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Abstract: This article presents the concept of reinforcement learning, which prepares a static direct approach for consistent 
control problems, and adjusts cutting-edge techniques for testing effectiveness in benchmark Mujoco locomotion tasks. This 
model was designed and developed to use the Mujoco Engine to track the movement of robotic structures and eliminate problems 
with assessment calculations using perceptron’s and random search algorithms. Here, the machine learning model is trained to 
make a series of decisions.  
The humanoid model is considered to be one of the most difficult and ongoing problems to solve by applying state-of-the-art RL 
technology. The field of machine learning has a great influence on the training model of the RL environment. Here we use 
random seed values to provide continuous input to achieve optimized results.  
The goal of this project is to use the Mujoco engine in a specific context to automatically determine the ideal behavior of the 
robot in an augmented reality environment. Enhanced random search was introduced to train linear guidelines for achieving the 
efficiency of Mujoco roaming tasks. The results of these models highlight the variability of the Mujoco benchmark task and lead 
to efficiently optimized rewards 
Keywords: Reinforcement Learning, Policies, Benchmark, Mujoco. 
 

I. INTRODUCTION 
Reinforcement learning provides a solution for continuous input dynamic models. The location description is that the AI model is 
ready to create a collection of decisions.  
The head knows how to pack the lens into a defective, perhaps complex condition. When composing, you encounter a playful state 
of artificial thinking ability. Artificial science skills are rewarded or trained for the activities that item engineers perform to get their 
machines to do what they need. This paper uses a model-free reinforcement learning method to train agents' linear policies to 
achieve optimized rewards based on advanced random search algorithms [1]. To implement this task, a trained policy is executed to 
create an augmented reality environment where the agent chooses the best action based on the current state and gets the most 
reward. 
The Augmented reality is one of the best technique which can be used in real world environment that will help to enhance the virtual 
visual components by combining all the elements for a person’s perception of real world. We use augmented reality to improve the 
way users visualize the robot's learning process.  
This is because the user understands the AI training process and the robot's perception is the environment [2]. It is very clear that the 
process of manually designing a robot is a very rigorous effort for an engineer. Model-Free Reinforcement Learning (RL) aims to 
provide an off-the-shelf solution for controlling dynamic systems without the need for a model of system dynamics. Such methods 
have succeeded in creating RL agents that outperform human players in games such as video games and Go [20, 33]. While these 
results are impressive, model-free methods have not yet been successfully applied to control physical systems other than research 
demos. Unfortunately, the current trends in RL research conflict these obstacles [3]. Searching for sample-efficient methods (that is, 
methods that require little data) generally requires the development of increasingly complex methods. This increased complexity 
poses a reproducibility crisis [4]. Recent studies have shown that many RL methods are not robust to hyper parameter changes, 
random starting values, or different implementations of the same algorithm [12, 13]. 
In our work, agents use various linear policies as input to track their behavior in the environment [5]. The most popular continuous 
control benchmark is the Mujoco motion task [6], and the humanoid model is considered "one of the most difficult continuous 
control problems that can be solved with state-of-the-art RL technology [7] [8].  Reinforcement learning provides a solution for 
continuous control dynamic models. 
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II. RELATED WORK 
1) Vassilios Tsounis, Mitija Alge, Joonha Lee et al [1], proposed new technique for training neural network policies for terrain-

aware movement, combining model-based motion planning with state-of-the-art methods for reinforcement learning. The 
author used an approach known as the Markov decision process to evaluate dynamic feasibility criteria. To train the strategy, 
we used the strategic gradient method to perform kick-based movements. The authors also proposed a new method for model-
free reinforcement learning. H. The Terrain Recognition Planner generates a set of actions that the robot uses to move towards 
the target. The other is a foot motion controller to correct and deal with disturbances. 

2) Ziyi Zang, Samuel Micah Akai-Nettey et al [2], proposed a treatise that presents reinforcement learning through an augmented 
reality platform. In this task, we will introduce an augmented reality interface and a Lego® Spike robot to introduce students to 
the concept of RL. The students were presented with the concept of RL. 1) What are the statuses, actions and rewards? 2) 
Exploration and exploitation. 3) Q table for robots to make decisions. This task aims to solve real benchmarking problems, train 
the robot in a simulated environment, and track the robot's movements. 

3) Octavio Villarreal, Victor Barasuol et al [3] Proposed a new control strategy for dynamic leg movement. This strategy is based 
on two main elements. One is a contact sequence task that provides a secure foundation based on a convolutional neural 
network and seeks a secure foundation to perform a rapid and continuous assessment of the terrain. The power of this strategy is 
harnessed through realistic on-board sensors and simulations of the hydraulically actuated four-legged robot HyQ Real that 
traverses rugged terrain under computational conditions. 

4) Angelo Bratta, Romeo Orsolino, Michele Focchi , Victor Barasoul et al [4] The proposed leg-locomotion nonlinear trajectory 
optimization based on simplified dynamics helps to achieve robust locomotion in difficult terrain constraints and focuses on 
incorporating joint torque limiting constraints, these limitations. Approximate how it is converted to permissible contact force 
as it is mapped to the leg. The experimental contributions of this paper consist of providing optimal orbital hardware from the 
formulation. 

5) Mnih et al. [5] It has been proposed that the policy of Atari video games and MuJoCo models can be quickly trained by 
asynchronously parallelizing the actor-critical methods common to decentralizing the policy gradient algorithm. Formerly 
Schulman et al. [30] introduced a generalized benefit estimation (GAE) method for estimating benefits. This can reduce the 
variance with less bias than the previous method. 

6) Haarnoja et al. [6] The high variance of the proposed gradient estimation is not the only hurdle that the gradient method must 
overcome. The optimization problems that occur in RL are very non-convex and there are many ways to find the suboptimal 
local optimization. To deal with this problem, Haarnoja etc. [6] proposes a soft Q-learning algorithm for learning multimodal 
stochastic policies through entropy maximization, leading to better exploration in environments with multimodal reward 
landscapes. Recently, Haarnoja etc. [6] We combined this idea with the Actor Criticism Framework to form the Soft Actor 
Criticism (SAC) algorithm. This is an out-of-policy actor critique method that aims at both the rewards and entropy that actors 
expect to maximize their stochastic policies. From another direction simplified the search space using linear guidelines. They 
used a natural gradient, which is a policy gradient that fits the policy's parameter space metrics, to train the linear policy of the 
MuJoCo locomotion task. 

7) Alexander L Mitchell, Martin Engelcke et al [7]. The proposed complex dynamic and terminal constraints are represented by 
high-level semantic indicators and deeply captured statistical representations of possible joint configurations while represented 
by learned classifiers operating in latent space. Generative model. The use of MPC provided a systematic and robust way to 
address the problem of quadrupedal walking. Nevertheless, it generally does not take into account future terrain within the 
forecast. Instead, it reacts to the terrain and relies on continuous updates of the state to provide sufficient robustness to initialize 
the optimization. Using terrain information to improve the performance of MPC strategies remains a challenge. 

 
III. REINFORCEMENT LEARNING 

Reinforcement learning is a machine learning training method based on rewarding desirable behaviors and / or punishing unwanted 
behaviors. In general, reinforcement learning agents can detect, interpret, perform actions, and learn through trial and error within 
the environment [9][10]. The world of agents is usually represented as a Markov decision process (MDP), 5 tuples . Where S is the 
set of states, A is the set of actions, T: S × A → Π (S) is the transition function that maps the action and the probability of moving to 
a new state given the current state, R. : S × A → R rewards the action in a given state, γ ∈ [0, 1). Discount factor. Consider an 
episode task that starts in the initial state s0 and starts a new episode when the agent reaches the stem in the final state [11]. At each 
interaction step, the agent observes its state and selects an action according to policy π: S → A. 
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The agent's goal is to learn the optimal strategy π ∗ to maximize the long-term expected total of discounted rewards [12][13]. One 
way to learn the optimal strategy is to learn the optimal behavioral value function Q ∗ (s, a). This shows the expected total discount 
reward for performing action a in state s and then executing the next strategy π : 
Q ∗（s、a）= R（s、a）+γXs 0 T（s 0 | s、a）×maxa0Q ∗（s 0、a0） 
 
The goal of the RL algorithm is to almost solve problem (1) by making as few calls to the environment as possible. The number of 
environmental queries required to solve problem (1) is called the complexity of the environment or the complexity of the sample 
[14]. The best trained controller should be able to capture the key features of motion in a low-dimensional model and transform it 
into a stable walking motion that works on the hardware [15][16][17]. 
Some important terms that describe the basic elements of the RL problem are: 
1) Environment: The physical world in which the agent operates 
2) Status: Current status of the agent 
3) Reward: Feedback from the environment 
4) Policy: How to map the state of an agent to an action. 
5) Value: Future rewards that agents will receive if they perform an action in a particular state. 
 

IV. PROBLEM FORMULATION 
 To Design and develop the Reinforcement Learning model to train and track the locomotion of a RL agent using Mujoco engine to 
eliminate the issues faced in normal philosophy assessment calculations using random search algorithm. Such problems can be 
abstractly formulated as max 

θ∈Rd Eξ [r(πθ, ξ)] , 
V. AUGMENTED RANDOM SEARCH 

Note that the problem formulation (1) aims to optimize reward by directly optimizing over the policy parameters θ. We consider 
methods which explore in the parameter space rather than the action space. This choice renders RL training equivalent to derivative-
free optimization with noisy function evaluations. One of the simplest and oldest optimization methods for derivative-free 
optimization is Augmented random search [18][19]. We are currently introducing augmented random search to extend the effective 
heuristics used in deep reinforcement learning. The main form of our technique is derived from basic random search. Augmented 
Random Search is a model free reinforcement learning a modified version of Basic Random Search Algorithm [20]. The basic idea 
behind reinforcement learning algorithms is to develop an algorithm that finds the best policy that can maximize agent rewards 
while applying that particular policy within the environment during an episode [21]. When maximizing the reward, it means that we 
are actually optimizing the process-we are trying to find the best value that gives the best result or the best objective function. In the 
ARS setup, agents learn from the environment, receive rewards based on their performance in the environment, and adjust weighted 
inputs in relation to the rewards received. As a result, the agent avoids repeating previous mistakes, but performs subsequent actions 
along with those lucrative rewarding actions, with the help of Perceptron[22]. The environment rewards each agent movement / 
action, while Perceptron chooses a total reward so that the weighted input can be adjusted. Perceptron-Takes input from the 
environment, applies some weights to it, sums it up, divides it by the standard deviation, and returns the output to the environment. 

Fig 1. Graph of No of Iterations Vs Rewards Gained 
 
Fig 1 describes the standard deviation of all the prizes at every step while preparing HalfCheetah-v1. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 10 Issue VII July 2022- Available at www.ijraset.com 
     

 
1780 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

The Q-Learning method is used to learn the policies of a action taken for each particular state plotted in the above graph. The goal of 
the Q-Learning algorithm is to iteratively train the optimal Q values obtained after each action in RL environment and form a Q- 
Matrix to help agents at each step to take best actions to obtain positive feedback. 

 
VI. SYSTEM ARCHITECTURE 

 

Fig 2. System Architecture 
 

The fig 2 Represents the Tracking Locomotion system architecture using the RL project. The system architecture here describes 
the project flow and the components of the project. First, the project uses linear  policies as input , here we are using policy 
based approach to obtain rewards i.e This approach finds the best policy for highest reward in future without using the value 
function and these policies are applied q-learning algorithm to learn the policies which forms a Q-matrix where the values are 
updated at each step for the action performed for a particular situation to get the efficiency path. The policy is trained with ARS 
and the agent takes action to predict the optimized reward by learning from its experience using trial and error method.For each 
good behavior or action the agent receives a positive feedback and for each bad behavior the agent will receive a negative 
feedback. So basically the agent is automatically learning from its experience and the feedbacks received from environment 
without the labelled data.  
The agent interacts with environment and explores itself. The goal of this agent to improve its efficiency by learning from its 
mistake with the feedbacks received without human intervention [23].   
 

VII. STANDARD DEVIATION ΣR 
As the training of policies progresses, random search in the parameter space of policies can lead to large variations in the 
rewards observed across iterations[24][25]. As a result, it is difficult to choose a fixed step-size α which does not allow harmful 
changes between large and small steps.  
To address the large variations of the differences r(πM+νδ) − r(πM−νδ), we scale the update steps by the standard deviation σR 
of the 2N rewards collected at each iteration[26]. To understand the effect of scaling by σR, we plot standard deviations σR 
obtained during training a policy for the HalfCheetah-v1 model in Figure 1. The standard deviations σR have an increasing 
trend as training progresses.  
This behavior occurs because perturbations of the policy weights at high rewards can cause HalfCheetah-v1 to fall early, 
yielding large variations in the rewards collected. Therefore, without scaling by σR, our method at iteration 300 would be taking 
steps which are a thousand times larger than in the beginning of training[27]. The same effect of scaling by σR could probably 
be obtained by tuning a step-size schedule. However, our goal was to minimize the amount of tuning required, and thus we 
opted for the scaling by the standard deviation[28][29]. 
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VIII. EXPERIMENTAL RESULTS 
A. Implementation Details 
We implemented a parallel version of Algorithm using the Python library Ray. To avoid the computational bottleneck we used the 
Python Library Ray to perform the equivalent adaptation of the algorithm. Maintain a strategic distance to the computational barrier 
δ of stimulus transmission. Our code sets the random seeds for the random generators of all the workers and for all copies of the 
OpenAI Gym environments held by the workers [30]. All these random seeds are distinct and are a function of a single integer to 
which we refer as the random seed. Furthermore, we made sure that the states and rewards produced during the evaluation rollouts 
were not used in any form during training. Open AI Gym offers a unique Mujoco exercise benchmark reward capacity [31]. We 
used these reward features to evaluate the display of direct orders generated by the default enhanced random search. 
 
B.  Results on the MuJoCo locomotion Tasks 
We evaluate the performance of ARS on MuJoCo roaming tasks included in OpenAI Gym v0.9.3. OpenAI Gym provides 
benchmark reward features for various MuJoCo locomotion tasks [32]. We used these standard reward functions to evaluate the 
performance of ARS-trained linear policies. The reported premiums received by the policy were the average of over 100 
independent rollouts. 

Fig 3. Feedback Mechanism of HalfCheetah-v1 
 

Fig 3 describes that for a thorough evaluation, 100 different random seeds from intervals [0, 10000] were sampled evenly and 
randomly. ARS trains guidelines for all MuJoCo roaming tasks. In addition, ARS can train policies most of the time while using a 
competitive number of episodes. 

 
Fig 4 Simulation Results of HalfCheetah-v1 

 
Fig 4 shows the simulation behavior of the HalfCheetah-v1 agent. The value approximation-based method does not work because 
the half-cheetah model uses a continuous action space instead of a discrete action space. Also Value functions usually need to use 
argmax to determine the best policy [33]. This makes working with continuous action spaces very unrealistic because it requires 
discretization of the action space. Therefore, we use the policy gradient method as the algorithm of choice. 
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IX. CONCLUSION 
We attempted to find the simplest model-free RL algorithm that works well with the continuous control benchmarks used in the RL 
literature [34]. Several algorithm extensions have shown that advanced random searches can be used to train linear guidelines to 
achieve state-of-the-art sampling efficiency in MuJoCo motion tasks. We have shown that the linear policy matches the 
performance of a complex neural network policy and can be found with a simple algorithm [35][36]. We have observed that the 
simplicity of the algorithms and guidelines allows us to perform extensive sensitivity studies and that our method can often find 
good solutions to strongly non-convex problems. We have shown that direct strategies can coordinate the execution of complex 
nervous system strategies and can be found with simple calculations [37]. Since it is based on calculations and strategies, we have 
the opportunity to engage in a wide range of suggestive reasoning, and that our method can find excellent answers to very non-
convex problems for a very long time to discover [38][39][40]. 
Our results emphasize the high variance intrinsic to the training of policies for Mujoco RL tasks. Evaluation on small numbers of 
random seeds does not capture performance adequately due to high variance. 
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