
 

11 XII December 2023

https://doi.org/10.22214/ijraset.2023.57707



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue XII Dec 2023- Available at www.ijraset.com 
    

 
1664 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

The Study on the Theoretical Perspectives of 
Soliton and Its Applications 

 
 Muhammad Arif Bin Jalil 

Physics Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia 
 
Abstract: A soliton is a strongly stable, nonlinear, self-reinforcing, localised wave packet that propagates freely at a constant 
speed and keeps its shape even after colliding with other similar localised wave packets. Its exceptional stability arises from the 
balanced cancellation of nonlinear and dispersive effects in the medium. In engineering, a soliton wave is a self-reinforcing 
solitary wave packet that keeps its shape as it travels at a steady speed. It results from the medium's non-linear and dispersive 
effects cancelling each other out. Many systems exhibit dispersive effects, in which the wave frequency controls the wave's speed 
of propagation. It was then demonstrated that soliton solutions provide stable solutions for a wide class of dispersive partial 
differential equations that are weakly nonlinear and describe physical systems. Solitons are preferred for high-speed, long-
distance transmissions because of their self-restoring characteristics. Given that transmission speeds over longer distances are 
now close to 40 Gbit per second, the strain on networks is rapidly approaching a critical threshold. Solitons may provide 
interesting alternatives in the future. Non-linear wave equations that describe how waves propagate in specific physical systems 
are solved  to get soliton solutions. These waves appear as solutions in mathematical models of various systems, such as optical 
wave-guides, crystal lattice vibrations, and water waves. 
Keywords: Soliton, Nonlinear Optics, Self Reinforcing, Nonlinear Schrodinger Equation, Dispersion, Self Phase Modulation, 
Soliton applications. 
 

I.      INTRODUCTION 
A generally agreed definition of soliton is difficult to come up with. Drazin & Johnson provide solitons three features (1989, p. 15) 
[1]. They possess three qualities: they can interact with other solitons, they are confined within a region, and they have a permanent 
form. They also survive collisions intact, with the exception of a phase shift.More formal formulations are available, although they 
need a significant amount of mathematics. Moreover, a few of scientists label occurrences that do not meet these three requirements 
as soliton phenomena (for example, even though they lose energy during interaction, the "light bullets" in nonlinear optics are 
occasionally referred to as solitons).[2]Dispersion and nonlinearity can interact to produce both permanent and localised wave 
patterns. Imagine a pulse of light travelling through glass. We could suppose that this pulse is composed of multiple light 
frequencies. The dispersion of glass causes these distinct frequencies to travel through it at different speeds, which causes the pulse's 
shape to change over time. However, there is also the nonlinear Kerr effect, where a material's refractive index at a given frequency 
is determined by the amplitude or brightness of the light. A properly formed pulse has a stable shape throughout time because the 
Kerr effect precisely cancels out the dispersion effect. As such, the pulse is a soliton [3]. Numerous models that are completely 
solvable are solved by solitons, including the coupled nonlinear Schrödinger equation, the Korteweg–de Vries equation, the sine-
Gordon equation, and the nonlinear Schrödinger equation. The integrability of the field equations—which is typically accomplished 
via the inverse scattering transform—is responsible for the stability of the soliton solutions. The mathematical theory of these 
equations is a broad and active field of mathematical study.[3] A train of solitons follows a wavefront in some "undular" tidal bore 
occurrences that are found in a few rivers, including the River Severn. More solitons are produced as underwater internal waves 
driven by the topography of the seafloor spread out along the oceanic pycnocline. There are further atmospheric solitons. As an 
illustration, consider the morning glory cloud in the Gulf of Carpentaria, which is produced by enormous linear roll clouds that are 
brought about by pressure solitons passing over a layer of temperature inversion. In the recently constructed, but not widely 
accepted, soliton model of neuroscience, pressure solitons are used to explain the signal conduction within neurons [3].A 
topological soliton, often called a topological defect, is any solution of a system of partial differential equations that is persistent 
against decay to the "trivial solution". Topological restrictions, not the integrability of the field equations, are the source of soliton 
stability. Constraints are almost always present because the differential equations must adhere to a set of boundary conditions and 
maintain the nontrivial homotopy group of the boundary. As a result, homotopy classes can be used to group differential equation 
solutions [3]. 
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Specifically, soliton transmission in optical fibres counteracts two primary types of pulse degradation in order to improve the quality 
of data transmission. One type of degradation is the dispersion that happens when pulses travel over long fibre stretches. The other 
is the nonlinear effects that arise from signals interacting in a power-dependent way with the fibre and with each other. Generally, 
the combined effect of the two effects makes the situation worse; but, for certain optical pulse forms and powers, the effects can 
cancel each other out, at least to a first-order approximation. Soliton is the term used to describe these types of pulses.The inherent 
durability of solitons for long-distance high-speed gearboxes is one of their main advantages. Over long fibre lengths, soliton can be 
made intrinsically stable despite soliton attenuation. This offers a way to stop dispersion and nonlinear effects from deteriorating 
signal quality, which is a major problem at 10 Gbit/s and gets worse at higher transmission speeds. Due to these features, scientists 
are developing soliton systems for long-haul 10-Gbit/s and upcoming 40-Gbit/s systems [4]. 
 

II.      LITERATURE REVIEW 
The soliton phenomena was first documented in 1834 by John Scott Russell (1808–1882), who observed a single wave in Scotland's 
Union Canal. After he successfully duplicated the event in a wave tank, he dubbed it the "Wave of Translation". There are locally 
confined, strongly stable propagating solutions to the Korteweg–de Vries equation, which describes waves that resemble those 
observed by Russell. It was Zabusky and Kruskal who originally dubbed these solutions soliton. The word was meant to describe 
the solitary nature of the waves, with the suffix "on" reflecting its original usage to denote to particles such as hadrons, baryons, and 
electrons and reflecting their observed particle-like activity.[3]. 

 
Figure 1: Waveform evolution during optical propagation of pulsed optical signals [26]. 

 
The earliest known observation of a lone wave was made by a young engineer named John Scott Russell, who was hired for a 
summer project in 1834 to investigate methods to improve the designs for barges designed to traverse canals, notably the Union 
Canal in Edinburgh, Scotland. One day in August, the tow rope that was securing the mules to the barge broke, causing it to stop 
suddenly. Nevertheless, the water mass ahead of the barge's blunt prow rolled forward quickly, taking the shape of a sizable isolated 
elevation—a rounded, smooth, and well-defined mound of water—and continued down the canal without changing shape or pace. 
Russell (1844). After conducting further research into this coincidental finding, Russell rode up to the Wave of Translation and 
overtook it as it continued to roll at a speed of around eight or nine miles per hour, maintaining its original dimensions of about 
thirty feet by one foot to one and a half. He then used a wave tank in carefully controlled laboratory experiments, and in 1844 he 
reported the results (Russell, 1844). He provided four examples: He observed hyperbolic secant structure in single waves. If the 
starting water mass is sufficiently enormous, it can produce two or more waves that break apart gradually and become nearly 
solitary.Waves can flow past one another "without change of any kind" when they are isolated.A single wave with amplitude A 
moves at the speed of [g(A+h)]1/2 in a shallow water channel of height h, where g is the gravitational acceleration. It is a nonlinear 
phenomena where waves with greater amplitudes travel quicker than those with smaller amplitudes. Diederick Korteweg, a Dutch 
physicist, and his student Gustav de Vries (KdV) (de Vries, 1895) (Scott, 2005) devised a nonlinear partial differential equation 
(PDE) that is currently named after them in 1895. Korteweg and de Vries suggest that the KdV equation (1) could account for 
Russell's experiments. Equation (1) shows that the dispersive term, which allows waves of different wavelengths to travel at 
different velocities, the amplitude effect, and a nonlinear component add together to determine the rate of change of the wave's 
height over time. Korteweg and de Vries found a periodic solution in addition to a solitary-wave solution that matched the wave that 
Russell had pursued. These solutions resulted from a trade-off between dispersion and nonlinearity.  
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Up until 1965, when Norman Zabusky and Martin Kruskal published their numerical solutions to the KdV equation (and invented 
the phrase "soliton"), mathematicians, physicists, and engineers studying water waves ignored their work and Russell's discoveries 
(Zabusky, 1965). According to (1), Kruskal obtained a continuous description of the oscillations of unidirectional waves 
propagating on the cubic, Fermi–Pasta–Ulam (FPU) nonlinear lattice (Fermi, 1955; Porter, 2009b; Weissert, 1997). In parallel, 
Morikazu Toda created history when he became the first person to detect a soliton in what is now known as the Toda lattice, a 
discrete, integrable system (Toda, 1967).[5] 
Gary Deem, Zabusky, and Kruskal (1965) made films showing interacting solitary waves in an FPU lattice, the KdV equation, and a 
modified KdV equation; see the discussion in the review paper (Zabusky, 1984). Using the KdV equation, we demonstrate the 
dynamics of solitons in Figure 1's space-time diagram. When Robert Miura realised the significance of this discovery, he found a 
precise transition between this modified KdV equation and equation (1) (Miura, 1976). When Clifford Gardner, John Greene, 
Martin Kruskal, and Robert Miura employed the inverse scattering approach to resolve the initial-value problem of the KdV 
equation in 1967 (Miura, 1968; Gardner, 1967; Gardner, 1974), this generated interest in the mathematical study of solitons. This 
led to the development of an appropriate notion of integrability for continuum frameworks. In 1972, Alexei Borisovich Shabat and 
Vladimir Zakharov extended the inverse scattering method by proving the existence of soliton solutions and the integrability of the 
nonlinear Schrödinger (NLS) problem. The sine-Gordon equation was one of several nonlinear PDEs that Mark Ablowitz, David 
Kaup, Alan Newell, and Harvey Segur proved to have soliton solutions for in 1973. This equation was already known to be 
integrable due to Albert Backlünd's 19th century investigations of surfaces with constant negative Gaussian curvature. Other 
researchers have since developed related soliton solutions and derived different integrable PDEs (in one and multiple spatial 
dimensions). A more complex definition of a "soliton" in several spatial dimensions is required, as the Kadomtsev–Petviashvili (KP) 
equation illustrates. Asymptotic analysis, variational approximations, and/or perturbative techniques are typically used in analytical 
approaches for investigating solitary waves in nonintegrable equations (Kivshar, 1989). (Scott, 2005) In optics, the coupled mode 
equations of the fibre Bragg grating are a prominent example of a nonintegrable system with precise solutions for isolated solitary 
waves.The study of solitons and solitary waves is currently one of the most active areas in mathematics and physics (Scott, 2005). It 
has impacted many fields, including pure mathematics and experimental science. This has led to important discoveries in nonlinear 
dynamics, biology, optics, supersymmetry, and integrable systems, among other domains. 
 

III.      MATHEMATICAL EQUATIONS OF SOLITON 
Nonlinear Schrodinger equation (NLS)[6],[7]: 

                                             (8) 
Β2 is the GVD of the optical fiber 
ϒ is the nonlinear coefficient of the fiber, 

 
 
The effects of dispersion & assuming Gaussian pulse shape, [6],[7]: 

              (without the nonlinear term)           (8a)                                             

                                                                       (9) 
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                                                                  (10) 

      Where  ,                is the dispersion length. 
 
 
 
The effects of nonlinearity, [6],[7]: 

      (without the dispersion term)  (8b) 
 
The maximum nonlinear phase shift, [6],[7]: 

 
And the nonlinear length, [6],[7]: 

 
 
For the Self-Phase Modulation, I(t) gives the intensity of an ultrashort pulse with a Gaussian form and constant phase at time t 
,[6][7]: 
 

                                                                                      (11) 
From the Optical Kerr Effect [6][7]: 

                                                                                                              (12) 
This change in refractive index causes a displacement in the pulse's immediate phase [6][7]: 

                                                    (13) 
The pulse shifts in frequency as a result of the phase shift. The frequency ω(t) at any given instant is provided by ,[6][7]: 

                                                                   (14) 

                                                     (15) 
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IV.      APPLICATIONS OF SOLITON IN VARIOUS FIELDS 
DNA and proteins may include solitons[9].[10] Low-frequency collective motion in proteins and DNA is associated with soliton 
dynamics.[11] According to a recently established neuroscience model, messages are conducted within neurons in the form of 
solitons and take the form of density waves.[12][13][14] Solitons are wave-like propagations of coupled conformational and 
electronic disturbances that transfer energy practically losslessly in biomolecular chains or lattices.[15]. 
In materials like ferroelectrics, solitons can also exist as domain barriers. Ferroelectric materials have electric dipoles, or 
spontaneous polarisation, that are connected to specific material structural configurations. When there are no outside pressures 
present and the structural configurations corresponding to opposing polarisations are equally favourable, domains of oppositely 
poled polarisations can exist within a single material. Regions of lattice dislocations make up the domain boundaries, or walls, that 
divide these local structural configurations.[16] Under applied pressures like mechanical stress or electric bias, the domain walls can 
spread as the polarisations, leading to local structural configurations switching inside a domain. As a result, the domain walls can be 
thought of as solitons, which are distinct dislocation zones with the ability to slip or propagate while keeping their breadth and 
length.[17][18][19] Ferroelectricity has been reported in twisted bilayers of van der Waal materials, including graphene and 
molybdenum disulfide, in recent literature.[16][20][21]  
Different stacking orders of the atoms within the layers are produced by the moiré superlattice that results from the relative twist 
angle between the van der Waal monolayers. Ferroelectricity is made possible at the interface between these monolayers by the 
structural arrangements that these regions display, breaking inversion symmetry.  The domain walls dividing these areas are made 
up of partial dislocations where the lattice experiences various kinds of stresses and, consequently, strains. It has been noted that 
applied stress from an AFM tip on a fixed spot can start soliton or domain wall propagation across a moderate length of the sample 
,order of nanometers to micrometres. Domain switching is made possible by the soliton propagation, which transfers the mechanical 
perturbation across the material with minimal energy loss.[18] It has also been shown that propagation characteristics like direction 
might be impacted by the kind of dislocations present at the walls. 
For instance, depending on the kind of localised stacking order in twisted bilayer graphene, STM measurements revealed four forms 
of strains at domain walls with differing degrees of shear, compression, and tension. Variations in the strain types present at the 
domains lead to variable slip directions of the walls, which in turn affect the direction of propagation of the soliton network.[18] The 
propagation of soliton can also be affected by nonidealities such as surface contaminants and disturbances to the soliton network. In 
many ferroelectric twisted bilayer systems, domain walls can come together at nodes and become effectively pinned, generating 
triangular domains that are easily detected.[16] Furthermore, soliton propagation and the subsequent switching of polarisations 
across it can be prevented by complete loops of domain walls containing several polarisation domains.[18] Furthermore, van der 
Waal layers creases and surface inhomogeneities can serve as barriers to the spread of domain walls by causing them to collide.[18] 
Other nonlinear waves and various forms of solitons can also be found in magnets.[22] The Landau-Lifshitz equation, the 
continuous Heisenberg model, the Ishimori equation, the nonlinear Schrödinger equation, and other magnetic equations are among 
the magnetic equations that these magnetic solitons are an exact solution of.  
Solitonic behaviour can also be seen in atomic nuclei.[23] Here, it is anticipated that, under specific energy and temperature 
conditions, the entire nuclear wave function will exist as a soliton. It has been proposed that such conditions exist in the cores of 
some stars, where nuclei would collide but would not react, preserving their soliton waves as they passed through one another.A 
model of nuclei known as the Skyrme Model states that every nucleus is a topologically stable soliton solution of a field theory with 
a conserved baryon number. 

V.      CONCLUSION 
In a non-linear dispersive medium, solitons light pulses can propagate over very long distances without broadening. As a result, they 
have drawn a lot of interest from the communications sector. Two effects that can balance each other out under the appropriate 
conditions are the reason solitons work in optical fibres. Chromatic dispersion is one of them; it happens when pulses with different 
wavelengths spread out as they move through an optical fibre. The alternative is referred to as self-phase modulation, or SPM, and it 
operates across a larger range of pulse spectrum wavelengths. Once the pulse finds equilibrium in the fibre, dispersion and SPM can 
counterbalance each other, allowing the pulse to keep its shape or dispersion. The pulse may potentially more severely expand or 
compress as a result of SPM. Conversely, attenuation reduces the pulse's strength and makes it more difficult for it to maintain its 
shape over the fibre span. Optical amplifiers have been constructed to balance attenuation and preserve pulse shapes. [24][25]. 
Solitons are obtained by solving non-linear wave equations that characterise the propagation of waves in certain physical systems. 
Mathematical models of a variety of systems, including water waves, crystal lattice vibrations, and optical waveguides, show these 
waves as solutions. 
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