapod's size and power supply limitations, using high-precision 

navigation systems (RTK/GNSS) is not practical (Iida et al., 2008). The researchers demonstrated a novel method of controlling the 

robot without the use of RTK/GNSS by utilizing the insect's sense of smell, much like the locomotion mechanism was biologically 

inspired by insects. The hexapod follows the wind direction and CO2 sources as it moves independently around the crop using an 

anemoscope and CO2 gas sensors. The tripod gait was employed by the hexapod robot in Fig 7g, which changed step length and/or 

speed in response to update control time. The hexapod can be guided by air currents on its own while also tracking the amount of 

CO2 gas released from soil and crops (Iida et al.,2008).Similar to the hexapod robot, the TerraSentia robot is compact, keeps an eye 

on the crops, and lacks an RTK/GNSS system. With only one LiDAR for light detection beneath the canopy and ranging-based 

autonomous navigation, the TerraSentia robot, shown in Fig 7h, was utilized in this instance to navigate between the high-height 

vegetation of maize and sorghum crops (Higuti et al.,2019). TerraSentia uses a navigation system based on LiDAR and reads the 

LiDAR input data, filters it by eliminating outlier points, and then uses least squares and a series of heuristics to predict its 

trajectory. Over 6 km of straight rows were traversed by the robot on its own during a number of testing. In order to create a 

globally recorded ray cloud, researchers used AgScan3D, a mobile vehicle-mounted 3D spinning LiDAR system, to estimate the 

canopy density at four different locations in South Australia (Lowe et al., 2021). The AgScan3D is a 3D spinning LiDAR, 3DM-

Gx3 IMU, and GPS unit that is mounted on the back of a Kubota farm truck. In order to estimate the canopy density, the AgScan3D 

system uses the variable resolution approach, extracts and segments the ground and vine rows, and applies a Continuous-Time 

SLAM algorithm to a globally registered 3D ray cloud (He L, Schupp, 2018).  Approximately 93,000 vines were scanned across a 

160 km traverse in experimental tests, yielding repeatability with a root mean square error of 3.8% for the vehicle moving at an 

average speed of 5 to 6 km/h.  

Plant height, weight, biomass, form, color, volume, light absorption, and temperature are just a few of the ways that plant 

phenotyping can be derived (Shafiekhani et al., 2017).  As seen in Fig 7i and 7j, respectively, two robotic platforms; Vinobot and 

Vinoculer, were combined to extract the phenotypic traits of maize plants.  

Vinobot moves across the entire crop to extract the unique phenotypic traits of each plant, while as Vinoculer is a stationary 

platform that continuously measures height and gathers 3D data from the crop (reconstructed using Visual Structure From Motion, 

or Visual SFM, as shown in Fig 8). Correlation between the overall data from Vinoculer and the individual data from Vinobot is 

thus feasible. These robots use a variety of sensors to evaluate air temperature and light intensity, as well as to compute the Leaf 

Area Index (LAI) and track plant height. Unwanted vegetation, including weeds, can be less of interference by filtering the point 

cloud according to vegetation height. Consequently, the phenotyping process is significantly accelerated by gathering such data 

from the farm (Cui, 2020).  
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Two robotic platforms make up the architecture: a mobile observation tower (Vinoculer) and an autonomous ground vehicle 

(Vinobot). The observation tower monitors a whole field and identifies particular plants for the Vinobot to examine further, the 

ground vehicle gathers data from individual plants. This architecture has three benefits:  

 It enables the system to examine vast swaths of a field at any time of day or night while pinpointing particular areas impacted 

by biotic and/or abiotic stresses;  

 It offers high-throughput plant phenotyping in the field by acquiring precise and detailed data from groups or individual plants 

in a comprehensive or selective manner;  

 It does away with the need for costly and unwieldy aerial vehicles or similarly costly and constrained field platforms.  

            
Fig 8. Comparison between the 3D reconstruction of a corn plant by Visual SFM generated using different ways of collecting data 

(shafiekhani et al., 2018). 

 

 

Using concepts from RANSAC and Digital Elevation Models (DEM), a customized helicopter, Pheno-Copter, shown in Fig 7k, was 

used to estimate variations in the land cover of sorghum (early season), the temperature of cover in sugar cane (mid-season), and 

three-dimensional measures of crop lodging in wheat (late season). This demonstrated the ability to meet various levels of needs and 

image coverage (Chapman et al., 2014). The Ara robot from ecoRoboticx, Fig 7l, which is intended for scouting and phenotyping 

applications, can correct RTK/GPS via GSM/3G communication; however, it lacks algorithms and sensor solutions because it is 

made to be integrated with multiple sensors from various manufacturers. The robot, which weighs about 130 kg, can be controlled 

by a smartphone over WiFi or 3G/4G.  A summary of the previously described works is presented in Table 5.  

 

Table 5: Comparison of the robotic applications for phenotyping and yield estimation that were studied. 

Task Robot Final 

Application 

Location 

Sensors 

Sensors Used to 

Perform the Task 

Computer Vision 

Algorithm 

Yield 

Estimation 

Shrimp  Apple – RGB camera MLP and CNN 

VINBOT  Grape RTK, DGPS 

and LiDAR 

RGB and NIR 

cameras 

NDVI 

VineRobot  Grape – FA-Sense LEAF, 

FA-Sense ANTH, 

ultrasonic and 

RGB camera 

Chlorophyll-based 

fluorescence and 

RGB machine vision 

AgriBOT  Orange and 

sugar cane 

GPS/INS 

and LiDAR 

RGB camera – 

Agrob V14  Grape LiDAR RGB camera SVM 

Agrob V16  Grape RTK/GPS/INS 

and LiDAR 

Stereo, RGB-D 

and RGB cameras 

hLBP and SVM 

Hexapod  General farms – 2CO2 gas module, 

anemoscope and 

infrared distance 

sensor 

– 

Kubota farm vehicle  Grape GPS and IMU LiDAR Continuous-Time SLAM 
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Phenotyping TerraSentia  Corn RTK/GPS 

and LiDAR 

RGB camera LiDAR-based navigation 

Vinobot  Corn DGPS and LiDAR Stereo camera 

and environmental 

sensors 

VisualSFM 

Vinoculer  Corn – Stereo RGB 

and IR cameras 

and air temperature 

sensors 

VisualSFM 

Pheno-Copter  Sorghum, 

sugarcane and 

wheat 

– RGB and thermal 

cameras and LiDAR 

RANSAC and DEM 

Ara ecoRobotix  General farms RTK/GPS 

and compass 

RGB camera – 

 

 

 Sensors: Whether for phenotyping or yield estimate, the micro observation of each plant's biological phenomena necessitates 

specialized and extremely dependable sensors, such as RGB cameras, multispectral, Near-Infrared (NIR), IR, environmental, 

and fluorescence level detection sensors. 

 SLAM: The lack of GNSS-based systems, whether as a result of physical limitations, power supply restrictions, or vegetation 

height, drives advancements in SLAM approaches. Robots thus employ both natural (such as the creation of trajectories based 

on the average distance between rows and the direction of the airflow) and artificial (such as the use of RFID tags and wireless 

sensors) features to enhance navigation under these situations. Santos et al., (2020); Aguiar et al., (2020); Iqbal et al., (2020) 

provided detailed descriptions of a number of SLAM algorithms and path planning strategies for agricultural and forestry 

robots. 

 Artificial Intelligence: Vegetation indices (such NDVI and chlorophyll-based fluorescence) and artificial intelligence 

algorithms (like MLP, CNN, and SVM) can be applied based on the unique traits of each crop. As a result, it is necessary to try 

to strike a balance between the anticipated efficiency or outcome and the computational complexity level of the suggested 

strategy. 

 

III. DISCUSSION 

Following the identification and discussion of the primary robotic systems now in use or under investigation, a number of data were 

gathered for analysis. Thus, the research trends, typical challenges, indicators impeding commercial development, which nations are 

funding the development of these kinds of solutions, and, lastly, the ideal specifications for robotic agricultural systems will all be 

covered in this section. 

 

A. Agricultural Robots 

The majority of robotic systems applications in agricultural settings are focused on creating 4WD robots without robotic arms that 

are used to pull weeds and make use of RGB cameras, respectively. According to the research, even if 32.23% of the works employ 

RGB cameras, the majority of them lack or do not disclose the use of computer vision algorithms (Otsu method, HT, and CV). 86 % 

of the 62 initiatives that were examined are still in the research phase.  

Although Australia does not currently dominate the global market for agricultural output, its agricultural sector has been expanding 

every decade, according to FAO (2019). Notably, a significant portion of the research reviewed was conducted by Australian 

academics and businesses. Another intriguing finding is the distribution of research output by continent, highlighting the 

contributions of corporations and researchers worldwide. It is noteworthy that no research was conducted by researchers or 

businesses from Africa, a continent known for having the greatest rates of famine, poverty, and a shortage of skilled workers 

worldwide. 
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B. Unsolved Issues 

A number of suggestions are made to help future researchers to enhance the agricultural robotic systems that are now in use. The 

majority of agricultural robots, are 4WD; nevertheless, since the agricultural environment is categorized as semi-structured, as 

previously indicated by Santos et al. (2015), 4WD robots are significantly impacted by soil properties in this situation. According to 

Khan et al., (2018), there is still a significant trade-off between the price and quality of agricultural cameras. In contrast to the work 

done in the previous century, a variety of computer vision algorithms can now be used in high-performance embedded systems; 

nonetheless, there is still room for improvement in selecting the best algorithms for each kind of scenario. The IoT devices must be 

utilized in tandem with the robots since they are electronic systems that function in the same environment as the robots. Thus, the 

proposals can generally be categorized into four areas: communication technologies, sensors, computer vision techniques, and 

locomotion systems.  

 

C. Locomotion Systems 

The majority of agricultural robot mobility systems are 4WD. 

However, the features of the local terrain, including rocks and branches which have a significant impact on wheeled systems. 

Additionally, the continuous movement of these robots across the farm causes a high rate of soil compaction. Improvements in UAV 

flight duration may lead to a rise in their application in agricultural settings (Kim et al., 2019). Legged robots provide an additional 

option for moving around in unstructured areas (Oliveira et al., 2020; Bac et al., 2014). These robots have the advantage of being 

able to navigate in challenging areas since they don't require continuous touch with the ground to move about and may modify their 

posture in accordance with the terrain's slope (Oliveira et al., 2018; Selva et al., 2012). These robots are small, autonomous, 

relatively light, and have environment-adaptive movement patterns. The robots' feet have a tiny contact area, which puts a lot of 

pressure on the foot placement location even while it permits less damage to the ground. In this regard, legged robots must have 

specially designed foot-ground contact areas (based on the principles of soil mechanics) to decrease pressure (increasing the foot-

ground contact area) under the soil during locomotion in order to keep their feet from penetrating soft soils and becoming trapped. 

They are therefore less likely to be rejected by the agricultural market because they are widely used robotic platforms. 

 
Fig 9. Commercially accessible quadruped off-the-shelf legged robots 

 

D. Sensors 

The RGB camera was the most often utilized sensor in the examined works. Despite offering more information (depth, temperature, 

and more spectrum data), the RGB-D, thermal, hyperspectral, and multispectral cameras are more expensive, which prevents their 

widespread use. Temperature, humidity, and dust incidence can all directly affect how well sensors work in an agricultural setting. 

The trade-off between quality and financial cost must be determined based on the minimal system which is needed to be 

constructed. In this regard, the creation of sensors with high Ingress Protection (IP) (IP65, IP66, or IP67), which function in a wide 

range of temperatures and humidity levels and are primarily inexpensive, may help in building agricultural robotic systems that are 

more resilient to changes in weather (rain and sun), thus prolonging their useful lives. 

 

E. Computer Vision Algorithms 

By using artificial intelligence algorithms (like MLP, CNN, R-CNN, R-YOLO, and SVM) and crop characteristics (like ExG-ExR, 

NDVI, Chlorophyll-based fluorescence, and RGB/thermal/hyperspectral/multispectral images), diseases, weeds can be detected, 

herbicides and pesticides can be applied selectively, fruits and vegetables can be located, ripeness (ripe/unripe) can be classified and 

yield can also be estimated. Once more, the efficacy of the computer vision algorithm may be hampered by the crop's short-term 

(ambient lighting) and long-term (seasons) fluctuations. Therefore, it is suggested to develop new computer vision algorithms or 

enhance existing ones that can adjust to the short-term and long-term changes of the crops and are designed to run on low-cost and 

processing-power devices. 
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F. IoT-Based Smart Agriculture 

The idea of smart agriculture must be closely related to the usage of IoT technology, just as the idea of smart cities (Oliveira et al., 

2020; Oliiveira et al., 2019). A high degree of adaptation to the quick changes in natural illumination, seasons, and crop growth was 

shown by the application of several artificial intelligence systems, including CNN. Therefore, the many ways that IoT devices are 

integrated into agricultural activities along with the different kinds of AI algorithms and the many robotic systems that are reviewed 

and discussed in this article, may help to improve process control, monitoring, preservation, and standardization (Neumann et al., 

2018; Cui et al., 2020). Accurate multipurpose systems that address both short-term (harvest monitoring) and long-term (yield 

estimation) issues may be developed. Furthermore, IoT sensors allow for the exchange of Machine-to-Machine (M2M) data, 

integrating them with mobile robots holds significant promise for advancing the ideas of parallelism and swarming of robots. 

 

IV. CONCLUSIONS 

In order to determine the actual needs for changes, it is necessary to first understand the major existing works in the field of smart 

agriculture, highlighting their benefits, drawbacks, and typical faults before proposing new technical and scientific advancements. 

37% of agricultural robotic systems are 4WD, 64.52% lack a robotic arm, 22.06% are used for weeding tasks, 32.23% use RGB 

cameras, 35.48% do not include/report computer vision algorithms, 80.65% are in the research stage, 16.67% are designed by 

Australian companies/researchers, and 41.94% are developed by countries on the European continent, according to a systematic 

review of agricultural robotic systems used in the execution of land preparation before planting, sowing, planting, plant treatment, 

harvesting, yield estimation, and phenotyping. Simple and effective computer vision algorithms, parallelism, the swarm of robots, 

the limited use of the off-the-shelf concept, and multipurpose platforms that suitably adjust to the crop type under study were the 

primary features noted. Four primary areas have been suggested for further research in order to enhance the current agricultural 

robotic systems: sensors, computer vision algorithms, locomotion systems, and Internet of Things-based smart agriculture. This 

study examined numerous agricultural robotic systems. Given that the average harvest success rate increased by 22.98% and the 

average harvesting robot cycle decreased by 42.78% between 2014 and 2021. Thus, it is anticipated that as the aforementioned areas 

improve, agricultural robotic systems will continue to advance in terms of efficiency and robustness. Therefore, it is thought that 

this work was able to correlate the benefits of investing in technologies that serve as instruments for changing nature in addition to 

demonstrating the noteworthy advancements in the field of mobile robots.  
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