

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: I Month of publication: January 2026

DOI: <https://doi.org/10.22214/ijraset.2026.76702>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Vehicle Detection and Speed Tracking

Lakshmi MD¹, Sidharth P², Ghanshyam Shaji³, Liya Prakash⁴

^{1, 2, 3}Department of Computer Science and Engineering, Universal Engineering College, Thrissur, India

⁴Assistant Professor, Dept. of Computer Science and Engineering, Universal Engineering College, Thrissur, India

Abstract: This review surveys recent methods for vehicle detection, tracking, and speed estimation using monocular video, stereo vision, aerial imagery, LiDAR, and hardware-assisted optical sensing. Detection backbones such as YOLO, SSD, and Faster R-CNN are examined alongside tracking algorithms including SORT, DeepSORT, and ByteTrack. Monocular homography, stereodepth estimation, LiDAR-based tracking, and optical modulation approaches are analyzed in terms of accuracy, robustness, and deployment feasibility. The paper summarizes datasets, evaluation metrics, and research trends, while identifying key challenges such as weather robustness, lack of standardized speed ground truth, and real-time sensor fusion. Recommendations for future intelligent transportation systems are also discussed.

Keywords: Vehicle Detection, Speed Estimation, Intelligent Transportation Systems, LiDAR, Computer Vision

I. INTRODUCTION

Accurate vehicle detection and speed estimation are essential components of intelligent transportation systems (ITS). These systems enable traffic monitoring, congestion analysis, accident prevention, and smart city infrastructure development. Vision-based approaches using surveillance cameras and aerial platforms have gained prominence due to their scalability and cost-effectiveness when compared with traditional radar or loop-based systems.

Recent advancements in deep learning have significantly improved detection accuracy using models such as YOLOv8, SSD, and Faster R-CNN. Tracking algorithms including SORT, DeepSORT, and ByteTrack enhance temporal consistency, enabling reliable speed estimation from video streams. However, challenges such as perspective distortion, illumination changes, occlusion, and adverse weather conditions remain critical concerns.

II. LITERATURE SURVEY

A. Monocular and Video-Based Methods

Monocular approaches rely on object detection and tracking combined with camera calibration or homography. Deep image homography techniques transform camera views into bird's-eye perspectives, improving distance and speed estimation accuracy. These methods are computationally efficient but sensitive to calibration errors.

B. Stereo Vision Systems

Stereo vision systems estimate depth using disparity between paired cameras. Such systems provide higher accuracy than monocular methods and are less affected by perspective distortion. However, precise camera alignment and calibration are mandatory.

C. LiDAR-Based Speed Estimation

LiDAR sensors enable precise three-dimensional vehicle tracking using point cloud clustering and Kalman filtering. These systems achieve very low speed estimation error and are robust to lighting conditions, though high cost limits large-scale deployment.

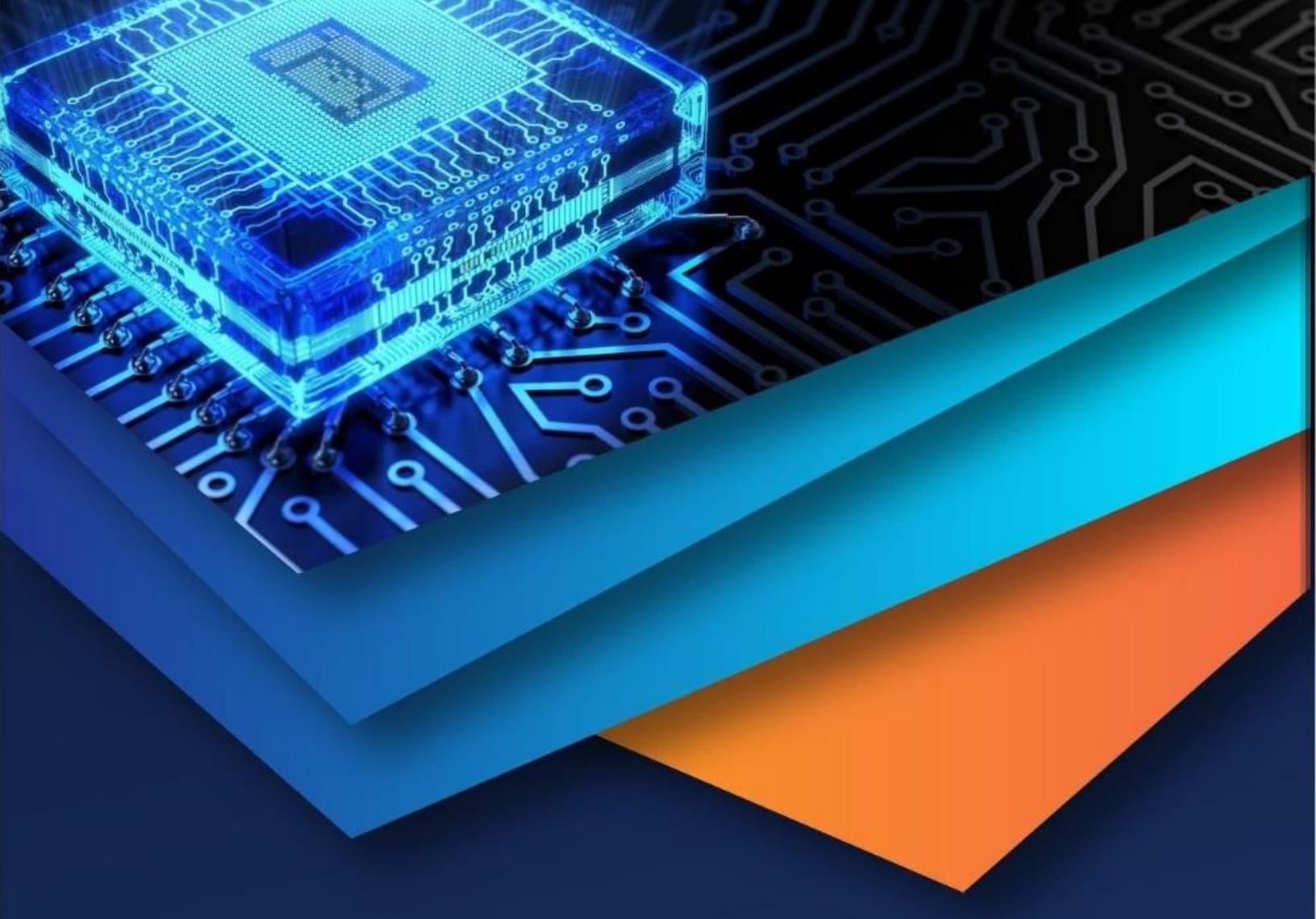
D. Optical and Hardware-Assisted Techniques

Modulated Motion Blur and frequency-modulated optical sensing encode velocity information directly into image patterns. These approaches improve robustness in low-feature environments but require specialized hardware.

E. Aerial and UAV-Based Systems

UAV-based monitoring provides wide-area traffic analysis using detection and tracking pipelines combined with scale calibration. These methods are effective for urban planning but are sensitive to altitude variation and motion blur.

III. ANALYSIS AND DISCUSSION


Comparative analysis indicates that LiDAR-based systems offer the highest accuracy, followed by stereovision approaches. Monocular and aerial methods provide acceptable performance for large-scale monitoring with lower infrastructure costs. Hardware-assisted methods demonstrate promising robustness but lack widespread adoption.

IV. CONCLUSION

This review highlights the evolution of vehicle detection and speed estimation from traditional vision-based pipelines to modern deep learning and multimodal systems. While LiDAR and stereovision deliver superior accuracy, monocular and aerial methods remain attractive for scalable deployment. Future research should focus on unified detection–tracking–speed estimation pipelines, weather-adaptive models, and real-time multimodal sensor fusion for smart transportation systems.

REFERENCES

- [1] D.Zhao,L.Zhang, and K.Sun, "Tracking and Speed Estimation of Ground Vehicles Using Aerial-view Videos," *IEEE Access*, vol. 12, pp. 21543–21558, 2024.
- [2] D.A.Kamil, K.Lee, and S.Park, "Vehicle Speed Estimation Using Deep Image Homography," *Sensors*, vol.24, no. 7, 2024.
- [3] L.Yang, Q.Li, and J.Chen, "Vehicle Speed Measurement Based on Binocular Stereovision," *IEEE Access*, vol.7, pp. 146352–146363, 2019.
- [4] J.Zhang, M.Wang, and Z.Liu, "Vehicle Tracking and Speed Estimation From Roadside LiDAR," *IEEE JSTARS*, vol. 13, pp. 5943–5955, 2020.
- [5] M. Lee, D. Kim, and S. Lee, "Vehicle Speed Estimation Using Modulated Motion Blur," *IEEE Access*, vol. 11, pp. 87824–87836, 2023.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)