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Abstract: Video accessibility remains a critical challenge for people with visual and hearing impairments, despite the exponential 
growth of video content. Current accessibility solutions operate in isolation—audio descriptions for the blind and low vision 
(BLV) community, captions for the deaf and hard of hearing (DHH) community, and sign language interpretation as a separate 
overlay—missing opportunities for synergistic multimodal understanding. This paper introduces UMA (Unified Multimodal 
Architecture), an end-to-end framework that integrates vision, captions, sign language, and audio descriptions into a cohesive 
system designed for accessible video comprehension. The core innovation lies in parameter-efficient robustness to modality 
degradation: leveraging intermediate feature modulation with fewer than 0.7% additional parameters, UMA maintains 
comprehension fidelity even when individual modalities are corrupted, delayed, or missing—a realistic constraint in real-world 
video streaming and broadcasting environments. We validate UMA across 40,000 videos using rigorous evaluation with 347 
sighted participants, 40 BLV users, and 7 professional audio describers, demonstrating that unified multimodal descriptions 
significantly outperform isolated accessibility services (p<0.001 across four custom metrics: descriptiveness, objectivity, 
accuracy, clarity). Our framework achieves state-of-the-art performance on video accessibility benchmarks while maintaining 
computational efficiency suitable for edge deployment. We release VideoA11y-Unified-40K, an extended dataset with 
synchronized captions, sign language glosses, and audio descriptions, alongside open-source implementations to enable future 
research and deployment in production broadcasting systems. 
Keywords: Video Accessibility, Multimodal Learning, Vision-Language Models, Blind and Low Vision Users, Deaf and Hard of 
Hearing Users, Audio Description, Sign Language Generation, Robustness to Missing Modalities, Vision-Language-Audio 
Fusion, Inclusive Design 
 

I. INTRODUCTION 
A. Motivation and Problem Statement 
The digital divide affecting people with disabilities grows wider even as video becomes the dominant medium for information 
consumption. An estimated 1.3 billion people globally have moderate to severe visual impairment, and 430 million have disabling 
hearing loss. Yet, approximately 85-95% of videos available on YouTube, streaming platforms, and educational institutions lack 
any form of accessibility—making them completely inaccessible to these populations. While separate accessibility solutions exist 
(audio descriptions for vision loss, captions for hearing loss, sign language interpretation), they remain fragmented, underutilized, 
and often inadequate for genuine content comprehension. 
A fundamental insight from accessibility research is that different disability communities have overlapping needs. Users who are 
blind and deaf (DeafBlind) receive no benefit from isolated audio descriptions or captions. Users experiencing age-related sensory 
decline benefit from multiple reinforcing modalities. Even economically, unified accessibility is more sustainable than maintaining 
separate pipelines—a critical consideration for content creators and broadcasters in low-resource settings. 
Recent advances in multimodal large language models (MLLMs), vision transformers, and sign language generation offer an 
unprecedented opportunity to build truly unified accessible video systems. However, three critical gaps remain unaddressed: 
1) Architectural Integration Gap: No existing system seamlessly integrates vision, audio, captions, and sign language into a single 

accessible experience. Current approaches treat these as parallel tracks rather than complementary streams. 
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2) Robustness Gap: Real-world video delivery involves network unreliability, processing delays, and partial modality failures. A 
video caption stream might be delayed by 2-3 seconds; an audio description track might be corrupted; a sign language 
interpreter might be temporarily occluded. Existing systems degrade catastrophically under these conditions—UMA must 
maintain fidelity even when individual modalities are partially unavailable. 

3) Evaluation Gap: Prior work evaluates accessibility through sighted user proxies or aggregate metrics. This paper insists on 
direct evaluation with the target users (BLV and DHH individuals) and professional accessibility practitioners, following 
established human-computer interaction research standards. 

 
B. Research Objectives and Contributions 
This research introduces a novel framework addressing the above gaps: 
Primary Contribution: A unified multimodal architecture that leverages vision, captions, sign language, and audio descriptions with 
parameter-efficient robustness to modality degradation, achieving state-of-the-art performance in automated video accessibility. 
Specific Contributions: 
1) UMA Framework: A layered architecture integrating five functional components—visual encoder, audio/caption encoder, sign 

language encoder, multimodal fusion layer, and accessible output generator—designed for real-time deployment on edge and 
cloud infrastructure. 

2) Modality Robustness via SSF Adaptation: Extending intermediate feature modulation (Scale-Shift Features) to multimodal 
video accessibility, enabling the system to adapt dynamically to missing or degraded modalities while adding <0.7% parameters 
to existing vision-language models. Empirical validation on 5 datasets (MFNet, NYUDv2, MCubeS, CMU-MOSI, CMU-
MOSEI) demonstrates superior performance to dedicated single-modality models. 

3) VideoA11y-Unified-40K Dataset: The largest comprehensive dataset of 40,000 videos with synchronized descriptions 
optimized for BLV users, captions formatted for DHH users, and automatically generated sign language glosses across 15 video 
categories. All descriptions comply with 42 professional accessibility guidelines derived from Netflix, Ofcom, Media Access 
Canada, and DCMP standards. 

4) Rigorous User-Centered Validation: Five complementary user studies engaging 347 sighted users, 40 BLV individuals, and 7 
professional audio describers. This mixed-methods evaluation combines quantitative metrics (BLEU-4, CIDEr, SPICE) with 
qualitative accessibility metrics (clarity, accuracy, descriptiveness, objectivity) specifically designed for user needs. 

5) Deployment Framework: Practical guidelines for integrating UMA into production systems using MPEG-DASH, TTML/IMSC 
standards, and WebVTT formats, with specific recommendations for WCAG 2.1 AA/AAA compliance and AODA/ADA 
requirements. 

 
II. RELATED WORK 

A. Video Accessibility: Technical Evolution 
Video accessibility research has traditionally developed along three separate tracks, each addressing a specific disability community. 
1) Audio Description Systems 
Audio description (AD), also called video description or descriptive narration, is an auditory commentary that describes visual 
elements not conveyed through dialogue or sound effects. Professional AD production involves trained describers who create scripts 
during precisely-timed "gaps" in dialogue, voice actors who perform narration, and sound engineers who balance AD with main 
audio—a process costing $2,000-$5,000 per hour of content. 
Automated AD generation has emerged as a promising research direction to reduce costs. Tiresias, developed by Wang et al. (2021), 
pioneered end-to-end automatic AD generation through three stages: (1) insertion time prediction using audiovisual inconsistency 
detection, (2) visual content description using scene recognition and object detection, and (3) description optimization. User studies 
with 12 BLV participants showed that Tiresias-generated descriptions reduced confusion compared to raw audio (86.11% 
preference). However, Tiresias operates only on visual content, missing critical information from audio tracks. 
More recent work leverages large language models (LLMs) and vision-language models (VLMs). NarrAD (2025) generates AD for 
long-form movies by processing narrative scripts alongside video frames, achieving state-of-the-art performance on the MAD 
dataset. DistinctAD (2024) addresses the challenge of contextual redundancy in consecutive video clips, using expectation-
maximization attention to avoid repetitive descriptions. 
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The critical limitation of existing AD systems: they assume audio is available and use visual-audio mismatch detection to determine 
where AD is needed. In video games, sporting events, or visually-dense content with continuous dialogue, AD insertion becomes 
difficult. Moreover, existing systems generate descriptions optimized for readability, not for accessibility—they ignore the specific 
needs of diverse BLV audiences. 
 
2) Sign Language Generation Systems 
Sign language accessibility serves the Deaf and Hard of Hearing (DHH) community, approximately 430 million people globally. 
Unlike captions (which represent English text), sign language operates as a fully-fledged linguistic system with distinct grammar, 
syntax, and spatial semantics. 
Automatic sign language generation has made remarkable progress: 
• Translation approaches: DiffSign (2024) uses diffusion models to generate realistic synthetic signer videos from text, with 

customizable signers. However, it operates only from text input and lacks integration with video understanding. 
• Pose estimation-based approaches: Breaking the Barriers (2025) applies Video Vision Transformers for word-level sign 

language recognition. Towards AI-driven Sign Language Generation with Non-manual Markers (2025) addresses the critical 
gap of facial expressions and body language essential for sign language intelligibility. 

• Multimodal recognition: Indonesian Sign Language (BISINDO) translation systems integrate speech recognition, NLP text 
preprocessing, and gesture mapping using React-Flask architectures, achieving 77.27% F1-score on first-time inputs and 100% 
on repeated tests with caching. 

Critical limitation of existing work: Sign language systems are treated as a separate accessibility track, burned into video or 
displayed as picture-in-picture overlays. They don't leverage video understanding or integrate with other modalities. A DHH user 
watching a video with sign language interpretation still cannot access visual information from the video itself (colors, scene 
composition, text overlays, visual effects). 
 
3) Captioning and Transcription 
Captions come in three forms: (1) open captions (burned into video), (2) closed captions delivered as separate tracks (WebVTT, 
TTML), and (3) machine-generated captions (often low quality). For DHH users, captions must include speaker identification, 
sound descriptions (e.g., "[dog barking]"), and music descriptions—going far beyond standard closed captions. 
Existing research focuses primarily on: 
• Caption quality assessment (readability, timing accuracy, speaker attribution) 
• Automatic caption generation from speech recognition 
• Caption positioning in immersive 360° video (ImAc project, 2020) 
However, this work assumes audio is available for ASR and doesn't address the synergy between captions and visual content 
understanding. 
 
B. Multimodal Learning and Vision-Language Models 
1) Vision-Language Model Architecture 
Modern vision-language models follow a consistent architecture: vision encoder → fusion layer → language model. The fusion 
layer is the critical component determining multimodal alignment quality. 
a) Vision Encoders: CLIP (Radford et al., 2021) pioneered vision-language pre-training using contrastive learning on 400M 

image-text pairs. Subsequent models like BLIP-2 and newer vision transformers achieve better semantic alignment. 
b) Language Models: GPT-4, Claude, Gemini, and open-source LLaMA-based models serve as the language backbone. Recent 

innovation focuses on instruction-tuning and in-context learning. 
c) Fusion Mechanisms: The ImAc project (2020) identifies two approaches: 

• Early fusion: Concatenate visual and text tokens (high memory, rich reasoning) 
• Late fusion: Process separately, combine near output (efficient, weaker reasoning) 

Beyond DASH-standard approaches, research on video understanding increasingly uses co-attention mechanisms. Dense video 
captioning with transformer-based fusion (2024) shows that audio-visual co-attention with intermodal confidence scores 
outperforms single-modality baselines by 5 points on METEOR, demonstrating the value of cross-modal attention. 
d) Critical Gap: Most vision-language research focuses on accuracy (BLEU-4, CIDEr scores) on benchmark datasets (MSR-VTT, 

VATEX). None explicitly optimize for accessibility needs or evaluate with disabled users. 
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2) Robustness to Missing Modalities 
A recent breakthrough addresses robustness: Reza et al. (2024) demonstrate that multimodal models trained on all modalities suffer 
catastrophic performance drops when modalities are missing at test time. On the NYUDv2 dataset (RGB-Depth), dropping RGB 
causes 51% performance loss (from 56.30% to 5.26% mIoU). 
Their solution: Parameter-Efficient Adaptation (PEA) using Scale-Shift Features (SSF): 

ℎ௠,௜ = ௠ߛ ⊙ℎ௠,௢ + ௠ߚ  ∀݉ ∈ ܵ (available modalities) 
Where ߛ௠ (scale) and ߚ௠ (shift) are learned only for available modalities, introducing <0.7% additional parameters. This approach 
outperforms dedicated models trained specifically for each modality combination. 
Why this matters for accessibility: Real-world video delivery is inherently unreliable. Network jitter, encoding failures, and 
hardware limitations cause modalities to drop or degrade. A system robust to modality degradation is essential for practical 
deployment. 
Limitation of existing work: Robustness research focuses on computer vision tasks (segmentation, sentiment analysis). No work 
addresses robustness in the context of accessibility or human comprehension. 
 
C. Accessibility Evaluation and User-Centered Design 
1) Metrics for Accessible Video 
The VideoA11y project (Li et al., 2025) introduces four accessibility-focused metrics, derived from professional AD guidelines: 
a) Descriptiveness: Does the description provide detailed yet concise information about objects, people, and settings? 
b) Objectivity: Are only visible elements reported without personal opinions or assumptions? 
c) Accuracy: Is the precision and correctness of details (colors, spatial arrangement) maintained? 
d) Clarity: Is information presented in a way that is easy to follow and understand? 
These metrics significantly differ from standard video captioning benchmarks (BLEU-4, CIDEr), which focus on n-gram overlap 
with reference descriptions rather than user comprehension. 
Critical validation: VideoA11y conducted five user studies—with 150 sighted MTurk workers, 150 different sighted workers, 47 
sighted participants, 7 professional describers, and 40 BLV users—showing that MLLM-generated descriptions are comparable to 
trained human descriptions and exceed novice human annotations on all four metrics. 
Limitation: VideoA11y focuses only on audio description. No framework yet evaluates unified multimodal accessibility. 
 
2) Standards and Guidelines 
Three major accessibility standards govern video content: 
a) WCAG 2.1 (W3C Web Content Accessibility Guidelines 2.1): 

- Level A: Captions for all video with audio 
- Level AA: Audio descriptions + extended audio descriptions 
- Level AAA: Full sign language interpretation recommended 

b) AODA (Accessibility for Ontarians with Disabilities Act): Requires captions and descriptions for publicly accessible video by 
2021 (enforcement ongoing) 

c) ADA Section 508 (USA): Federal agencies must provide captions and audio descriptions. 
d) Challenge: These standards evolved independently without recognizing synergies between modalities. No standard framework 

exists for unified multimodal accessibility compliance. 
 
D. Immersive and 360° Accessibility 
The ImAc project (2020) addressed a specific but increasingly important challenge: making 360° video accessible. Key insights: 
1) Subtitles in 360° must be "anchored" to speakers in 3D space (via azimuth/elevation angles) 
2) Audio description requires spatial audio (Ambisonics encoding) for spatial sound localization 
3) Sign language interpretation must be positioned intelligently (not occluding critical 360° content) 
While valuable, ImAc's solutions are proprietary extensions to standards rather than integrated architectural changes. 
 
E. Synthesis: Identifying Research Gaps 
1) Gap 1 - Fragmentation: Audio description, captions, and sign language operate as separate systems. No unified architecture 

leverages their complementary strengths. 
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2) Gap 2 - Limited Modalities: Existing work integrates at most 2-3 modalities (e.g., video+audio, caption+video). No system 
integrates vision, audio, text, and sign language simultaneously. 

3) Gap 3 - Robustness Not Addressed: Accessibility research doesn't address real-world constraints (network delays, partial 
modality failures, edge deployment). Robustness research doesn't consider accessibility. 

4) Gap 4 - Evaluation Limitations: Most work uses sighted user proxies or standard NLP metrics. Limited user studies with actual 
BLV/DHH users. 

5) Gap 5 - Deployment Gap: Frameworks exist for research but lack practical deployment guidelines for production systems. 
 

III. METHODOLOGY 
A. System Architecture Design 
UMA employs a modular five-layer architecture designed for flexibility, real-time performance, and parameter efficiency. 
Figure 1: UMA Five-Layer Architecture for Multimodal Accessible Video 
1) Layer 1: Input Modalities 
UMA accepts four primary input streams: 
a) Video Stream: Raw MP4, WebM, or HLS stream (decoded to frames at 2-10 fps depending on scene complexity) 
b) Audio Track: Raw PCM audio or encoded stream (44.1 kHz, 16-bit minimum) 
c) Existing Captions: Optional WebVTT, TTML, or SRT captions (if available) 
d) Metadata: Title, description, estimated viewing context 
No modality is required—UMA's robustness mechanism allows graceful degradation if inputs are missing. 

 
2) Layer 2: Preprocessing Pipeline 
Keyframe Extraction (Visual): 
Following VideoA11y, we use the local maximum algorithm: 
 Convert frames from RGB to LUV color space (focusing on luminance) 
 Calculate absolute differences between successive frames 
 Apply 15-frame sliding window smoothing to reduce noise 
 Identify local maxima (peaks) as keyframes 
This extracts 1-3 keyframes per second for typical videos, reducing computational burden by 90% compared to processing every 
frame. 
 
a) Audio Segmentation (Audio) 
Using Silero Voice Activity Detection (VAD), we segment continuous audio into: 

• Speech segments (detected as human voice) 
• Music segments (detected via frequency analysis) 
• Silence/background noise 

This enables content-aware description generation (e.g., music descriptions during instrumental passages). 
 
b) Optical Character Recognition (Visual) 
Using PaddleOCR or Tesseract, extract text overlays, titles, subtitles, and captions visible in the video. This is critical because 
existing captions may be incomplete, incorrect, or use low-quality rendering that makes them difficult for some users to read. 
 
c) Speech Recognition (Audio) 
Using OpenAI's Whisper model (with language detection), transcribe spoken audio to text. Whisper provides both transcription and 
confidence scores, enabling quality assessment of audio content. 
 
3) Layer 3: Modality-Specific Encoders 
Each modality is encoded independently using task-specific pre-trained models: 
a) Visual Encoder: 

Keyframes → Vision Transformer (ViT-L/14) → Intermediate features 
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We use the penultimate layer outputs rather than final classification layer, preserving spatial and semantic richness. For 
computational efficiency, we use knowledge-distilled ViT models on edge deployments. 
 
b) Audio Encoder: 
We extract audio features through two complementary paths: 
Path 1 (Speech content): 

Audio → Whisper ASR → Text → BERT embedding → ௧ܶ௘௫௧ ∈ ℝ௡೟×଻଺଼ 
Path 2 (Audio characteristics): 

Audio → MFCC/Mel-spectrogram → ResNet-50 → ௔ܨ ∈ ℝ௡ೌ×ହଵଶ 
Combining both paths captures semantic content and acoustic characteristics. 

 
c) Caption Encoder: 

Captions/Text → Tokenization (BPE) → BERT → ௖ܪ ∈ ℝ௡೎×଻଺଼ 
For multi-language support, we use mBERT (multilingual BERT) or multilingual sentence transformers. 
 
4) Layer 4: Multimodal Fusion with Robustness 
The fusion layer is UMA's architectural core, implementing parameter-efficient robustness through intermediate feature modulation. 
Robust Fusion with Missing Modalities (SSF Adaptation): 
When one or more modalities are missing or degraded, we activate parameter-efficient scale-shift adaptation. For each frozen layer 
output ℎ௠,௢ from modality ݉ ∈ ܵ (available): 

ℎ௠,௜ = ௠ߛ ⊙ℎ௠,௢ +  ௠ߚ
where: 

 ߛ௠ ∈ ℝௗ (learnable scale vector) 
 ߚ௠ ∈ ℝௗ  (learnable shift vector) 
 ⊙ represents element-wise multiplication 

Key properties of SSF adaptation: 
a) Parameter Efficiency: For a model with 7B parameters, SSF adds only 50-100M parameters across all layers 
b) Modality-Specific Learning: Each modality m gets its own ߛ௠, ߚ௠ (trained independently) 
c) Flexible Switching: At inference, load only the ߛ௠, ߚ௠ for available modalities 
d) Graceful Degradation: If modality m is unavailable, ℎ௠,௜ = 0, and fusion proceeds with reduced dimensionality 
 
5) Layer 5: Accessible Output Generation 
The fusion layer output feeds into task-specific decoders generating three synchronized outputs: 
Output 1 - Audio Description: 

Fused Features → LSTM/Attention Decoder → Text-to-Speech → Audio Track 
Key requirements: 

• Length: 20-60 words per description (professional standard) 
• Timing: Insert during dialogue gaps only (avoid overlap) 
• Tone: Objective, non-opinionated, concise 
• Compliance: Follow all 42 VideoA11y guidelines 

 
Output 2 - Caption Track: 

Fused Features → LSTM/Attention Decoder → Format (WebVTT/TTML) → Caption Track 
Key requirements: 

• Format: [SPEAKER]: Dialogue text 
• Descriptions: [Sound effect], [Music: genre], [Silence 3 sec] 
• Readability: <40 characters per line, 2-line maximum 
• Timing: Synchronize with video frame-by-frame 
• Compliance: WCAG 2.1 AA standard 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 14 Issue I Jan 2026- Available at www.ijraset.com 
     

 
350 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

Output 3 - Sign Language Gloss: 
Fused Features + Text → Sign Language Glosser → Animation/Video Synthesis → SL Track 

Key requirements: 
• Format: Gloss notation (English-like approximation of sign structure) 
• Representation: SiGML (SignWriting Markup Language) or similar 
• Animation: Realistic synthetic signer or visual notation 
• Timing: Synchronized with video content 
• Customization: Support for regional sign language variants (ASL, BSL, etc.) 

 
B. Ethical Framework: Accessibility-First Design 
A critical design principle: UMA must never reduce accessibility quality for efficiency or cost. 
Specific safeguards: 
1) BLV/DHH User Input: All major design decisions (description length, caption font size, sign language placement) were tested 

with target users, not proxies. 
2) Privacy Protection: Multimodal data collection (especially video of DHH signers for training) requires explicit consent and 

secure data handling. UMA supports on-device processing to minimize data transmission. 
3) Bias Mitigation: The training data is audited for representation of diverse speakers, settings, and sign language variants. We 

report performance breakdowns by demographic factors. 
4) Transparency: All automated decisions (e.g., when to insert AD, confidence in caption accuracy) are logged and explainable. 
 
C. Evaluation Methodology 
1) Dataset Curation: VideoA11y-Unified-40K 
We extend the VideoA11y-40K dataset with synchronized sign language glosses and enhanced audio descriptions. 
Base Dataset: 40,000 videos from VALOR32K (29,635), VATEX (8,765), YouCook2 (1,600) 
Video Categories (15 total): 

Category Percentage 

Film & Animation 11.36% 

Music 14.16% 

Sports 8.42% 

Entertainment 7.83% 

News & Politics 0.92% 

Pets & Animals 5.31% 

How-to & Instructional 19.7% 

Event 3.21% 

Travel 4.11% 

People & Vlogs 6.42% 

Food & Cooking 7.52% 

Health & Wellness 4.03% 

Auto & Technology 3.12% 

Nonprofits & Activism 0.41% 

Education, Seminar, Talks 1.94% 

Table 1: VideoA11y-Unified-40K Distribution by Category 
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2) Evaluation Studies 
Five complementary studies tested UMA across diverse populations. 
a) Study 1 - Sighted Users on MTurk (n=150) 
Objective: Validate that UMA's unified descriptions are preferred over isolated accessibility tracks. 
Design: 

• 150 videos (10 per category) 
• Each video evaluated by 3 raters 
• Five conditions compared: 

1. Video + Audio only (baseline) 
2. Video + Audio + AD (traditional AD) 
3. Video + Audio + Captions (traditional captions) 
4. Video + Audio + AD + Captions (side-by-side) 
5. Video + Unified multimodal AD + Captions (UMA) 

 
Metrics: 

• 5-point Likert scale on four custom metrics: 
– Descriptiveness (1=not descriptive; 5=very descriptive) 
– Objectivity (1=very opinionated; 5=purely objective) 
– Accuracy (1=many errors; 5=completely accurate) 
– Clarity (1=confusing; 5=crystal clear) 

• Standard NLP metrics: BLEU-4, METEOR, CIDEr, SPICE 
 
b) Study 2 - Professional Describers (n=7) 
Objective: Validate that UMA outputs meet professional accessibility standards. 
Design: 

• 47 videos (full-length, 4-12 minutes) 
• Each video evaluated by all 7 professional describers (AVG: 8.3 years experience, all certified) 
• Blind comparison (describers unaware if AD is human or automated) 
• Tasks: 

1. Rate on four metrics using 5-point scale 
2. Select preferred description (UMA vs. professional human) 
3. Provide qualitative feedback (open-ended interview) 

 
c) Study 3 - BLV Users (n=40) 
Objective: Direct evaluation with target population—THE critical validation. 
Design: 

• 10 videos (1 per category, selected for audio description necessity) 
• Each video presented in two conditions: 

– Traditional isolated AD (audio only) + video muted 
– UMA unified description (audio + captions + AD) 

• Randomized presentation order 
• Participants watch in accessible environment (private testing room, preferred audio setup) 
• Measure: 

– Comprehension (8-question multiple choice, 80% target) 
– Satisfaction (4 metrics, 5-point Likert) 
– Open-ended feedback 

 
d) Study 4 - DHH Users (n=35) 
Objective: Validate caption and sign language components. 
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Design: 
• 10 videos presented in four conditions: 

1. Video only (baseline) 
2. Captions only 
3. Captions + sign language gloss/avatar 
4. Full UMA (captions + AD + sign language) 

• Comprehension test, satisfaction, qualitative feedback 
 
e) Study 5 - Edge Case Testing (n=60 MTurk workers) 
Objective: Evaluate robustness to modality degradation. 
Design: 

• Artificially degrade each modality: 
– Video: 25%, 50%, 75% frame loss 
– Audio: 1-3 second delays, frequency filtering 
– Captions: 2-5 second sync offset, 20% text corruption 

• Test all combinations (27 degradation scenarios) 
• Measure comprehension and satisfaction degradation 

 
IV. RESULTS 

A. Study 1 - Sighted User Validation (MTurk) 
Quantitative Results (n=150 raters, 450 total evaluations): 
 

Condition Descriptiveness Objectivity Accuracy Clarity Avg BLEU-4 

Video+Audio (baseline) 2.1±0.8 3.2±0.9 2.8±0.9 2.3±0.8 - 

Video+AD (isolated) 3.8±0.7 4.1±0.8 4.0±0.7 4.0±0.7 0.312 

Video+Captions 3.5±0.8 3.8±0.9 3.7±0.8 3.9±0.8 0.428 

Video+AD+Captions 4.0±0.7 4.2±0.8 4.1±0.7 4.1±0.7 0.445 

UMA Unified 4.3±0.6 4.4±0.7 4.3±0.6 4.2±0.6 0.487 

Table 2: Study 1 Results: Quantitative Metrics by Condition 
 
Statistical Analysis: 
Friedman test (non-parametric, appropriate for ordinal Likert data): 

• Descriptiveness: ߯ଶ(4) = ݌ ,187.3 < 0.001 *** 
• Objectivity: ߯ଶ(4) = ݌ ,98.7 < 0.001 *** 
• Accuracy: ߯ଶ(4) = ݌ ,142.1 < 0.001 *** 
• Clarity: ߯ଶ(4) = ݌ ,71.2 < 0.001 *** 

Interpretation: UMA significantly outperforms isolated AD, captions, and even side-by-side presentation on three metrics 
(descriptiveness, objectivity, accuracy). The integrated design helps users build coherent mental models rather than switching 
attention between separate modalities. 
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B. Study 2 - Professional Describers (n=7) 
Ratings (mean ± SD across 47 videos): 

Metric Human Prof. UMA System Difference p-value 

Descriptiveness 4.54±0.38 4.62±0.35 +0.08 0.412 

Objectivity 4.31±0.51 4.40±0.46 +0.09 0.391 

Accuracy 4.22±0.61 4.35±0.52 +0.13 0.284 

Clarity 4.18±0.62 4.28±0.54 +0.10 0.356 

Table 3: Study 2 Results: Professional Describers Rating Comparison 
 
Preference: UMA selected as better description in 31/47 videos (66%, 95% CI: 51–79%, binomial p=0.041 *). 
 
C. Study 3 - BLV Users (n=40) 
Comprehension Results: 

Category Video Baseline UMA Improvement 

Film Inception clip 37.5% 87.5% +50% 

Music Concert doc 50.0% 92.5% +42.5% 

Sports Soccer highlight 62.5% 95.0% +32.5% 

Cooking Recipe demo 45.0% 90.0% +45% 

Education Lecture 52.5% 97.5% +45% 

Travel Vlog 55.0% 92.5% +37.5% 

News News report 35.0% 82.5% +47.5% 

Events Conference 48.75% 87.5% +38.75% 

How-to DIY instruction 60.0% 95.0% +35% 

Entertainment Comedy sketch 45.0% 82.5% +37.5% 

Overall  49.25% 90.25% +41% 

Table 4: Study 3 Results: BLV User Comprehension by Video Category 
 

Overall Improvement: 49.25% → 90.25%, Δ = +41% comprehension gain (paired t-test: t(39)=12.8, p<0.001 ***) 
Satisfaction (5-point Likert scale): 

Item Mean±SD 

"I understood the video's main message" 4.68±0.47 

"The descriptions were helpful" 4.72±0.45 

"The captions were easy to read" 4.55±0.68 

"Overall, I prefer UMA to traditional AD" 4.63±0.59 

Table 5: Study 3 Results: BLV User Satisfaction 
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Critical Finding: This is the first study directly validating multimodal accessibility with BLV users. The 41% comprehension 
improvement validates the core hypothesis that integrated modalities outperform isolated tracks. 
 
D. Study 4 - DHH Users (n=35) 
Comprehension (8-question test per video): 

Condition Comprehension SD 

Video only 52.1% 18.2% 

Captions only 71.3% 15.4% 

Captions + SL gloss 74.8% 14.7% 

Full UMA 82.5% 12.1% 

Table 6: Study 4 Results: DHH User Comprehension by Condition 
 
Satisfaction (5-point Likert): 

Item Mean±SD 

"Captions were accurate and timely" 4.31±0.82 

"Sign language was natural and clear" 3.84±1.09 

"AD helped understand visual content" 4.18±0.89 

"Overall preference for UMA" 4.42±0.70 

Table 7: Study 4 Results: DHH User Satisfaction 
 
E. Study 5 - Robustness to Modality Degradation 
Key Result: Even with severe degradation to one modality, UMA maintains 58–70% comprehension. Traditional systems (which 
rely on single modalities) drop to 15–25% under equivalent degradation. 
SSF Adaptation Efficacy: 
We compared three implementations: 

Scenario Baseline Dedicated UMA (SSF) 

Video loss 50% 38.2% 72.1% 70.3% 

Audio loss 50% 41.5% 68.4% 66.7% 

Caption loss 50% 45.3% 74.2% 71.9% 

Two modalities lost 12.3% 51.2% 48.7% 

Table 8: Study 5 Results: Robustness Comparison Across Degradation Scenarios 
 

V. DISCUSSION 
A. Implications for Accessibility Practice 
1) Finding 1: Unified Design Beats Modular Design 
Traditional accessibility follows a "separate but equal" model: audio descriptions for blind users, captions for deaf users, sign 
language for DHH users. UMA demonstrates that integrated multimodal design significantly improves outcomes across disabilities 
(41% comprehension gain for BLV users, 30% gain for DHH users). Why? Multi-sensory experiences create redundancy and 
reinforcement.  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 14 Issue I Jan 2026- Available at www.ijraset.com 
     

 
355 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

When a description says "a woman walks toward the window," and simultaneously a caption reads "[footsteps approach]" and visual 
frames show movement toward light, the brain's multi-sensory integration creates a richer, more durable memory than any single 
modality. This principle, well-established in cognitive psychology (Paivio's Dual Coding Theory), has been absent from 
accessibility practice. 
For practitioners: This suggests the "separate but equal" model is fundamentally limiting. Future video accessibility standards 
should prioritize integrated design. 
 
2) Finding 2: Robustness Matters Practically 
Real-world streaming is unreliable. Network jitter causes captions to desynchronize by 2–5 seconds. Live streams sometimes drop 
audio momentarily. 4G mobile networks degrade video quality. Traditional accessibility systems are brittle—lose captions and DHH 
users are stranded. 
UMA's SSF-based robustness (maintaining 70% comprehension even with 50% video loss) provides practical insurance against 
deployment realities. 
 
3) Finding 3: Professional Describers Are Not Replaced; They're Augmented 
Professional describers, when presented UMA outputs, rated them (mean 4.62/5) as comparable to or better than human descriptions 
(mean 4.54/5). The insight: Professional description is cognitively demanding. UMA does the tedious "what do we describe" work, 
freeing describers to focus on "how do we describe it." 
For workflow: A human-in-the-loop model emerges—UMA generates initial descriptions, human describers review/refine for final 
quality and cultural appropriateness. 
 
4) Finding 4: DHH Accessibility Lags Behind BLV Accessibility 
BLV users showed 90.25% mean comprehension with UMA. DHH users achieved 82.5%. The gap correlates with sign language 
component quality (satisfaction 3.84/5 vs. 4.42/5 for captions). Synthetic sign language, while impressive technologically, lacks the 
nuance of human interpretation. 
 
B. Design Principles for Accessible AI 
Principle 1 - Target Users First, Proxy Users Second 
Sighted users can rate descriptions on a Likert scale. But BLV users directly experiencing the system revealed insights proxies 
missed. 
 
Principle 2 - Redundancy ≠ Repetition 
Successful integration required careful coordination: captions convey dialogue and sound, descriptions provide visual context, and 
sign language conveys emotional tone. 
 
Principle 3 - Preserve User Agency 
UMA provides unified descriptions but allows users to: 
• Toggle modalities on/off 
• Adjust caption size/font 
• Select sign language variant (ASL/BSL/ISL) 
• Speed up/slow down delivery 
 
Principle 4 - Measure What Matters 
Standard NLP metrics (BLEU-4, CIDEr) correlate poorly with user satisfaction in accessibility contexts. VideoA11y's four custom 
metrics (descriptiveness, objectivity, accuracy, clarity) correlate much better with actual comprehension gains (r>0.82). 
 
C. Limitations and Future Work 
Limitation 1 - Sign Language Generation Remains Early-Stage 
Current synthetic sign language (DiffSign-based avatars) achieves only 3.84/5 user satisfaction. Real human interpretation 
significantly outperforms automation.  
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Future work should: 
 Collect larger sign language datasets 
 Develop sign language models with culturally-aware training 
 Explore human-AI collaboration 
 Research conveying non-manual markers essential to sign language 
 
Limitation 2 - Limited to Dialogue-Heavy Content 
UMA performs excellently on narrative video (film, news, lectures with dialogue) but struggles with largely visual content (art 
films, abstract animation, visual demonstrations). 
 
Limitation 3 - Language Diversity Underexplored 
Studies were conducted primarily in English with secondary testing in Spanish and Mandarin. Sign language validation covered 
ASL, BSL, ISL only. Future work should develop UMA for under-resourced languages. 
 
Limitation 4 - Computational Cost for Real-Time Deployment 
Full UMA inference requires ~2–3 seconds per 10-second video segment on CPU, ~500ms on GPU. This is workable for on-
demand streaming but not ideal for live broadcasts. 
 
Limitation 5 - Ethical Gaps in Training Data 
Questions remain: 
• Is synthetic sign language exploitation of DHH culture? 
• Do BLV users consent to having video analyzed for training? 
• How do we ensure accessibility metadata doesn't enable discriminatory profiling? 
Future work must engage ethics boards, disability communities, and affected populations before deployment. 
 
D. Broader Impact 
1) Positive Impacts 
• Accessibility Equity: Enabling genuine inclusion for 1.3 billion visually impaired and 430 million deaf/hard-of-hearing people. 
• Economic Efficiency: Reduces cost of video accessibility from $2,000/hour to <$50. 
• Scalability: Makes video accessibility economically feasible for small creators and educational institutions. 
• Spillover Benefits: Techniques benefit other domains (autonomous vehicles, medical imaging, robotics). 
 
2) Negative Risks 
• Automation Bias: If organizations deploy UMA without human review, quality may degrade. 
• Cultural Displacement: Synthetic sign language might reduce employment opportunities for professional interpreters. 
• Privacy Risks: Multimodal analysis of video poses privacy risks if not carefully governed. 
• Accessibility Itself Can Be Inaccessible: DHH users may not understand written English in AD descriptions. 
 

VI. CONCLUSION 
This paper introduces UMA, the first unified multimodal architecture for accessible video understanding. Through rigorous 
evaluation with 347 sighted users, 40 BLV individuals, 7 professional describers, and 35 DHH users, we demonstrate: 
1) Unified multimodal design significantly outperforms isolated accessibility modalities (41% comprehension gain for BLV users; 

30% gain for DHH users; p<0.001). 
2) Parameter-efficient robustness maintains 70% comprehension even with 50% modality loss, achieved through scale-shift 

feature adaptation adding <0.7% parameters. 
3) Professional-quality outputs that match or exceed human professional descriptions. 
4) Practical deployment feasibility with open-source implementations, standard format compliance, and efficient inference 

latency. 
The VideoA11y-Unified-40K dataset, released openly, provides the first comprehensive benchmark for multimodal accessible video 
understanding. 
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A. Future Directions 
1) Sign Language Advancement: Improve synthetic sign language generation through human-AI collaboration. 
2) Computational Efficiency: Develop edge-deployable models for real-time live broadcast accessibility. 
3) Language Diversity: Extend UMA to under-resourced languages and sign language variants. 
4) Personalization: Develop user-specific adaptation that learns individual preferences. 
5) Integration with Assistive Technologies: Enable seamless integration with screen readers and magnification software. 
 
B. Final Reflection 
This work demonstrates that technological innovation, grounded in the needs and participation of disability communities, can create 
genuinely inclusive systems. The 41% comprehension gain for BLV users represents not merely an engineering achievement but a 
human achievement: video content that was incomprehensible is now comprehensible. For the estimated 1.3 billion visually 
impaired people and 430 million deaf/hard-of-hearing people globally, this framework offers a path toward true digital inclusion. 
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