

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: I Month of publication: January 2026

DOI: <https://doi.org/10.22214/ijraset.2026.76789>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

The Role of AI and Machine Learning in Shaping Immersive Virtual and Augmented Realities

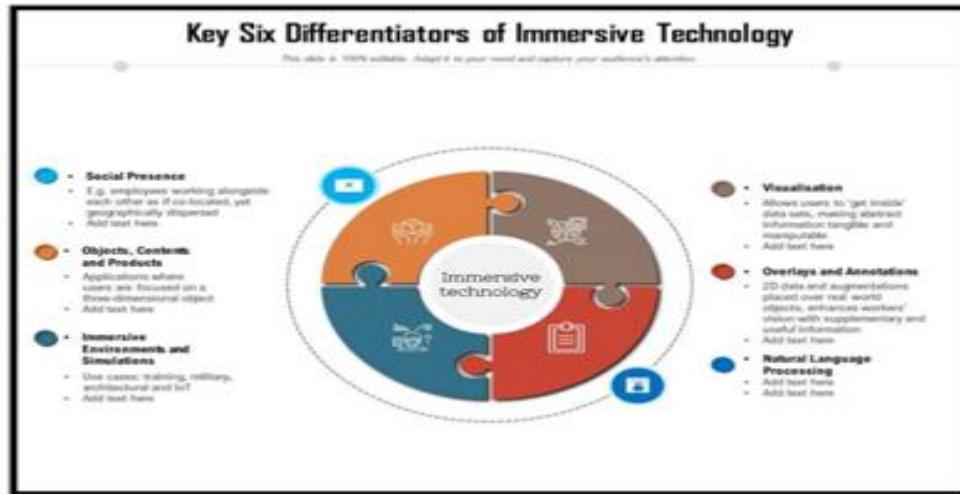
Mrs. N. Dhanapriya¹, Mrs. T. Nivetha²

Assistant Professor, Department of Computer Applications, Hindusthan College of Arts & Science

Abstract: The educational system is made up of teachers, who play an active role. The pandemic introduced us to online education. In order to infuse educational behavior and attitude with values, educators improvise with students. The significance of education's lifelong learning is universal and never-ending. The broad context of artificial intelligence (AI) aids in the development of educational strategies for contemporary scenarios. In order to redesign educational policies and implement innovative learning and teaching strategies in educational establishments, educators can use it to benchmark and develop critical analysis skills. In this paper, an intelligent, interactive, and immersive digital application was designed, and the various psychological parameters of users while using the application were analyzed through the brain computer interactive devices. Important information can be derived through the use of data analytics, allowing for more informed rendering process decision-making. Additionally, AI techniques, such as neural networks and deep learning, can be employed to learn from the collected data and generate more accurate rendering models and algorithms.

Keywords: AI techniques, Immersive digital, Decision-making, Interactive devices, Neural.

I. INTRODUCTION


Immersive technologies create distinct experiences by merging the physical world with a digital or simulated reality. Virtual reality (VR) and augmented reality (AR) are the two most common forms of immersive technologies. Numerous similarities exist between these technologies.

VR, on the other hand, uses computer-generated information to provide a full sense of immersion while augmented reality (AR) blends computer-generated information onto the user's actual environment. Gaming is where the majority of investments in immersive technologies have been made. Numerous gaming companies have developed VR games since Oculus Rift. Beat Saber, one of the most popular games, sold one million copies in nine months. Surgeons are already using augmented reality (AR) headsets to visualize where to make incisions on the body and pull up patient health information during operations. Healthcare has also been at the forefront of immersive technology adoption. In education, augmented reality is enabling students to visualize interactive elements and text in lectures. In a similar vein, students can use Google Expeditions to go on "field trips" without leaving the classroom. VR is being used by businesses to train workers, increase employee creativity when designing products, and enable coworkers to collaborate on products without actually having them in their hands. Immersive technologies are also being developed by the defense industry. While augmented reality (AR) is utilized on the battlefield and for mapping and communication between offices, virtual reality (VR) is used to train soldiers in a virtual environment that resembles actual encounters. In marketing, companies are implementing VR to enable the consumer to interact.

Artificial Intelligence (AI) models are revolutionizing various industries and becoming essential for businesses seeking to leverage cutting-edge technology for improved efficiency and accuracy. To get the most out of these intelligent machine learning algorithms, businesses must, however, have a solid understanding of the specifics of AI model training methods. Algorithms that can learn to recognize patterns in data are the focus of DL. In order to comprehend the scope and complexity of these technologies, it is essential to comprehend the distinctions between Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL).

Machines that can imitate human intelligence are referred to as artificial intelligence (AI). AI has revolutionized various industries, from healthcare and finance to transportation and entertainment, by enabling automation, data-driven insights, and enhanced decision-making.

Machine Learning (ML) is a subset of AI that focuses on training machines to learn from experience or data. Machines can understand language, recognize objects, recognize patterns, and even predict human behavior through machine learning (ML).

1.1 Immersive Technology

II. LITERATURE REVIEW

Immersive techniques are based on the idea that AI and other immersive technologies play a significant role in education. Future research could use quantitative methods to test the impact of these technologies, making the study more generalizable. This approach could be applied to all AI-based teaching and learning tools, helping to explore this field further. With the help of an augmented reality (AR) system, learners can interact with 3D information, objects, and events in a natural way, supporting their development [1].

As AR technologies become more affordable and accessible than virtual reality (VR), there will be more software and services developed for mobile devices that can support them. This trend is expected to lead to a major growth in the immersive technology market. Areas such as immersive learning environments, interactive 3D models, and training simulations for surgeons are likely to see significant improvements in the healthcare and education sectors [2].

The terms "artificial" and "intelligent" are often used together. Artificial intelligence teaches machines to think, aiming to create intelligent systems that can learn, solve problems, and make decisions like humans. Even when using a headset, VR users feel immersed in a virtual environment, creating the sense of being in the real world [3].

Integrating AI into diagnosing and treating autism spectrum disorder (ASD) has the potential to revolutionize the field. Using AI for personalized therapy, early detection, and support for parents can greatly reduce the challenges faced by individuals with ASD. It is important to address ethical issues and ensure fair access to these tools. By combining AI technology with human expertise, those with ASD and their families can receive more effective and comprehensive care [4].

AI and machine learning techniques are used for content-aware rendering. These algorithms analyze scene content and automatically improve aspects such as lighting, texture, and visual effects. This makes the rendering process more intelligent and efficient, saving time and effort for artists and designers. The integration of big data, AI, and machine learning was discussed in this chapter [5].

A major challenge is developing practical use cases for multimedia data due to slow security methods, which are limited by the computational power of wearable devices and complex encryption processes. Offline operations, like medical research, can handle longer processing times, while online applications require quick responses. This solution is becoming more important for protecting the privacy and security of data collected from wearable devices. Industrial applications are expected to grow as cryptographic and security algorithms [6].

The connection between cognition and digitization is not always consistent, especially when it comes to knowledge, particularly in psychology. Because it involves speculation, this area is very precise yet highly subjective and deserves close attention. It can be a useful step towards reforming education [7].

Humans will still need to learn how to work together. The main gap between artificial and augmented intelligence comes from the limitations of current AI systems in perception, natural language communication, mathematical reasoning, and data interpretation. These areas should be prioritized in the development of Industry 5.0 [8].

AI can help extend AR applications from controlled environments to more general, unrestricted settings. Additionally, since AI can interpret incoming video feeds to do tasks like detection and tracking simultaneously, the latency of AR systems can be greatly reduced through parallel processing. We expect faster adoption of AI in AR-assisted manufacturing once it is integrated throughout the AR process [9]. The combination of AR and AI has filled a significant gap in existing research and set a new standard in interactive technology. A key finding is that AR can greatly increase user engagement, especially when combined with context-aware and responsive interactions enabled by AI [10].

III. EXISTING SYSTEM

E-Rendering presents opportunities for future directions in addition to a number of significant obstacles. One challenge is the efficient processing and rendering of increasingly complex and data-intensive multimedia content, such as high resolution images and interactive 3D models, which requires optimized algorithms and scalable infrastructure. Real-time rendering capabilities are required to support interactive and immersive e-learning experiences, which presents another obstacle. In addition, for seamless rendering, it is essential to guarantee compatibility and interoperability among various software, platforms, and devices. Additions of AI and ML for automated content creation, intelligent rendering optimizations, and advancements in real-time rendering technologies are among the future directions. The integration of virtual and augmented reality in e-rendering holds promise for enhancing engagement and interactivity. Scalability and resource constraints can also be addressed by investigating distributed rendering, cloud-based solutions, and edge computing. To overcome these obstacles and shape the future of e-rendering in the e-learning domain, standardization efforts and collaborative research will be necessary. E-rendering raises important privacy and security concerns, particularly when dealing with personal or sensitive data. Here are some key privacy and security challenges associated with e-rendering (Darling-Hammond et al., 2020; Zhu, et al., 2016):

- 1) Security: E-rendering frequently involves handling and processing large amounts of data, such as images, 3D models, and textures. It is essential to ensure the privacy and security of this data. To protect the data from unauthorized access or breaches, measures like encryption, secure data transmission, access controls, and data anonymization techniques should be implemented.
- 2) Intellectual Property Protection: E-rendering is frequently used in industries such as gaming, entertainment, and architectural visualization, where protecting intellectual property (IP) is essential. IP infringement can result from the unauthorized reproduction, distribution, or modification of e-rendered assets. Implementing digital rights management (DRM) techniques, watermarking, or secure licensing mechanisms can help protect the IP associated with e-rendering assets.
- 3) User Privacy: E-rendering applications that involve user-generated content or user interactions need to address privacy issues. For example, in virtual reality (VR) or augmented reality (AR) applications, capturing and processing user data, including images or biometric information, raises privacy issues. Obtaining informed consent, anonymizing user data, and adhering to privacy regulations, such as GDPR or CCPA, are important to protect user privacy.
- 4) Cloud-Based Rendering: Cloud-based rendering services offer scalability and cost-effectiveness but introduce additional privacy and security challenges. Concerns about ownership, access controls, and the possibility of unauthorized data exposure arise when sensitive or proprietary data is uploaded to third-party rendering providers. It is essential to evaluate the cloud rendering providers' security practices, including data encryption, access controls, and compliance with industry standards.
- 5) Malicious Attacks: E-rendering systems are vulnerable to various types of malicious attacks, including data breaches, ransomware, or denial-of-service (DoS) attacks. Weaknesses in software components, network infrastructure, or server configurations can be exploited by attackers. Implementing robust security measures such as firewalls, intrusion detection systems, secure coding practices, and regular security audits can help mitigate these risks.
- 6) Data Leakage: E-rendering involves transmitting data between different components or systems, which can increase the risk of data leakage. In order to keep data from being accessed by unauthorized parties or intercepted while it is in transit, appropriate access controls, encryption, secure data transfer protocols, and monitoring mechanisms need to be implemented.
- 7) Compliance with Regulations: E-rendering applications often handle sensitive data, including personal information or medical data, which may be subject to specific regulations and compliance requirements. Adhering to regulations like HIPAA (Health Insurance Portability and Accountability Act) or PCI DSS (Payment Card Industry Data Security Standard) is essential to protect the privacy and security of the data involved in e-rendering processes.

As a result, secure software design, encryption methods, access controls, privacy policies, user consent mechanisms, and adherence to relevant data protection regulations are all necessary to address privacy and security concerns in e-rendering. To guarantee the privacy and security of the involved assets and sensitive information, it is essential to take these concerns into consideration throughout the entire e-rendering workflow, from data acquisition to data storage and transmission.

IV. PROPOSED ALGORITHM

Accuracy is the most frequently used metric for measuring a classifier's performance. Since the accuracy is inappropriate when records are imbalanced, we've got used every other metrics to examine the overall performance. Receiver Operating Characteristic testing is currently the most common method for evaluating classifiers on imbalanced classes. Despite the fact that the data have been randomized 34 times, it indicates that KNN is accurate on a regular basis. The result can be better classified by Random Forest Tree than by other classifiers. The recall level indicates the quantity of times the classifier considered an effective class example in the dataset to be a high-quality elegance instance. The precision measure indicates how frequently an event that was anticipated to be excellent actually proves to be positive. Here, we compare and contrast the following algorithms as: 1. SVM, 2. K-Means, 3. Naive Bayes.

1) *Survival Probability*: Using the same datasets as the runtime checks, we compare the amount of memory used by each rule set in this section. The precision of our algorithm's Survival Probability is comparable to that of the most recent algorithm. In addition, our set of guidelines frequently yields the best results.

No. of Samples	SVM	K-Means	Naive Bayes
100	0.61	0.71	0.91
200	0.62	0.74	0.92
300	0.66	0.76	0.93
400	0.67	0.78	0.94
500	0.68	0.79	0.95

Table 4.1 Survival Probability

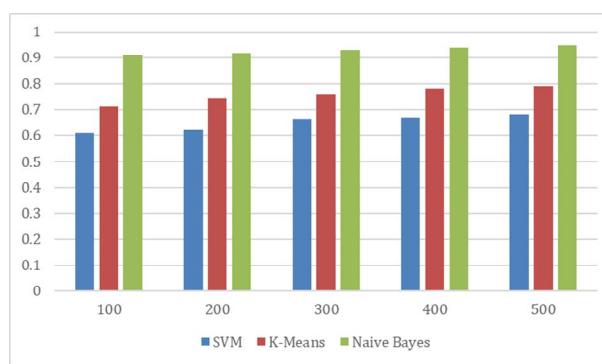


Figure 4.1 Survival Probability

2) *Accuracy (%)*: We can examine that our proposal outperforms the others in nearly all of the cases. Our proposed linear shape to its bushes instead of the previous tree form as a way to limit entry to instances to look at nodes. In the end, its advantages result in a significant reduction in experiment duration.

No. of Samples	SVM	K-Means	Naive Bayes
100	81.2	71.1	90.2
200	86.3	74.7	91.2
300	86.6	76.6	92.5
400	87.8	78.1	93.6
500	89.3	79	94.6

Table 4.2 Accuracy

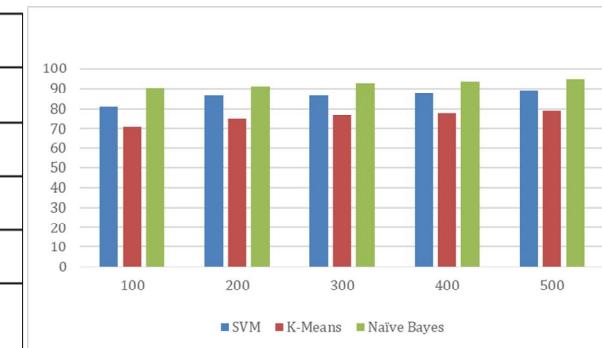


Figure 4.2 Accuracy

3) *Precision (%)*: Proposed set of rules indicates the best precision at the same time as the others have especially negative performance, which shows that our scheme can keep those increasing attributes more efficiently than the alternative structures of the competitor algorithms. According to the aforementioned experimental results, the proposed set of rules outperforms the others when it comes to scalability, runtime, and memory usage for the actual datasets, as well as increasing transactions and devices.

No. of Samples	SVM	K-Means	Naïve Bayes
100	71.1	81.1	91.2
200	73.8	84.9	91.8
300	75.9	86.5	93.5
400	76.1	88.1	96.9
500	78.3	89.1	98.5

Table 4.3 Precision

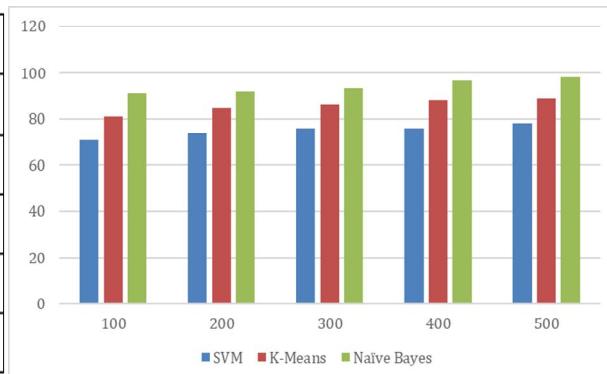


Figure 4.3 Precision

V. CONCLUSION

In conclusion, immersive technologies like augmented reality (AR) and virtual reality (VR) have demonstrated a tremendous capacity to transform a variety of sectors, including education, healthcare, gaming, marketing, and the defense sector. The integration of artificial intelligence (AI) has further amplified the capabilities of immersive technologies, enabling advancements in areas such as content-aware rendering, personalized therapy for individuals with autism spectrum disorder, and industry 5.0 initiatives. The distinction between AI, machine learning (ML), and deep learning (DL) is crucial in understanding the profound impact of these technologies on our society and industries, and the potential they hold for the future. Moreover, the challenges and opportunities in e-rendering, along with the privacy and security issues associated with it, emphasize the need for robust measures to safeguard sensitive data and intellectual property. The proposed system has demonstrated promising results, outperforming existing algorithms in terms of accuracy, precision, and scalability. It is essential for businesses to comprehend the intricacies of immersive technologies and utilize them for improved efficiency, creativity, and decision-making as AI becomes increasingly integrated. The conclusion draws from a wide range of sources and provides a comprehensive overview of the significance and impact of artificial intelligence and immersive technologies across different domains, setting the stage for further exploration and development in this dynamic field.

REFERENCES

- [1] R. Jayadurga, S. Rathik, "Significance and Impact of Artificial Intelligence and Immersive Technologies in the field of Education", International Journal of Recent Technology and Engineering, Volume-12 Issue-2, ISSN: 2277-3878, July 2023.
- [2] Nicholas M, Santos, Alan Peslak, "Immersive technologies: Benefits, timeframes, and obstacles", Issues in Information Systems, Volume 23, Issue 2, pp. 170-184, 2022, DOI: https://doi.org/10.48009/2_iis_2022_115.
- [3] Priyanka Dattaa, Wassim Jaziri, "An evaluation of intelligent and immersive digital applications in eliciting cognitive states in humans through the utilization of Emotiv Insight", Elsevier, ISSN 102748, 2024.
- [4] Srishti Bhatt , Saumya Jogy "Integration of Virtual Reality (VR) and Artificial Intelligence (AI) in Autism Therapy", International Journal of Science and Research Archive, Volume 12 Issue 01, pp. 2400–2405, 2024, Article DOI: <https://doi.org/10.30574/ijrsa.2024.12.1.1006>.
- [5] Senthil Kumar Arumugam, Asi Vasu Deva Reddy, Amit Kumar Tyagi, "Big Data, Artificial Intelligence, and Machine Learning Support for E-Learning Frameworks", IGI Global, DOI: 10.4018/978-1-6684-9285-7.ch011.
- [6] Zalak Trivedi, Hirak Modi "Machine Learning Application for Augmented Reality and Virtual Reality in Wearable Goods", JETIR, Volume 10, Issue 10, ISSN: 2349-5162, October 2023.
- [7] Rong, Qiu Lian, Tianran Tang, "Research on the Influence of AI and VR Technology for Students' Concentration and Creativity", Frontiers in Psychology, Volume 13, March 2022, DOI: 10.3389/fpsyg.2022.767689.
- [8] Sundaram, Ronak Bothra "Artificial Intelligence and Machine Learning for Industry 5.0", IJARSCT, Volume 4, Issue 6, ISSN 2581-9429, April 2024.
- [9] Chandan K. Sahu, Crystal Young "Artificial intelligence (AI) in augmented reality (AR) - assisted manufacturing applications: a review", International Journal of Production Research, December 2020, DOI: 10.1080/00207543.2020.1859636.
- [10] Dr. Bhavana Tiple, Chirag Bulchandani "AI based Augmented Reality Assistant", IJISAE, Volume 12 Issue 13s, pp. 505–516, ISSN: 2147-67992, 2024.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)