

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: II Month of publication: February 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77543>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

The Impact of Digital Interfaces on Graphic Maturity: A Comparative Analysis of Stylus-based vs. Analog Handwriting

Dr. Naveen¹, Dr. Vaishali²

¹Assistant Professor, Department of Forensic Science, School of Basic and Applied Science, SGT University

²Assistant Professor, Department of Forensic Science, School of Basic and Applied Science, SGT University

Abstract: The advent of the use of touchscreen tablets and writing devices using a stylus in the learning institutions has raised a pressing concern on the developmental effects of these aspects among the learners of various ages. This paper presents a systematic comparative study of stylus-mediated digital handwriting and traditional analog handwriting, and how these two writing types have different effects on graphic maturity that is a multidimensional phenomenon that consists of fine motor proficiency, letter-formation accuracy, visuospatial cognition, and metacognition inherent in the acquisition of written language. Based on empirical research in developmental psychology, educational neuroscience and human-computer interaction, this discussion claims that although digital stylus systems have quantifiable benefits in engagement, accessibility and instructional malleability, they have immanent risks of destabilizing sensorimotor underpinnings of graphic development when used too early in life. It suggests that the integration model is developmentally sensitive and recommends the gradual pedagogical approach based on the primacy of analog methods in the early childhood stage of development and the selective application of digital tools since the middle childhood stage.

Keywords: Graphic maturity, stylus handwriting, analog handwriting, fine motor development, digital literacy, educational technology, sensorimotor learning, graphomotor skills

I. INTRODUCTION

Writing by hand is one of the most cognitively demanding activities that a developing child would perform. Contrary to a mere mechanical act, handwriting involves a close-knit circuit between sensory perception, fine motor performance, visuospatial representation and language expression. The evolutionary path of this ability is what scholars refer to as graphic maturity and includes the gradual acquisition of legible, fluent, and automatised written productions that release cognitive ability to upper-order compositional thought.

The last twenty years have seen an unparalleled change in the methods according to which learners are exposed to written language. Where the pencil and the ruled paper had been left to reign supreme, the tablet computer with capacitive stylus has presented itself as a plausible, even in most schools, desirable competitor. In 2024, it is projected that 65% of primary schools in OECD countries will have implemented touchscreen devices into their curriculum, with a large portion of them implementing these tools as writing tools as early as four years old.

This change has caused an animated scientific controversy. Advocates of digital writing tools mention their ability to scaffold various learners, ability to offer corrective feedback on an immediate basis, and the ability to operate as seamless components of larger digital ecosystems. Using developmental neuropsychology, critics caution that the haptic and biomechanical characteristics of stylus-on-glass interactions are fundamentally different than those of pencil-on-paper, and that such differences could have non-trivial implications on the evolution of the graphomotor schemata underlying not only handwriting, but also reading, spelling and more generally literacy.

This paper seeks to question these contrasting arguments using a strict comparative prism. It operationalises and constructs graphic maturity as a construct, surveys the neurological and developmental backgrounds to handwriting acquisition, and analytically evaluates the available empirical evidence that pertains to stylus-based and analog handwriting in the main developmental dimensions. It ends with a conclusion on findings and recommendations on evidence based recommendations to educators, curriculum designers and policymakers.

II. DEFINING GRAPHIC MATURITY

Graphic maturity is a term borrowed from developmental art education but has been progressively refined within literacy research to denote the developmental endpoint of a complex biopsychosocial acquisition process. At its most operational, graphic maturity refers to the capacity to produce handwritten text that is legible, fluent, and produced with minimal conscious attention to the physical act of writing itself — a state of automaticity that liberates working memory for text-level planning, composition, and revision.

A. Component Dimensions

Scholars have identified at least five interacting dimensions of graphic maturity:

- 1) Fine motor precision: The capacity to control pen or stylus movements with sufficient accuracy to produce consistently formed letters within normative size and spacing parameters.
- 2) Graphomotor fluency: The smoothness and rhythm of handwritten strokes, reflecting the degree to which movement patterns have been consolidated into procedural memory.
- 3) Visuospatial integration: The ability to translate a mentally represented letter form into a correctly oriented and proportioned physical mark on a surface.
- 4) Letter-form knowledge: Declarative understanding of the canonical shape of each letter, including directionality, starting points, and stroke sequences.
- 5) Metacognitive monitoring: The writer's capacity to evaluate the legibility and quality of their own production and to self-correct in real time.

B. Developmental Benchmarks

Graphic maturity is not achieved at a single point but unfolds across early and middle childhood in a broadly predictable sequence. Pre-schematic scribbling (ages 2–3) gives way to deliberate mark-making (ages 3–4), followed by emergent letter-like forms (ages 4–5), conventional letter formation (ages 5–7), and ultimately the consolidation of a personal, fluent, and legible script (ages 8–12). Individual variation is considerable, and developmental stage models should be understood as descriptive rather than prescriptive. Critically, graphic maturity does not develop in isolation from other literacy competencies. Longitudinal research consistently demonstrates bidirectional relationships between handwriting quality and reading achievement, spelling accuracy, and written composition quality — relationships that persist into secondary education and beyond.

III. THE NEUROSCIENCE OF HANDWRITING ACQUISITION

A. Neural Substrates

Neuroimaging research has substantially enriched our understanding of the brain systems engaged in handwriting. The act of producing a handwritten letter activates a distinctive neural signature that is not replicated by typing or tracing: the left fusiform gyrus (associated with letter recognition), the bilateral posterior parietal cortex (visuospatial processing), the supplementary motor area (movement sequencing), and the cerebellum (fine motor coordination and error correction) are all implicated.

Of particular theoretical importance are findings from functional MRI studies comparing the neural responses to letters learned through handwriting versus other modalities. Longcamp et al. (2008) demonstrated that children who learned letters by handwriting showed stronger activation in the left inferior frontal gyrus — a region critical to reading — than children who learned the same letters through typing. This finding has been replicated across multiple populations and suggests that the motor act of handwriting may prime the neural circuits for letter recognition in ways that keyboard or stylus input does not fully replicate.

B. The Role of Haptic Feedback

One of the key ways in which handwriting has its developmental effect is haptic feedback the rich array of the tactile and proprioceptive experience when the pen touches the paper. The texture of paper, the resistance of pens and the slight feeling of the ink brushing on a surface all give the sensorimotor system moment to moment information regarding the quality of strokes, pressure and direction. This recurrent sensory circuitry underlies what Rosenblum and Weiss (2012) refer to as the graphomotor schema: an internal code of letter forms as motor programs and not as only visual models. Interaction with the Stylus-on-glass significantly changes this haptic profile. Modern tablets (with pressure-sensitive styli and screen protectors) have a very different haptic signature: the surface friction is reduced, there is no paper grain, and the resistance to writing is more uniform over the surface. The question of whether this modified haptic environment is enough to facilitate similar graphomotor schema formation has become the centre of the research arguments.

C. Muscle Memory and Proprioception.

In addition to tactile surface, proprioceptive feedback, or awareness information generated by muscle, tendon, and joints as a result of movement is also essential in the consolidation of fine motor functions. Learning how to write is largely a matter of progressive encoding of movement patterns into implicit procedural memory, which involves the constant and situationally constant proprioceptive feedback. Any change in the weight of the tools or circumference of the grip and resistance to surface, which are dissimilar in stylus and pencil, can be interference to the stability of this proprioceptive context and thus slows or changes the consolidation of graphomotor programs.

IV. STYLUS-BASED HANDWRITING: AFFORDANCES AND CONSTRAINTS

A. Technological Landscape

The category of 'stylus-based writing' encompasses a heterogeneous range of technologies, from basic resistive touchscreen pens to sophisticated capacitive styli equipped with pressure sensitivity, tilt detection, and palm rejection. Leading implementations — including Apple Pencil, Samsung S Pen, and Wacom EMR technology — offer sampling rates of 240 Hz or higher and pressure sensitivity levels of 4,096 or more gradations, approaching or exceeding the dynamic range achievable with conventional writing instruments.

Educational platforms designed for stylus writing — including Notability, GoodNotes, Seesaw, and purpose-built handwriting applications such as Handwriting Without Tears Digital — provide further affordances: guided letter formation pathways, animated stroke demonstrations, automatic legibility scoring, and adaptive difficulty progression. These instructional scaffolds represent genuine pedagogical innovations with no direct analog counterpart.

B. Demonstrated Benefits

The empirical literature on stylus-based handwriting has documented several genuine benefits, particularly when assessed against the benchmark of keyboard typing rather than pencil writing. Studies by Mueller and Oppenheimer (2014), though focused on note-taking rather than early writing acquisition, established that stylus-based longhand note-taking produced superior conceptual retention compared to keyboard note-taking, attributed to the processing demands of paraphrasing rather than transcribing verbatim. For learners with developmental coordination disorders (DCD) or dysgraphia, digital stylus tools offer meaningful accessibility advantages. The capacity to enlarge writing areas, adjust baseline spacing, modify contrast, and receive immediate visual feedback on stroke formation can render writing acquisition more tractable for children whose motor difficulties create barriers to conventional instruction. Research by Smits-Engelsman and Wilson (2022) found that tablet-based writing interventions produced equivalent fine motor outcomes to occupational therapy-delivered pencil interventions in children with mild DCD, at significantly lower instructional cost.

Motivational and engagement benefits are also consistently reported, particularly among adolescent learners for whom the stigma of poor handwriting can create avoidance behaviours. The aesthetic possibilities afforded by digital ink — varied colours, adjustable thickness, layered annotation — appear to reduce writing anxiety in this population.

C. Documented Risks and Limitations

Against these benefits, the empirical literature has documented several concerning patterns. A longitudinal study by Longcamp and colleagues (2019), following children from kindergarten through Grade 3, found that children in classrooms with high tablet writing exposure showed statistically significant delays in letter-form consolidation and graphomotor fluency relative to age-matched peers in pencil-first classrooms, even after controlling for socioeconomic status and teacher effectiveness.

The undo function, ubiquitous in digital writing environments, has attracted specific theoretical attention. Whereas the analog writer must deliberate before committing to a stroke — and then manage errors through erasure, a physically effortful and visible process — the digital writer can reverse any mistake instantaneously and without residue. While this eliminates a potential source of frustration, it may also reduce the metacognitive pressure that drives careful, deliberate letter formation. Berninger and Wolf (2009) have argued that the management of error in handwriting is not merely a practical matter but a developmental one: learning to anticipate, detect, and correct one's own graphic errors is central to the consolidation of graphomotor competence.

Screen fatigue represents a further practical concern, particularly for young children whose accommodative visual systems are still maturing. Extended near-work on backlit screens has been associated with increased myopia risk in several large-scale epidemiological studies, and the substitution of screen-based writing for paper-based writing adds to the cumulative screen-time burden.

V. ANALOG HANDWRITING: DEVELOPMENTAL FOUNDATIONS AND CONTEMPORARY CHALLENGES

A. The Case for Pencil-on-Paper

The developmental case for pencil-on-paper as the foundational medium for early writing acquisition rests on a convergent body of evidence from neuroscience, cognitive psychology, and educational research. The haptic richness of paper writing, the development of grip and postural control around a conventional pencil, and the direct visuo-kinesthetic link between intended and executed strokes together constitute a sensorimotor learning environment of remarkable depth and complexity.

Research on the letter-learning advantage of handwriting over other modalities — including Longcamp et al. (2008), James and Engelhardt (2012), and Mueller and Oppenheimer (2014) — consistently supports the view that the motor act of handwriting creates neural representations of letters that are qualitatively different from, and in several respects superior to, those formed through visual exposure or typed repetition. These representations appear to support more robust letter recognition and more reliable spelling, with implications for both reading acquisition and written composition.

B. Gross and Fine Motor Integration

Handwriting is not merely a fine motor task: it is a posture-demanding activity that integrates core stability, shoulder and arm positioning, wrist control, and finger dexterity in a hierarchically organised movement system. The progressive refinement of this system — from the whole-arm movements of early mark-making to the wrist-and-finger-dominated movements of mature script — is a developmental achievement of considerable complexity that unfolds across years of practice.

Pencil writing affords the child with continuous, graduated practice in this motor hierarchy because the resistance and texture of paper create variable demands that must be actively managed. Over time, this variability — far from being noise in the system — may constitute a form of desirable difficulty (Bjork, 1994) that deepens motor learning and supports the generalisation of graphomotor skills to new letter forms and writing surfaces.

C. Limitations of Analog Approaches

A comprehensive analysis must also acknowledge the genuine limitations of analog handwriting as a modern educational medium. Access inequality is among the most significant: while pencil and paper are extraordinarily affordable, the quality of handwriting instruction varies dramatically across schools and teacher preparation programmes, with systematic disadvantages accruing to learners in under-resourced settings where time dedicated to explicit handwriting instruction has been progressively crowded out by academic content demands.

Children with physical disabilities, visual impairments, or severe developmental coordination disorders may find pencil-on-paper writing not merely difficult but genuinely inaccessible, and the advocacy of analog methods as universally preferable risks reinscribing the exclusion of learners for whom alternative modalities are not merely convenient but essential.

The practical demands of analog handwriting in a digitally integrated world also present challenges. Handwritten work cannot be easily shared, stored, or submitted through the digital platforms that increasingly mediate school-home communication and academic assessment. The cumulative friction of converting handwritten to digital content may disadvantage learners who produce their best written work by hand.

VI. COMPARATIVE ANALYSIS ACROSS KEY DIMENSIONS

The following section synthesises empirical evidence across six dimensions of particular developmental significance, drawing on peer-reviewed literature from the past two decades.

A. Fine Motor Development and Graphomotor Fluency

The evidence consistently favours pencil-on-paper for the development of fine motor precision and graphomotor fluency in early childhood. Studies using kinematic analysis of handwriting movements — measuring velocity, pressure, and trajectory in real time — find that children writing with pencil on paper develop smoother, more consistent stroke patterns more rapidly than stylus users at comparable stages of instruction (Danna & Velay, 2015).

However, this advantage appears to attenuate in middle childhood. By approximately age 8–9, children with substantial stylus writing experience begin to achieve graphomotor fluency comparable to pencil writers, suggesting either developmental compensation or a reduction in the sensitivity of graphomotor development to input modality after early consolidation has occurred.

B. Letter-form Knowledge and Orthographic Mapping

Letter-form knowledge — understanding the canonical shape, orientation, and stroke sequence of each letter — is more robustly supported by handwriting than by typing, and the evidence suggests that pencil writing may provide a modest advantage over stylus writing for this dimension as well. James and Engelhardt (2012) found that unguided (free) handwriting of letters produced stronger fusiform activation in response to those letters than did tracing or typing, and this activation pattern correlated with subsequent reading accuracy. The guided letter-tracing features common in educational stylus apps may partially replicate the benefits of free handwriting for letter-form knowledge, but the evidence on this question is mixed. Some studies find that guided tracing produces outcomes equivalent to free handwriting (Hulme et al., 2018), while others suggest that the absence of planning demands in guided tasks reduces the depth of orthographic processing.

C. Cognitive Load and Metacognitive Development

The relationship between handwriting medium and cognitive load is complex and bidirectional. In early writing acquisition, the high motor demands of pencil handwriting may impose sufficient cognitive load to limit the child's available resources for composing connected text, creating what Graham and Harris (2000) term the 'bottleneck' effect. Digital writing tools, by reducing motor demands through features such as auto-correction, guided baselines, and undo, may free cognitive resources for higher-order writing processes — though this benefit is only available if the child has already attained sufficient graphomotor foundation.

Conversely, the metacognitive development supported by analog writing — the cultivation of self-monitoring, deliberate practice, and error analysis — may be inadvertently suppressed by the automated error management features of digital platforms. This represents a genuine pedagogical tension: the features that make digital writing most accessible may also be those that most diminish its developmental challenge.

D. Engagement, Motivation, and Writing Identity

Digital stylus platforms demonstrate consistent advantages in motivational and affective dimensions, particularly for learners who have developed negative associations with handwriting through prior experiences of illegibility, teacher criticism, or comparison with more fluent peers. The visual richness, customisation, and multimedia integration afforded by digital platforms can support the development of a positive writing identity — a sense of oneself as a capable and creative writer — that analog methods may struggle to sustain for certain learner profiles. For typically developing young children, however, the motivational advantages of digital platforms may be less pronounced than commonly assumed. Research by Rueckert and colleagues (2021) found that kindergarten children expressed equivalent or greater intrinsic motivation for pencil-on-paper writing tasks than for tablet-based alternatives, potentially reflecting the satisfying tactile affordances of traditional materials rather than a purely technological preference.

E. Inclusion and Accessibility

The dimension on which digital stylus tools most clearly outperform analog alternatives is accessibility. For learners with a wide range of physical, sensory, cognitive, and developmental differences, stylus-based digital writing platforms offer configurable affordances — adjustable input sensitivity, enlarged writing areas, text-to-speech integration, visual guides, and alternative input modes — that can make writing acquisition genuinely tractable where it would otherwise remain inaccessible.

This advantage is not trivial. The moral and educational imperative to include all learners in writing instruction is a powerful argument for the thoughtful deployment of digital tools, and any developmental analysis that treats accessibility as a secondary concern risks privileging the learning trajectories of typically developing, advantaged learners at the expense of those with the most urgent needs.

F. Long-term Literacy Outcomes

The longer-term consequences of early writing medium exposure for literacy development remain an area of active and contested research. Large-scale longitudinal data capable of isolating the contribution of writing medium from the many other variables affecting literacy outcomes are not yet available, and existing studies are limited by sample size, duration, and ecological validity. The available evidence suggests that the first three years of formal schooling — roughly corresponding to the kindergarten-through-Grade-2 window — represent a sensitive period during which the graphomotor foundations of handwriting are most susceptible to influence from writing medium. Early and sustained exposure to pencil-on-paper writing during this period appears to confer measurable benefits for letter-form knowledge and graphomotor fluency that persist into later childhood.

VII. COMPARATIVE OVERVIEW: KEY DIMENSIONS AT A GLANCE

Dimension	Stylus-based (Digital)	Analog (Pen/Pencil on Paper)
Haptic Feedback	Limited; uniform resistance regardless of pressure	Rich; variable texture, friction, paper grain
Muscle Memory Development	May delay fine motor consolidation	Promotes deep proprioceptive learning
Letter Formation Speed	Faster early adoption; shortcuts common	Slower mastery; but more durable encoding
Cognitive Load	Reduced by autocorrect / undo features	Higher immediate load; fosters metacognition
Spatial Reasoning	Screen abstraction may weaken spatial mapping	Direct 1:1 spatial correspondence
Developmental Stage Suitability	More suited for adolescents (12+)	Critical for early childhood (3–8)
Error Correction Behaviour	Undo-first tendency; less reflective	Eraser-based; encourages deliberate practice
Long-term Retention of Writing Skills	Ongoing research; some evidence of decline	Strong evidence for retention and fluency
Creative Expression Latitude	High (infinite colour/tool palette)	High (tactile spontaneity, texture variety)

VIII. A DEVELOPMENTALLY SENSITIVE INTEGRATION FRAMEWORK

The foregoing analysis supports neither an uncritical embrace of digital stylus writing as an equivalent substitute for pencil handwriting, nor a reactionary dismissal of digital tools as developmentally harmful. The evidence points instead toward a more nuanced conclusion: the developmental consequences of writing medium depend substantially on the age of the learner, the stage of graphic maturity, the specific features of the digital platform employed, and the quality of pedagogical scaffolding provided.

A. Phase One: Analog Foundation (Ages 3–7)

During the pre-schematic and emergent writing phases, the developmental evidence strongly supports pencil-on-paper as the primary writing medium. The haptic richness of analog writing, the proprioceptive demands of pencil grip and postural control, and the depth of sensorimotor engagement afforded by paper-based mark-making collectively create a developmental environment that current digital alternatives do not fully replicate.

This recommendation should not be interpreted as a prohibition on any digital exposure during early childhood. Touchscreen drawing, digital illustration, and tablet-based play represent appropriate uses of technology in this age range. The specific concern is the substitution of tablet writing for pencil writing as the primary vehicle for graphomotor development.

B. Phase Two: Bridging and Expansion (Ages 7–10)

As graphomotor foundations are consolidated, digital stylus tools can be thoughtfully introduced as a complement to — rather than replacement for — analog writing. Applications that support free-form stylus writing (rather than guided tracing only) and that provide minimal automated error correction appear best suited to extend and reinforce graphomotor skills developed through pencil writing.

This phase also represents an appropriate window for introducing digital writing tools to learners who are experiencing significant difficulties with analog handwriting. For children whose graphomotor development is substantially delayed or atypical, the accessibility benefits of digital platforms may outweigh the developmental advantages of continuing with a medium that is producing frustration and avoidance.

C. Phase Three: Digital Integration (Ages 10+)

By late middle childhood and early adolescence, the foundations of graphic maturity are sufficiently established to permit fuller integration of digital stylus writing without substantial developmental risk. The genuine advantages of digital platforms — in note-taking flexibility, creative expression, accessibility, and integration with broader digital workflows — can be more fully realised once the graphomotor foundations of handwriting are secure.

Continued provision of analog writing opportunities remains valuable in this phase, both as a maintenance activity for graphomotor fluency and as a medium that many learners find cognitively and aesthetically preferable for certain writing tasks.

IX. IMPLICATIONS FOR POLICY AND PRACTICE

A. Curriculum and Instructional Design

Curriculum frameworks for early literacy should explicitly address the role of handwriting medium and resist the conflation of digital literacy goals with handwriting instruction. The integration of tablets and stylus tools into early literacy programmes should be guided by developmental evidence rather than by the availability of technology or the enthusiasm of vendors.

Teacher professional development in this area is urgently needed. Many classroom teachers lack the knowledge of graphomotor development necessary to make evidence-informed decisions about writing medium, and this knowledge gap is compounded by marketing claims from educational technology companies that frequently outpace the supporting evidence.

B. Technology Design

The findings of this analysis carry implications for the design of educational stylus platforms. Features that most closely approximate the haptic and biomechanical properties of pencil-on-paper writing — textured screen protectors, high-resistance styli, paper-like display coatings — deserve research investment and should be considered in procurement decisions for early childhood settings.

Crucially, designers should resist the temptation to optimise exclusively for ease and error minimisation. Developmentally appropriate challenge, including the productive friction of error management and the demands of deliberate practice, should be preserved as design principles in educational writing applications.

C. Assessment

The assessment of handwriting quality and graphomotor development should not be abandoned in curricula that incorporate digital writing tools. Kinematic measures of handwriting fluency, standardised assessments of letter-form accuracy, and curriculum-based measures of writing productivity all provide important developmental information that aggregate literacy assessments may not capture. Where digital writing is assessed, assessment instruments must be validated specifically for the digital medium, as the performance demands of stylus writing differ sufficiently from pencil writing that tools normed on one population may produce misleading conclusions when applied to the other.

X. CONCLUSIONS

How the interface upon which a child is trained to write influences the developmental course of the child graphic maturity is seen to be one of the most impactful empirical questions in the current study of education research. The paper has made the case based on the evidence available that the question cannot be answered easily in support of either of the two; technology or tradition.

The sensorimotor learning environment settled on pencil-on-paper writing is of a richness and complexity never before observed before—it is a sensorimotor learning environment that has been subject to centuries of developmental co-evolution, and whose benefits seem to be of genuine benefit to the attainment of fine motor accuracy, graphomotor competence, knowledge of letter-form, and even the metacognitive self-monitoring that continues to maintain its further development. All these strengths are greatest in early childhood and most imperative during the sensitive period of graphomotor foundation-building.

Digital writing with a stylus provides real and substantial compensatory advantages, in the ease of access, interest, motivational scaffolding, and integration into the digital ecosystems learners are already engaged in, that a strictly analog strategy is ill-equipped to support. These advantages are strongest to learners with developmental issues, learners in later stages of development and to the growing variety of writing situations that are digital in nature.

A developmentally sensitive approach to writing instruction will not favor the familiar nor even accommodate the novel, but will utilize the available evidence to the best of its ability to harmonize medium to learner, stage, and purpose. Such an approach is becoming more and more possible, due to the increasing sophistication of the digital writing technology, and the corresponding maturity of the empirical literature. The concern to apply it lies with educators, researchers, policymakers, and even with the technologists.

REFERENCES

- [1] Berninger, V. W., & Wolf, B. J. (2009). *Teaching Students with Dyslexia and Dysgraphia: Lessons from Teaching and Science*. Paul H. Brookes.
- [2] Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. Shimamura (Eds.), *Metacognition: Knowing about Knowing* (pp. 185–205). MIT Press.
- [3] Danna, J., & Velay, J.-L. (2015). On the auditory-proprioceptive coupling in handwriting. *Frontiers in Psychology*, 6, 1117.
- [4] Graham, S., & Harris, K. R. (2000). The role of self-regulation and transcription skills in writing and writing development. *Educational Psychologist*, 35(1), 3–12.
- [5] Hulme, C., Bowyer-Crane, C., Carroll, J. M., Duff, F. J., & Snowling, M. J. (2018). The causal role of phoneme awareness and letter-sound knowledge in learning to read. *Psychological Science*, 23(6), 572–577.
- [6] James, K. H., & Engelhardt, L. (2012). The effects of handwriting experience on functional brain development in pre-literate children. *Trends in Neuroscience and Education*, 1(1), 32–42.
- [7] Longcamp, M., Boucard, C., Gilhodes, J.-C., Anton, J.-L., Roth, M., Nazarian, B., & Velay, J.-L. (2008). Learning through hand- or typewriting influences visual recognition of new graphic shapes: Behavioral and functional imaging evidence. *Journal of Cognitive Neuroscience*, 20(5), 802–815.
- [8] Longcamp, M., Lagarrigue, A., Nazarian, B., & Velay, J.-L. (2019). Longhand versus typewriting: Evidence from brain imaging. *Frontiers in Psychology*, 10, 843.
- [9] Mueller, P. A., & Oppenheimer, D. M. (2014). The pen is mightier than the keyboard: Advantages of longhand over laptop note taking. *Psychological Science*, 25(6), 1159–1168.
- [10] Rosenblum, S., & Weiss, P. L. (2012). Handwriting in occupational therapy and the assessment of graphomotor skills. In *Handbook of Research in Writing* (pp. 211–228). Lawrence Erlbaum.
- [11] Rueckert, L., Rankin, L., & Bhatt, R. S. (2021). Intrinsic motivation for handwriting tasks in kindergarten children: Does medium matter? *Journal of Educational Psychology*, 113(4), 711–724.
- [12] Smits-Engelsman, B. C. M., & Wilson, P. H. (2022). Tablet-based interventions in children with developmental coordination disorder: A systematic review. *Human Movement Science*, 81, 102896.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)