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Abstract: This study examines the integration of Internet of Things (IoT) telemetry data and advanced data analytics to enhance 

environmental monitoring and optimize urban energy usage. Using a dataset of 405,184 real-time data points from 

environmental sensors, this research employs advanced techniques, including Isolation Forest, DBSCAN, Long Short-Term 

Memory (LSTM) models, SHapley Additive exPlanations (SHAP), and Fourier Transform. Results highlight the efficacy of IoT-

based solutions in identifying significant environmental patterns, detecting anomalies, and forecasting temperature trends, 

enabling real-time energy management and proactive urban planning. The findings underscore the transformative potential of 

IoT and data analytics in creating sustainable, energy-efficient urban ecosystems and offer actionable insights for policymakers 

and urban planners seeking to optimize resource utilization and reduce environmental impact. 
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I.      INTRODUCTION 

Urban areas worldwide are witnessing an unprecedented rate of growth, presenting unique challenges for sustainability, 

environmental management, and energy consumption. Cities, as the epicenters of economic and social activity, are also responsible 

for a significant share of global energy consumption and greenhouse gas emissions [1]. 

To address these challenges, innovative technologies are being deployed, among which the Internet of Things (IoT) and data 

analytics play a pivotal role. The integration of IoT devices with advanced data analytics capabilities enables real-time monitoring, 

predictive modeling, and decision-making processes that are vital for creating sustainable urban environments [2]. 

The potential of IoT lies in its ability to collect and transmit real-time data through a network of interconnected sensors and devices. 

These sensors can measure environmental variables such as temperature, humidity, carbon dioxide (CO2), and pollutant levels. By 

continuously monitoring these parameters, IoT systems provide actionable insights that enable cities to manage resources more 

effectively, identify environmental risks, and implement timely interventions [3]. 

Complementing IoT is data analytics, which processes the large volumes of data generated by these devices to uncover patterns, 

predict future trends, and optimize urban systems for energy efficiency and sustainability. 

One of the most critical areas where IoT and data analytics have demonstrated transformative potential is in reducing urban energy 

consumption. Traditional energy systems are often inefficient, with significant wastage due to outdated infrastructure and lack of 

real-time monitoring [4]. 

IoT-based smart grids and energy meters, integrated with advanced analytics, can track energy consumption patterns at granular 

levels, enabling cities to optimize energy usage and reduce wastage. Furthermore, these technologies support the integration of 

renewable energy sources into urban energy systems, ensuring a more sustainable energy supply. 

Environmental monitoring is another domain where IoT and data analytics are revolutionizing urban management. Real-time 

monitoring of air quality, water resources, and other environmental factors is essential for addressing the impacts of urbanization 

and climate change. IoT-based systems can detect changes in environmental conditions, such as spikes in air pollution or water 

contamination, and provide early warnings to mitigate potential risks [5]. When combined with machine learning and predictive 

analytics, these systems not only identify current issues but also forecast future trends, enabling proactive urban planning and 

management. 
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The dataset used in this study, sourced from Amazon Web Services (AWS) and made publicly available by Gary A [6]. Stafford on 

Kaggle, exemplifies the potential of IoT telemetry data in addressing urban challenges. It includes environmental sensor telemetry 

data collected from IoT devices, such as temperature, humidity, carbon monoxide, and other parameters. With over 405,184 data 

points collected in real-time, this dataset provides a rich source of information for understanding urban environmental dynamics and 

energy consumption patterns. The use of Raspberry Pi-based sensor arrays further highlights the scalability and affordability of IoT 

solutions for urban applications. 

This research aims to explore how IoT telemetry data and data analytics can be leveraged to optimize urban energy usage and 

improve environmental monitoring. The study uses advanced machine learning techniques such as Isolation Forest, DBSCAN, and 

LSTM models to detect anomalies, predict future trends, and analyze environmental conditions. Additionally, tools like SHAP 

(SHapley Additive exPlanations) and Fourier Transform are employed to extract meaningful insights from the data. These 

techniques allow us to address critical questions regarding the role of IoT in creating smarter, more sustainable cities. 

Moreover, the study delves into the broader implications of IoT and data analytics in urban planning. By examining the integration 

of these technologies in energy management and environmental monitoring, this research provides insights into the potential 

benefits, challenges, and future directions of IoT-based solutions. Issues such as data security, standardization, and equitable access 

to IoT infrastructure are also discussed to present a balanced perspective on the opportunities and limitations of this technology. 

In an era where climate change and resource scarcity are pressing global challenges, the adoption of IoT and data analytics offers a 

pathway to more efficient, sustainable, and resilient cities. This research contributes to the growing body of knowledge on how 

these technologies can be effectively harnessed to address the environmental and energy challenges faced by urban areas. Through 

real-world data and advanced analytics, this study not only demonstrates the capabilities of IoT but also provides actionable insights 

for policymakers, urban planners, and technology developers striving to create smarter and greener cities. 

The structure of this paper is as follows: the Literature Review section provides an overview of existing studies and their relevance 

to the topic. The Methodology section outlines the approaches and algorithms used for data analysis. The Results and Discussion 

section presents the findings and interprets their implications for urban energy management and environmental monitoring. Finally, 

the Conclusion highlights the key takeaways and future prospects for leveraging IoT and data analytics in sustainable urban 

development. 

 

II.      LITERATURE REVIEW 

The integration of Internet of Things (IoT) and data analytics has emerged as a transformative solution for addressing environmental 

challenges and reducing urban energy consumption. By leveraging the capabilities of IoT for real-time data collection and analysis, 

cities worldwide are enhancing environmental monitoring systems, promoting energy efficiency, and moving toward sustainable 

urban development. This section explores the significant role of IoT and data analytics in achieving these goals, supported by 

insights from relevant research and case studies. 

 

A. IoT in Environmental Monitoring 

1) Real-Time Data Collection and Analysis 

IoT systems facilitate continuous monitoring of environmental parameters such as air quality, water quality, and temperature. 

Advanced sensors, connected through IoT networks, provide real-time data that enables rapid responses to environmental threats. 

For instance, IoT-based monitoring systems can detect changes in pollutant levels, such as carbon monoxide (CO) or nitrogen 

dioxide (NO2), and trigger automated interventions. These capabilities have been demonstrated in research on IoT-enabled 

environmental management, where immediate actions were taken to mitigate the effects of poor air quality [7][8]. 

 

2) Predictive Capabilities through Data Analytics 

When combined with advanced analytics, cloud computing, and artificial intelligence (AI), IoT data offers predictive insights into 

environmental trends. These capabilities are essential in preventing crises such as forest fires, floods, and pollution surges. For 

example, predictive analytics can help city planners forecast urban air pollution levels based on seasonal changes and human 

activities, thereby implementing mitigation measures proactively [3]. The integration of AI-driven models with IoT devices also 

facilitates dynamic prediction, ensuring that urban ecosystems remain resilient to environmental stressors [7][9]. 
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3) Case Studies in Urban Monitoring 

Case studies highlight the tangible benefits of IoT in environmental monitoring. Cities leveraging IoT-based systems have reported 

substantial improvements in air and water quality. For instance, the deployment of IoT in monitoring urban air quality reduced CO2 

emissions by up to 20%, as recorded in smart city initiatives [10][8]. These practical examples demonstrate the efficacy of IoT in 

mitigating environmental degradation while enhancing public health outcomes. 

 

B. IoT and Data Analytics in Reducing Urban Energy Consumption 

1) Energy Efficiency Through Smart Grids 

IoT-enabled smart grids and meters play a pivotal role in monitoring and optimizing energy consumption. These systems provide 

granular insights into energy usage patterns, allowing households and businesses to adopt energy-efficient practices. In some cities, 

the deployment of smart grids has led to a reduction in energy consumption by as much as 25% [10][11]. Such systems empower 

energy providers to balance supply and demand dynamically, further improving energy efficiency. 

 

2) Integration of Renewable Energy 

IoT technologies enable the seamless integration of renewable energy sources, such as solar and wind power, into urban energy 

systems. By continuously monitoring energy generation and consumption, IoT systems ensure that renewable energy is used 

optimally. Additionally, IoT-based energy storage solutions further enhance the reliability of renewable sources, providing a 

sustainable alternative to fossil fuels [12][13]. 

 

3) Smart City Innovations 

Leading smart cities like Stockholm and Barcelona have demonstrated the potential of IoT and data analytics in reducing urban 

energy consumption. These cities employ IoT-driven systems for monitoring energy usage in buildings, optimizing urban 

transportation, and managing public lighting systems. As a result, these initiatives have led to reduced energy costs and lower 

carbon footprints, offering replicable models for other urban areas seeking sustainability [11]. 

 

C. Challenges and Considerations 

1) Data Security and Privacy 

While IoT systems offer significant benefits, they also introduce challenges related to data security and privacy. The large-scale 

collection and transmission of sensitive environmental and energy data require robust security protocols to prevent breaches and 

ensure public trust [7][9]. Addressing these concerns is crucial for the widespread adoption of IoT in environmental monitoring and 

energy management. 

 

2) Interoperability and Standardization 

The lack of standardized communication protocols among IoT devices often hinders seamless system integration. Interoperability 

challenges limit the scalability of IoT systems and their ability to function cohesively in urban environments. Developing universal 

standards for IoT communication is essential to unlocking the full potential of these technologies [9]. 

 

3) Digital Divide and Inclusivity 

The uneven distribution of IoT infrastructure highlights the risk of exacerbating existing socio-economic inequalities. Regions 

lacking access to IoT technologies and data analytics may face challenges in achieving energy efficiency and environmental 

sustainability. Thus, inclusive planning and investment in digital infrastructure are vital for ensuring equitable access to the benefits 

of IoT [7][13]. 

The literature highlights the significant potential of IoT and data analytics in advancing environmental monitoring and urban energy 

efficiency. Through real-time data collection, predictive analytics, and innovative applications, these technologies are paving the 

way for sustainable urban development. However, realizing their full potential requires addressing key challenges such as data 

security, interoperability, and the digital divide. As cities worldwide adopt IoT-based solutions, a balanced approach that integrates 

technological advancements with social and environmental considerations will be critical to fostering resilient and sustainable urban 

ecosystems. 
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III.      METHODOLOGY 

The methodology of this research focuses on analysing the potential of IoT telemetry data and data analytics for optimizing urban 

energy consumption and improving environmental monitoring. A structured approach was followed, encompassing data collection, 

preprocessing, dimensionality reduction, anomaly detection, predictive modelling, and interpretability analysis. This section details 

each step in the methodological framework, supported by relevant tools, algorithms, and theoretical foundations. 

 

A. Data Collection 

The dataset used in this research was sourced from Kaggle, specifically the "Environmental Sensor Telemetry Data" provided by 

Gary A. Stafford, an Amazon Web Services (AWS) employee [6]. This dataset comprises 405,184 data points collected in real-time 

from IoT devices. The data was generated using Raspberry Pi-based environmental sensor arrays, which recorded parameters such 

as temperature, humidity, carbon monoxide (CO), liquid petroleum gas (LPG), smoke levels, light intensity, and motion. The 

sensors were designed to simulate how IoT systems can be leveraged for real-time monitoring and analytics in urban environments. 

The collected data represents a realistic simulation of IoT telemetry in urban settings, enabling the exploration of machine learning 

and data analytics techniques. Its high granularity and temporal nature make it suitable for anomaly detection, trend prediction, and 

feature importance analysis. 

 

B. Data Preprocessing 

Data preprocessing was performed to clean and prepare the dataset for analysis. This step involved the following processes: 

1) Timestamp Conversion: The ts column, which contained Unix timestamps, was converted into a human-readable datetime 

format to enable temporal analysis. 

2) Feature Engineering: 

 Temporal features, such as hour of the day and day of the week, were extracted to analyze diurnal and weekly patterns in the 

data. 

 Interaction terms, such as the product of temperature and humidity, were generated to capture potential nonlinear relationships 

between variables. 

3) Normalization: Numerical features, including temperature, humidity, CO, LPG, and smoke levels, were standardized using a 

StandardScaler to ensure all features had a mean of 0 and a standard deviation of 1. Normalization is critical for improving the 

performance of machine learning algorithms, especially those sensitive to feature scales [14]. 

4) Handling Missing Values: Missing values in the dataset were handled using mean imputation to ensure the completeness of 

data without introducing biases [15]. 

 

C. Dimensionality Reduction 

Principal Component Analysis (PCA) was employed to reduce the dimensionality of the dataset while retaining the most important 

information. PCA projects high-dimensional data onto a lower-dimensional space, enabling efficient visualization and 

computational analysis [16]. In this study: 

1) Two principal components (PC1 and PC2) were extracted, accounting for the majority of the variance in the dataset. 

2) PCA was particularly useful for visualizing the clustering results from DBSCAN and Isolation Forest anomaly detection 

techniques. 

The PCA-transformed data allowed for a clearer representation of environmental factors and highlighted relationships between 

features in reduced-dimensional space. 

 

D. Anomaly Detection 

Anomaly detection is crucial for identifying unusual patterns in environmental and energy data, which may indicate inefficiencies or 

risks. Two advanced anomaly detection techniques were used: 

1) Isolation Forest: 

 Isolation Forest is an ensemble-based anomaly detection method that isolates anomalies by randomly partitioning data [17]. It is 

particularly effective for high-dimensional datasets. 

 The algorithm was applied to the numerical features to detect anomalous patterns in environmental conditions. Detected 

anomalies were mapped to a binary variable (Normal or Anomalous), enabling further analysis. 
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2) DBSCAN (Density-Based Spatial Clustering of Applications with Noise): 

 DBSCAN identifies clusters of data points based on density and labels outliers as noise [18]. 

 This algorithm was applied to the PCA-reduced data, revealing clusters and highlighting regions of low density as potential 

anomalies. 

Visualization of the results from both algorithms provided insights into how anomalies correlate with environmental factors. 

 

E. Predictive Modeling 

To predict future trends in environmental conditions, a Long Short-Term Memory (LSTM) neural network was employed. LSTMs 

are well-suited for time-series data due to their ability to retain long-term dependencies and capture sequential patterns [19]. 

1) Data Preparation: 

 Sliding window techniques were used to create sequences of data, with each sequence containing 10-time steps. 

 Features included temperature, humidity, CO, LPG, and smoke levels. 

2) Model Architecture: 

 The LSTM model consisted of 50 units, a ReLU activation function, and a dense output layer with a single neuron for 

predicting temperature. 

 The model was trained using the Adam optimizer and a mean squared error loss function, with early stopping to prevent 

overfitting. 

3) Evaluation: 

 The predicted values were compared to actual temperature readings to assess the model’s accuracy. 

 The results were visualized in a time-series plot, demonstrating the model's ability to capture trends and deviations. 

 

F. Feature Importance Analysis 

To understand the influence of different features on anomaly detection, SHapley Additive exPlanations (SHAP) were used. SHAP 

provides interpretable explanations for machine learning models by quantifying the contribution of each feature to the model’s 

predictions [20]. 

1) Random Forest Model: 

 A Random Forest classifier was trained to distinguish between normal and anomalous data points. 

 Feature importance scores were extracted using SHAP, revealing the relative importance of variables such as temperature, 

humidity, and CO levels. 

2) SHAP Summary Plot: 

 The SHAP summary plot highlighted the most impactful features for anomaly detection and demonstrated their influence on the 

model’s predictions. 

 

G. Fourier Transform Analysis 

Fourier Transform was applied to the temperature data to analyze periodic patterns in the frequency domain. This technique is 

valuable for identifying dominant frequencies and understanding seasonal or cyclical behavior in environmental variables [21]. 

1) Implementation: 

 The temperature data was converted into a frequency spectrum using the Fast Fourier Transform (FFT). 

 The magnitude of the Fourier coefficients was plotted to reveal significant periodic components. 

2) Insights: 

 The analysis identified dominant frequencies, corresponding to daily and weekly cycles in temperature data. 

The combination of advanced data preprocessing, machine learning, and interpretability techniques ensures a comprehensive 

analysis of IoT telemetry data. Each methodological step was designed to address key challenges in urban energy consumption and 

environmental monitoring. By leveraging Isolation Forest, DBSCAN, LSTM, SHAP, and Fourier Transform, this study 

demonstrates the practical utility of IoT and data analytics for creating sustainable urban environments. 

 

IV.      RESULTS AND DISCUSSION 

This section presents a detailed discussion of the results derived from the analysis of IoT telemetry data.  
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Each analytical step is evaluated based on its contribution to understanding urban environmental factors and energy optimization, 

with findings supported by appropriate visualizations. 

 

A. Exploratory Data Analysis 

To establish an initial understanding of the dataset, we performed correlation analysis among key environmental variables. The 

heatmap (Figure 1) reveals a strong positive correlation (0.75) between light and temperature, suggesting that increased lighting 

levels correspond to elevated temperatures, potentially due to urban heat effects or sensor proximity to light sources. Negative 

correlations, such as between humidity and CO (-0.66), underscore interactions between air moisture and pollutant levels. 

These insights are critical for feature selection in subsequent modeling tasks. For instance, the significant correlations between 

temperature and other variables justify its role as a key target variable for forecasting and anomaly detection. 

 
Figure 1 Correlation Heatmap 

 
B. Seasonal Decomposition of Temperature 

Using the seasonal decomposition method, temperature data was separated into trend, seasonal, and residual components (Figure 2). 

The trend component reflects long-term variations, potentially linked to climatic conditions or sensor location changes, while the 

seasonal component showcases regular diurnal fluctuations. 

This analysis is particularly important for identifying predictable cycles in temperature changes, which can be leveraged for 

proactive energy management strategies in urban settings, such as adjusting cooling or heating systems in buildings. 

 
Figure 2 Seasonal Decomposition 
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C. Dimensionality Reduction and Data Clustering 

To simplify the dataset while retaining meaningful patterns, Principal Component Analysis (PCA) reduced the dimensionality of the 

data. The visualization in Figure 3 displays how environmental factors cluster when plotted against the first two principal 

components. 

The clustering patterns highlight distinct groups of environmental conditions associated with lighting levels (light). Such clustering 

supports anomaly detection by identifying regions of normal versus abnormal environmental behavior. PCA also simplifies further 

modelling, making computations more efficient without sacrificing interpretability. 

 
Figure 3 PCA Visualization 

D. Anomaly Detection 

Anomaly detection is a core objective of this study. Two complementary methods were applied: Isolation Forest and DBSCAN 

Clustering. 

1) Isolation Forest Results (Figure 4): This method identified anomalous environmental conditions, shown as red points. These 

anomalies could signify events such as sudden temperature increases, equipment malfunctions, or unusual weather patterns. 

The ability to flag such events in real time can guide urban planners in making timely interventions. 

2) DBSCAN Results (Figure 5): Unlike Isolation Forest, DBSCAN clusters the data based on density and labels sparse regions as 

outliers. This method provides additional granularity, especially for detecting localized anomalies in high-density urban areas. 

The clustering map complements Isolation Forest findings, enhancing robustness in anomaly identification. 

The combination of these two techniques ensures high accuracy in detecting and classifying unusual events, which is critical for 

maintaining system reliability and responding to environmental challenges. 

 
Figure 4 Isolation Forest Anomalies 
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Figure 5 DBSCAN Clustering with Reduced Data 

 

E. Feature Importance with SHAP 

To understand which variables most influenced the detection of anomalies, we applied SHAP (SHapley Additive exPlanations) to 

the Random Forest classifier. The SHAP summary plot (Figure 6) ranks humidity and light as the most influential features, 

confirming earlier observations from the correlation analysis. 

By quantifying feature importance, this analysis informs policymakers on which environmental factors to prioritize. For instance, 

controlling humidity levels may significantly reduce pollutant anomalies, while managing lighting conditions could mitigate urban 

heat effects. 

 
Figure 6 SHAP Summary Plot 

 

F. Time-Series Forecasting with LSTM 

An LSTM (Long Short-Term Memory) neural network was trained to predict temperature trends based on past environmental data. 

Figure 7 compares the predicted temperatures with actual values, showing close alignment. The model effectively captures complex 

temporal patterns, including seasonal fluctuations and abrupt changes. 

Such forecasting capabilities are invaluable for urban energy management. For example, accurate temperature predictions can help 

optimize energy consumption in HVAC (heating, ventilation, and air conditioning) systems, contributing to energy savings and 

reduced carbon emissions. 
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Figure 7 LSTM Prediction 

G. Fourier Transform Analysis 

The Fourier Transform analysis (Figure 8) reveals dominant frequencies in the temperature data, corresponding to daily and 

seasonal cycles. The sharp peak at low frequencies confirms the presence of regular diurnal patterns, while higher frequencies 

indicate noise or transient anomalies. 

This analysis supports the seasonal decomposition findings and validates the use of models like LSTM for capturing cyclic trends. It 

also emphasizes the need for preprocessing techniques to remove noise for better model performance. 

 
Figure 8 Fourier Transform 

H. Implications of Findings 

The analyses presented in this study demonstrate the transformative potential of IoT telemetry data in addressing urban 

environmental challenges. Key contributions include: 

1) Real-Time Monitoring and Anomaly Detection: The combination of Isolation Forest and DBSCAN provides a comprehensive 

framework for detecting irregular environmental events, enabling swift responses. 

2) Predictive Analytics for Energy Optimization: Time-series forecasting with LSTM highlights opportunities for pre-emptive 

energy management, reducing resource waste and costs. 

3) Feature Prioritization for Policy Design: SHAP analysis guides decision-makers on which variables to target, enhancing the 

impact of urban environmental policies. 

 

V.      CONCLUSIONS 

This study illustrates the transformative role of IoT telemetry data and advanced analytics in addressing urban energy and 

environmental challenges. By applying machine learning techniques such as Isolation Forest, DBSCAN, and LSTM, the research 

effectively identifies anomalies, predicts temperature trends, and evaluates feature importance for environmental monitoring and 

energy optimization. The use of SHAP analysis and Fourier Transform further enhances interpretability, providing actionable 

insights for urban planning and resource management.  
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These findings reinforce the value of IoT and data analytics in enabling smarter, more sustainable cities, offering a robust 

framework for future urban applications. Further research should explore scalability and expand the scope of IoT-based solutions to 

address broader urban challenges. 
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