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Abstract: This article explores the potential of causal AI-driven what-if simulations in enhancing decision-making across 
various industries. Causal AI uses theories and causal reasoning to figure out and model the underlying cause-and-effect 
relationships that govern a system or domain. It can make strong predictions even when it only has limited data. The article 
discusses the advantages of causal AI over traditional AI approaches and its ability to handle sparse data, enable counterfactual 
reasoning, and address bias issues. It delves into the applications of what-if simulations powered by causal AI in manufacturing, 
oil and gas, supply chain management, and contract management, presenting scenarios and demonstrating how causal AI can 
offer valuable insights and optimize decision-making. The article also highlights the challenges and opportunities associated 
with causal AI, including the need for domain expertise, integration with existing systems, interpretability and explainability, 
competitive advantage, positive social impact, research and development, and ethical considerations. The impact of causal AI-
driven what-if simulations on decision-making across industries is substantial, enabling organizations to make informed 
decisions, mitigate risks, and seize opportunities in an ever-changing business landscape. 
Keywords: Causal AI, What-if simulations, Decision-making, Industries, Challenges and opportunities. 
 

 
 

I. INTRODUCTION 
Understanding the potential outcomes of various scenarios is essential in the ever-changing world of business, as it enables informed 
decision-making.  Welcome to the world of causal AI, where advanced artificial intelligence is revolutionizing how organizations 
approach what-if simulations [1].  By leveraging cause-and-effect relationships and theoretical knowledge, businesses can gain 
valuable insights using causal AI, even in situations where data is limited [2], [3]. This article explores the potential of using AI-
driven what-if simulations to enhance decision-making in different industries [4], [5]. Join me as we delve into the captivating realm 
of causal AI, its diverse applications in various domains, and the thrilling prospects and challenges that accompany its continuous 
advancement [6], [7]. 
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II. UNDERSTANDING CAUSAL AI 
Causal AI represents a significant shift in the way we approach Artificial Intelligence and its applications [1]. Traditional AI 
methods have primarily relied on identifying correlations and patterns within historical data to make predictions and generate 
insights [2], [3]. While these approaches have proven valuable in many domains, they often struggle when faced with sparse or 
incomplete data, or when dealing with novel situations that differ from past experiences [4], [5]. 
Causal AI, on the other hand, takes a fundamentally different approach [6]. Rather than solely relying on data-driven correlations, 
Causal AI aims to understand and model the underlying cause-and-effect relationships that govern a system or domain [7], [8]. By 
capturing the causal structure, Causal AI can provide more robust and reliable predictions, even in the presence of limited data [9], 
[10]. 
At its core, Causal AI leverages theoretical knowledge and causal reasoning to uncover the true drivers of observed outcomes [11]. 
It seeks to answer questions such as "What causes what?" and "How do changes in one variable affect another?" [12], [13]. By 
explicitly modeling the causal relationships, Causal AI can provide a deeper understanding of the system and enable more accurate 
predictions and decision-making [14]. 
One of the key advantages of Causal AI is its ability to handle situations where data is sparse or incomplete [15]. Traditional AI 
approaches often struggle in these scenarios, as they heavily rely on the availability of large amounts of historical data to learn 
patterns and make predictions [16], [17]. Causal AI, however, can leverage domain knowledge and theoretical understanding to fill 
in the gaps and make informed predictions even when data is limited [18], [19]. 
For example, consider a healthcare scenario where a new drug is being developed to treat a rare disease. Historical data on the 
effectiveness of this specific drug may be scarce, making it challenging for traditional AI methods to make accurate predictions. 
However, Causal AI can draw upon the theoretical understanding of the disease mechanisms, the drug's mode of action, and the 
causal relationships between various biological factors to estimate the potential efficacy of the drug, even with limited data points 
[20], [21]. Causal AI also enables counterfactual reasoning, which involves asking "what if" questions and exploring alternative 
scenarios [22], [23]. By manipulating the causal variables and simulating different interventions, Causal AI can predict the 
outcomes of hypothetical actions or policy changes [24]. This capability is particularly valuable in domains such as healthcare, 
economics, and social sciences, where understanding the causal impact of interventions is crucial for informed decision-making 
[25], [26]. Moreover, Causal AI can help address issues of bias and fairness in AI systems [27], [28]. Traditional AI approaches that 
rely solely on correlations may inadvertently perpetuate or amplify biases present in historical data [29]. By explicitly modeling 
causal relationships and accounting for confounding factors, Causal AI can mitigate the impact of bias and ensure more equitable 
and unbiased predictions [30], [31]. 
As the field of Causal AI continues to advance, it holds immense potential to revolutionize various industries and domains [32]. 
From healthcare and finance to marketing and public policy, the ability to understand and leverage causal relationships can lead to 
more accurate predictions, better decision-making, and ultimately, improved outcomes [33], [34]. 
 

III. APPLICATIONS OF WHAT-IF SIMULATIONS 
What-If simulations powered by Causal AI have wide-ranging applications across various industries. Let's explore a few examples: 
 
A. Manufacturing 

 
Scenario: Introducing a new material in the manufacturing process. 
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Imagine if a manufacturer is thinking about swapping out a crucial component in their product with a cutting-edge material [35].  
We are excited about the potential of this material to enhance product performance, durability, and customer satisfaction. Yet, the 
manufacturer is unsure about how this change will affect their production process, cost structure, and overall profitability [36]. 
 
1) What-If Question: How will the new material impact returns and product quality? 
To make an informed decision, it is important for the manufacturer to address some key questions: 
a) Do you think the new material will lead to higher production costs? 
b) What impact will the new material have on the yield and efficiency of the manufacturing process? [37] 
c) Is the improved product performance worth the potential increase in costs? 
d) What will be the customers' reaction to the improved product quality? 
Could you please provide information on the projected return on investment for this material change? [38] 
To fully understand these questions, it is important to have a deep understanding of the complex relationships between material 
properties, manufacturing processes, cost factors, and customer preferences [39].  Usually, we would go through a series of tests, 
trial runs, and data collection to assess the impact of the new material.  However, going through this process can be quite time-
consuming and costly, and it may not provide you with a comprehensive understanding of all potential outcomes [40]. 
 
2) Causal AI Approach 
With its ability to tap into domain knowledge and causal relationships, causal AI can offer valuable insights into how the new 
material could affect profitability and quality, even when data is scarce [41]. With the help of domain knowledge and causal 
relationships, causal AI provides a robust alternative to predicting the potential impact of introducing the new material. Through a 
blend of knowledge in material science, manufacturing processes, and economic factors, causal AI can develop a model that 
encompasses the important variables and their interconnections [42]. 
The causal model would consider factors such as: 
a) Material properties: Strength, durability, thermal conductivity, etc. [43] 
b) Manufacturing process parameters: Cycle time, tooling requirements, energy consumption, etc. [44] 
c) Cost elements: Raw material costs, processing costs, inventory holding costs, etc. [45] 
d) Metrics to consider include defect rates, product performance, and customer satisfaction, among others. [46] 
Let us have a discussion about market dynamics, including demand elasticity, competitor offerings, and pricing strategies. These 
factors play a crucial role in shaping the market. [47] 
By explicitly modeling the causal relationships between these variables, Causal AI can simulate different scenarios and predict the 
likely outcomes of introducing the new material [48]. For example, it can estimate how changes in material properties would affect 
production efficiency, product quality, and manufacturing costs [49]. It can also predict how customers might respond to the 
improved product performance and how that would impact demand and pricing [50]. 
Even with limited historical data on the specific material or manufacturing process, Causal AI can still provide these insights [51]. 
Through the use of theoretical knowledge and causal reasoning, it can make informed predictions by extrapolating from related 
domains and drawing upon established scientific principles [52]. Manufacturers can now make informed decisions and evaluate the 
possible benefits and drawbacks of introducing the new material, without having to conduct expensive pilot runs [53]. 
 
B. Oil and Gas Industry 

 
Scenario: Leakages in Oil and Gas Pipelines 
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Oil and gas companies heavily rely on pipelines for the transportation of crude oil, natural gas, and refined products [54]. Leakages 
in these pipelines can lead to significant environmental, safety, and financial consequences [55]. Detecting leakages early, 
identifying their root causes, and understanding their impact on production key performance indicators (KPIs) and costs are crucial 
for effective pipeline management and risk mitigation [56]. 
 
1) What-If Question: How would a leakage in a critical pipeline affect production KPIs and costs? 
The company wants to assess the impact of a leakage in a critical pipeline on its production KPIs and costs. They need to understand 
how the leakage would affect throughput, production efficiency, maintenance expenses, and environmental compliance costs [57]. 
By analyzing these factors, the company can make informed decisions to minimize the impact of leakages and optimize its pipeline 
operations [58]. 
 
2) Causal Ai Approach 
Causal AI can model how pipeline leaks, production KPIs, and costs affect each other in complex ways [59]. This lets us find leaks 
before they happen, figure out what caused them, and evaluate their effects [60]. Causal AI explicitly models the causal 
relationships between key variables, such as pipeline integrity, flow rates, pressure levels, sensor data, maintenance records, and 
environmental factors [61]. By leveraging domain knowledge and causal inference techniques, causal AI can simulate the impact of 
leakages on production KPIs and costs [62]. 
The causal model can predict how a leakage would affect throughput and production efficiency by analyzing the severity and 
location of the leak [63]. It can also estimate the impact on maintenance expenses, considering the required repairs, downtime, and 
resource allocation [64]. Additionally, the model can assess the potential environmental compliance costs, taking into account the 
extent of the leak, regulatory requirements, and remediation efforts [65]. 
Causal AI enables the company to identify the root causes of leakages by examining the causal relationships between various 
factors, such as pipeline age, material properties, corrosion levels, and operating conditions [66]. By understanding the underlying 
causes, the company can prioritize maintenance activities, optimize inspection schedules, and implement preventive measures to 
reduce the risk of future leakages [67]. 
Furthermore, causal AI can assist in conducting scenario analyses to evaluate different response strategies [68]. By comparing the 
outcomes of different scenarios, such as immediate shutdown, partial flow reduction, or continued operation with increased 
monitoring, the company can make data-driven decisions to minimize the impact of leakages on production KPIs and costs [69]. 
The insights provided by causal AI can help the company optimize its pipeline operations, reduce downtime, and improve overall 
efficiency [70]. By proactively detecting leakages, identifying root causes, and understanding their impact, the company can 
mitigate risks, ensure regulatory compliance, and maintain a safe and reliable pipeline infrastructure [71]. 
 
C. Supply Chain Management 

 

 
Scenario: Inventory Allocation for Incoming Orders 
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In the dynamic world of supply chain management, efficiently allocating available inventory to incoming orders is a critical 
challenge [72]. Companies often face situations where they have limited stock and must make strategic decisions on which customer 
orders to fulfill [73]. This scenario involves a company that needs to determine the optimal allocation of its inventory to maximize 
key performance indicators (KPIs) and minimize potential penalties [74]. 
The company has received orders from two major customers, Customer 1 and Customer 2. However, due to limited inventory, the 
company must decide which order to prioritize [75]. The decision to allocate stock to one customer over the other can have 
significant implications on the company's KPIs, such as order fill rates, customer satisfaction, and potential penalties for unfulfilled 
orders [76]. 
 
1) What-If Question: What if we fill the order sent by Customer 1 instead of Customer 2? How does it impact KPIs and potential 

fill penalties? 
To make an informed decision, the company must evaluate the impact of allocating inventory to Customer 1's order instead of 
Customer 2's. They need to consider various factors, such as: 
a) Order Priority: Is one customer's order considered more critical based on factors like strategic importance, order volume, or 

long-term relationship? [77] 
b) Fill Rates: How will the allocation decision affect the overall order fill rates for each customer and the company as a whole? 

[78] 
c) Customer Satisfaction: What are the potential consequences for customer satisfaction levels if one order is prioritized over the 

other? [79] 
d) Penalty Clauses: Are there any contractual obligations or penalty clauses associated with unfulfilled orders for either customer? 

[80] 
e) Inventory Replenishment: How quickly can the company replenish its inventory to fulfill the remaining order and minimize the 

impact on the other customer? [81] 
Analyzing these factors manually can be complex and time-consuming, especially when dealing with multiple customers, products, 
and dynamic inventory levels [82]. Traditional approaches often rely on historical data, simple business rules, and human judgment, 
which may not capture the full complexity of supply chain dynamics [83]. 
 
2) Causal AI Approach 
By modeling the causal relationships between inventory allocation, order fulfillment, and KPIs, causal AI can provide insights into 
the optimal allocation strategy and its impact on business outcomes [84]. 
Causal AI offers a powerful approach to addressing this inventory allocation problem by explicitly modeling the causal relationships 
between the relevant variables [85]. By leveraging domain knowledge and causal inference techniques, causal AI can create a 
comprehensive model that captures the complex dynamics of the supply chain [86]. 
The causal model would consider factors such as: 
a) Inventory Levels: Current stock levels, expected replenishment times, and inventory holding costs [87]. 
b) Order Details: Quantities, due dates, and priority levels for each customer's order [88]. 
c) Customer Profiles: Strategic importance, historical order patterns, and customer loyalty [89]. 
d) Fill Rates and Penalties: Historical fill rates, penalty clauses, and the impact of unfulfilled orders on customer relationships 

[90]. 
e) Operational Constraints: Warehouse capacity, shipping logistics, and lead times [91]. 
By explicitly modeling the causal relationships between these variables, Causal AI can simulate different allocation scenarios and 
predict the impact on KPIs and potential penalties [92]. It can estimate how filling Customer 1's order over Customer 2's would 
affect order fill rates, customer satisfaction, and the likelihood of incurring penalties [93]. 
Causal AI can also help the company identify the key drivers of successful order fulfillment and optimize its allocation strategy 
accordingly [94]. By conducting counterfactual simulations and analyzing the causal effects, Causal AI can recommend the most 
effective allocation decisions to minimize penalties, maximize fill rates, and maintain strong customer relationships [95]. 
Furthermore, Causal AI can assist in developing proactive inventory management strategies [96]. By understanding the causal 
relationships between demand patterns, lead times, and inventory levels, the company can optimize its inventory replenishment 
processes to ensure adequate stock availability and minimize the need for trade-off decisions in the future [97]. 
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The insights provided by Causal AI can enable the company to make data-driven decisions, adapt to changing customer demands, 
and optimize its order fulfillment processes [98]. By leveraging the power of causal reasoning, the company can improve its 
operational efficiency, reduce penalties, and enhance customer satisfaction in the face of complex supply chain challenges [99]. 
 
D. Contract Management 
 

 
Scenario: Machine breakdown leading to supply interruptions. 

 
Machine breakdowns in the manufacturing and supply chain industries can have significant impacts on a company's ability to meet 
its contractual obligations [100]. These breakdowns have the potential to cause disruptions in production schedules, leading to 
supply interruptions and potential breaches of contract with customers [101]. Let us imagine a situation where a company depends 
heavily on a crucial piece of machinery to carry out its production process. Unfortunately, the machine has unexpectedly 
malfunctioned, and it appears that it will be out of commission for about a week while repairs have some concerns about the 
company's ability to meet its contractual commitments to its customers due to this interruption in production [102]. 
 
1) What-If Question: What would be the impact on contractual obligations if a machine breakdown halts supply for a week? 
To evaluate the effects of the machine breakdown on contractual obligations, the company must consider various factors, including: 
a) The details of the contracts with customers, such as delivery deadlines, quantity requirements, and penalty clauses [103]. 
b) The status of the production capacity and inventory levels of the impacted products [104]. 
c) It is important to consider the availability of other production options or backup machinery [105]. 
d) The potential financial losses that can occur due to delays or failures in delivering goods [106]. 
e) How customer relationships and reputation are affected in the market [107]. 
Looking into these factors by manually analyzing them can be quite a challenge and can take up a lot of time, especially when 
dealing with multiple contracts and interconnected production processes.  Typically, conventional methods involve the review of 
individual contracts, seeking advice from legal professionals, and making estimates based on past data and assumptions [108]. 
 
2) Causal AI Approach 
Causal AI can analyze contractual terms, production dependencies, and historical data to estimate the potential consequences of 
supply interruptions and suggest contingency plans [109]. 
Causal AI offers a powerful approach to tackling this contract management challenge by leveraging advanced techniques in natural 
language processing, machine learning, and causal inference [110]. Causal AI can make a full model that shows the complicated 
connections between machine breakdowns, supply interruptions, and contractual obligations by looking at contract terms, 
production data, and past patterns [111]. 
The causal model would consider factors such as: 
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a) Terms of the contract include delivery deadlines, quantity requirements, penalty clauses, force majeure provisions, and 
termination clauses [112]. 

b) Production dependencies involve considering the role of the affected machine in the overall production process, the impact on 
dependent processes, and the availability of alternative production options [113]. 

c) Inventory levels: The current stock of finished goods, work-in-progress, and raw materials for the affected products [114]. 
d) Historical data includes past instances of machine breakdowns, repair times, and how they have affected supply and contractual 

obligations [115]. 
e) Financial implications: the potential costs associated with delayed or missed deliveries, including penalties, lost revenue, and 

customer compensation [116]. 
With the help of causal modeling, causal AI can run different scenarios and give estimates on how a broken machine might affect 
contractual obligations [117]. It can predict the chances and severity of supply interruptions, evaluate the possibility of contract 
breaches, and measure the potential financial losses [118]. 
With the help of Causal AI, the company can easily identify the most important contracts and focus on responding to them promptly 
[119]. Through an analysis of the contractual terms and the potential impact of a supply interruption on each customer, Causal AI 
can provide recommendations on how to minimize overall contractual risk and preserve important customer relationships [120]. 
 

IV. CHALLENGES AND OPPORTUNITIES 
A. Challenges 
1) Domain Expertise 
○ Accurately modeling causal relationships requires deep domain knowledge. 
○ Collaboration between AI experts and domain specialists can be challenging due to communication barriers and varying levels 

of expertise. 
 

2) Integration with Existing Systems 
○ Integrating causal AI with existing systems and processes can be a significant hurdle. 
○ Organizations may need to invest substantial effort in data harmonization, system integration, and process re-engineering. 
○ Adapting to causal AI may require changes in organizational culture and decision-making processes. 

 
3) Interpretability and Explainability 
○ Ensuring the interpretability and explainability of causal AI models can be challenging. 
○ The complexity of the models and the multitude of variables involved can make it difficult to communicate insights to non-

technical stakeholders. 
○ Transparency and trust in causal AI models are crucial for their adoption and acceptance. 
 
B. Opportunities 
1) Advancements in Causal AI 
○ With continuous advancements in causal AI, businesses will have the opportunity to leverage its power through more accessible 

and user-friendly tools. 
○ The growing availability of data and recognition of causal reasoning will drive adoption across various industries. 

 
2) Competitive Advantage 
○ Causal AI provides exciting possibilities for innovation and gaining a competitive edge. 
○ Implementing causal AI can give companies a competitive advantage in decision-making, risk assessment, and strategic 

planning. 
 

3) Positive Social Impact 
○ Causal AI can create a positive influence on society in various domains, including healthcare, public policy, and environmental 

sustainability. 
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4) Research and Development 
○ Organizations need to prioritize research and development to fully harness the power of causal AI. 
○ Establishing interdisciplinary teams and encouraging collaborations between domain experts and AI professionals is crucial. 
5) Data Quality and Ethical Use 
○ Prioritizing data quality and ensuring the ethical use of causal AI is essential. 
○ Establishing governance frameworks is necessary for the responsible deployment of causal AI. 
 

V. CONCLUSION 
The impact what-if simulations powered by causal AI could have on decision-making across industries is substantial. With its 
theoretical knowledge and causal reasoning, causal AI can offer valuable insights, even when dealing with limited data. In today's 
ever-changing business landscape, the ability to effectively simulate and predict outcomes will set companies apart from their 
competitors.  Embracing causal AI-driven what-if simulations will enable organizations to make informed decisions, mitigate risks, 
and seize opportunities in an ever-changing business landscape. 
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