
 

11 II February 2023 

https://doi.org/10.22214/ijraset.2023.49069



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue II Feb 2023- Available at www.ijraset.com 

     

500 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

Wheel Defect Detection with Advanced Machine 

Learning 
 

Sumit Kumar Das 

KIIT University, Bhubaneswar 

 

Abstract: Wheel defects on railway wagons have been identified as an important source of damage to the railway infrastructure 

and rolling stock. They also cause noise and vibration emissions that are costly to mitigate. We propose two machine learning 

methods to automatically detect these wheel defects, based on the wheel vertical force measured by a permanently installed 

sensor system on the railway network. Our methods automatically learn different types of wheel defects and predict during 

normal operation if a wheel has a defect or not. The first method is based on novel features for classifying time series data and it 

is used for classification with a support vector machine. To evaluate the performance of our method we construct multiple data 

sets for the following defect types: flat spot, shelling, and non-roundness. We outperform classical defect detection methods for 

flat spots and demonstrate prediction for the other two defect types for the first time. Motivated by the recent success of artificial 

neural networks for image classification, we train custom artificial neural networks with convolutional layers on 2-D 

representations of the measurement time series. The neural network approach improves the performance on wheels with flat 

spots and non-roundness by explicitly modelling the multi sensor structure of the measurement system through multiple 

instances learning and shift invariant networks. 

 

I. INTRODUCTION 

Measurement System and Defect Types 

 

A. Wheel Load Checkpoint 

As part of this system, the wheel load checkpoints (WLC) measure vertical force through strain gauges installed on the rails. These 

devices are used for observing maximal axle load, maximal train load, load displacement and grave wheel defects. Our study 

investigates the use of machine learning methods to defect and classify wheel defects based on the data obtained through these 

wheels load checkpoints. 

Each WLC consists of four 1m long measurement bars with four strain gauges (referred to as sensors in the following) per 

measurement bar. Since on each side two measurement bars with 4 sensors are installed, each wheel that runs over the WLC is 

measured eight times at different parts of the wheel. 

 
Fig. 1. 
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Multiple vertical wheel force measurements of a train wheel by the four sensors of one measurement bar. The wheel is affected by a 

discrete defect that manifests itself in the measurement of the first sensor. The remaining sensors do not directly observe the defect. 

 
Fig. 2. 

 

Diagram of one sensor on a measurement bar of the WLC. The strain gauges are attached to the side of the wheel between two 

sleepers and cover 28cm of vertical wheel force of the wheel rolling on the track. 

 

B. Railway Wheel Defects 

A relatively well understood wheel defect type is the flat spot or wheel flat. This defect occurs when the wheel stops rotating (for 

instance during an emergency brake) and is dragged along the track. Apart from flat spot, other common wheel defects on railway 

vehicles are non-roundness and shelling. Wheels with non-roundness have a high influence on the vibration and noise emitted by a 

passing train and, therefore, they are an important type of defect to detect. Non-roundness, in contrast to shelling and flat spot, is a 

non-discrete type of defect. This characterization means that the defect affects a large part of the wheel and changes its shape in a 

non-local way.  

 
Fig. 3. 

 

Picture of a serious flat spot on a train wheel of SBB (a) and the resulting idealized wheel load measurement (b). (Picture taken from 

Wikipedia/Bobo11) 
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II. BACKGROUND 

A. Data Sets and Models 

Two data sets from different sources are assembled to evaluate the performance of different methods for wheel defect detection and 

classification and to train various classifiers. For both data sets the signals that we use to predict a wheel defect are measured by the 

wheel load checkpoint. 

 

1) Models and Features 

On the first data set we compare the Wavelet-SVM with benchmark flat spot prediction methods. We show that it greatly 

outperforms prior art based on thresholding the dynamical coefficient (Eq. 10 below) and also on multiple instance learning with 

dynamic time warping. 

The second data set serves to demonstrate that the Wavelet-SVM can accurately classify all three defect types. We also compare the 

performance of the deep learning models on different time series representations by showing that the cyclic permutation network 

outperforms the simpler neural networks and also the Wavelet-SVM for non-roundness. For flat spots, the neural network with 

features learned on the 2D time series representation also outperforms the Wavelet-SVM. 

 

2) Data Set 1: Calibration Run 

To acquire a first training data set for flat spots, two wheels on different wagons were artificially damaged. The wagons were then 

added to a calibration train that was run over different measurement sites with different velocities and from both directions to 

calibrate the wheel load check points. This resulted in 1600 measurements, 50% of which are from a wheel with a flat spot. 

We also consider another method to detect flat spots in this data set, that is not based on machine learning. It is a conservative 

threshold on the dynamic coefficient: a general measure of spread within one time series. For each sensor this coefficient is given by 

dBW(x) =
 ( )

`
 --------------------------------(10) 

 

where max and x` refer to the maximum and average value of a sequence of measurements x, respectively. 

 

3) Data Set 2: Reprofile Events 

To generate data for training and testing a classifier that can predict additional types of wheel defects, we aggregated the time and 

date of reprofile events and linked them to railway wagons. We used two sources for these events: the protocols of repair workshops 

of freight trains and the regular maintenance measurements of passenger trains. These were annotated with a defect class by an 

expert before re-profiling the defective wheels. Using this procedure, we were able to obtain a large data set of annotated 

measurements from wheels of different defect classes over the span of multiple years. 1836 measurements are evaluated for flat spot 

detection, where 588 cases are classified as defective. For shelling, we received 6070 measurements, with 2678 being defective. For 

the non-roundness defect class, 688 cases out of 920 measurements are defective. 

 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

For performance evaluation of the methods, we compute three metrics: accuracy, precision and recall. Whereas accuracy gives the 

total fraction of correctly classified wheels, precision measures the fraction of correctly predicted defects out of all predicted defects 

and recall the fraction of correctly predicted defects out of all defects. 

 

A. Model Selection and Evaluation 

To make the evaluation robust against chance we repeat each experiment multiple times on new random train/test splits and report 

average and standard deviation over these repetitions. For data set 1 we only report the average as the standard deviation was not 

reported for the benchmark method. For data set 1 50% of the data is hold out for testing, for data set 2 20%. For the Wavelet-SVM 

the average performance is computed over 10 repetitions, for the DNNs over three repetitions. 

 

B. Data Set 1 

In a study prior to this publication [27], this data set was used to empirically demonstrate the effectiveness of a new algorithm for 

MIL [26]. 
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Using the features described in Section III with a SVM (Section V) we were able to improve accuracy to 92% (Table I). 

 

Table I Test Set Performance on Data Set 1 

 
 

With the current operational threshold of θ=3 on the maximal dynamic coefficient (Eq. 10) an accuracy of 60% is achieved. This is 

relatively low, as with random guessing already 50% accuracy could be achieved. It is thus important to note that the precision of 

this method is perfect with 100% of reported wheels being defective. So even though the method misses defective wheels it never 

raises a false alarm. 

 

C. Data Set 2 – SVM 

The SVM classifier (Section V) are trained on the labels obtained by this method for the defect types flat spot, shelling and non-

roundness. 

In Table II the performance on the reserved test set is reported for each defect type including standard deviation over the 

permutations. 

 

Table II Test Set Performance of the Wavelet-SVM on Data Set 2 

 
 

1) This observation can be explained by the fact that the training set for this defect type was by far the largest, so we were able to 

train a classifier with higher accuracy.  

2) This defect type also affects the wheel globally, so it is harder to miss for the sensors than a flat spot. 

3) To improve the performance on flat spot and non-roundness we trained custom deep neural networks and give the results in the 

next section. 

 

D. Data Set 2 - Deep Learning 

Using the same data set as in the previous section we evaluate the deep learning method (Section IV) on the two defect types flat 

spot and non-roundness. To simplify the experiments, we do not include additional features like speed, measurement site or template 

fit, but only consider the wheel vertical force measurements from the WLC sensors. Therefore, the performance of the SVM is 

slightly worse compared to the previous section. 

 

To compute the 2D image of the time series we proceeded as following: 

1) The recording from each of the 8 channels have been pre-processed via PAA [24], with bin number N=156. 

2) The GAF encoding as well as the 2D graph were computed for each channels (we took the following parameters for the 2D 

graph: Vmin=−4,Vmax=6 as the window captures more than 99.9% of all the values, and r=Vmax−VminN=10N to generate 

square pictures of size N×N ). 

3) Finally, the picture size was further reduced by averaging every 2×2 non-overlapping pixels for computational reasons, 

resulting in 8 channels of size 78×78 for both GAF and 2D graph encoding. 
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The learning rate was set to decay inversely proportional to the number of epochs. 

 

a) Flat Spots 

In Table III we compare the performance of the different DNN models and the Wavelet-SVM. The only deep model that is able to 

out-perform the accuracy of the Wavelet-SVM is based on the 2D image of the time series. All of the deep models have smaller 

standard deviation and higher precision. 

 

Table III Test Set Performance of the Deep Models on Flat Spots in Data Set 2 

 
 

b) Non-Roundness 

In Table IV we compare the performance of the cyclic DNN with the DNN used for flat spot prediction (Deep MIL), a DNN that is 

trained on the concatenation of all the sensors (Deep Concat) and the Wavelet-SVM. Remember that the MIL-DNN used for flat 

spot prediction is trained by looking at the time series of each sensor individually and computing the loss on sensor with highest 

probability of observing the defect. 

 

Table IV Test Set Performance of the Deep Models on Non-Roundness in Data Set 2 

 
 

In comparison with the Wavelet-SVM the cyclic DNN shows higher accuracy and precision and reduced variance. 

 

IV. CONCLUSION 

We have presented two machine learning methods for defect detection on railway train wheels. The methods analyse multiple time 

series of the vertical force of a wheel under operational speed and output if a wheel has a defect or not. Both methods are trained 

automatically on measurements gathered from defective and non-defective wheels. The first method is based on novel general 

wavelet features for time series. The second method employs deep convolutional neural networks to automatically learn features 

from the time series directly or from a 2-dimensional representation.  

The methods that were developed for this work are currently being implemented as part of the SBB wayside train monitoring 

system. To improve the quality of the training and test data RFID tags will be deployed to enable perfect association between defect 

labels and measurements. Further future work consists of integrating external features into the deep learning models, optimizing for 

precision and predicting severity scores for the defects.  
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