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Abstract: We present Cinder, an operating system for mobile phones and devices, that allows users and applications to control 
and manage limited device resources such as energy. We argue that controlling energy allocation is an important and
increasingly useful feature for operating systems, especially on mobile devices. We present two new low-level abstractions in the 
Cinder operating system, taps and reserves, which store and distribute energy for application use. We identify three key 
properties of control  isolation, delegation, and subdivision and show how using these abstractions can achieve them. We also 
show how the architecture of the HiStar information flow control kernel lends itself well to control energy. We prototype and 
evaluate Cinder on a popular smart phone, the Android G1.
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I. INTRODUCTION

In the past decade, mobile phones have emerged as a dominant 
computing platform for end users. These very personal 
computers depend heavily on graphical user interfaces, always-
on connectivity, and long battery life, yet in essence run 
operating systems originally designed for workstations (Mac OS 
X/Mach) or time-sharing systems (Linux/Unix). Historically, 
operating systems have had poor energy management and 
accounting. This is not surprising, as their APIs standardized 
before energy was an issue. This limited control and visibility of 
energy is especially problematic for mobile phones, where
energy and power define system lifetime. In the past decade, 
phones have evolved from low-function proprietary applications 
to robust multi- programmed systems with applications from 
thousands of sources. Apple announced that as their App Store 
houses 185,000 apps for the iPhone with more than 4 billion 
application downloads. This shift away from single-vendor 
software to complex application platforms means that the 
phone’s software must provide effective mechanisms to manage 
and control energy as a resource. Such control will be even more 

important as the danger grows from buggy or poorly designed 
applications to potentially malicious ones.

In the past year, mobile phone operating systems began 
providing better support for understanding system energy use. 
Android, for example, added a UI that estimates application 
energy consumption with system call and event instrumentation, 
such as processor scheduling and packet counts. This is a step 
forward, helping users understand the mysteries of mobile 
device lifetime. This paper presents Cinder, a new operating 
system de- signed for mobile phones and other energy-
constrained computing devices. Cinder extends the HiStar 
secure kernel to provide new abstractions for controlling and 
accounting for energy: reserves and taps. Taps and reserves 
compose together to allow applications to express their 
intentions, enabling policy enforcement by the operating system.

Cinder estimates energy consumption using standard device-
level accounting and modeling. HiStar’s explicit information 
flow control allows Cinder to track which parties are responsible 
for resource use. Cinder is the first research operating system 
that runs on a mobile phone.
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This paper makes three research contributions. Firstly, it 
proposes reserves and taps as new operating system mechanisms 
for managing and controlling energy consumption. Secondly, it 
describes experiences in writing a mobile phone operating 
system, out- lining the challenges and impediments faced when 
conducting systems research on the dominant end-user 
computing platform of this decade. Thirdly, it evaluates the 
effectiveness and power of these mechanisms in a variety of 
realistic and complex application scenarios running on a real 
mobile phone. 

II. A CASE FOR ENERGY CONTROL

This section motivates the need for low-level, fine-grained 
energy control in a mobile device                          operating 
system. It starts by reviewing some of the prior work on energy 
visibility and the few examples of coarse energy control. The 
next section describes reserves and taps, abstractions which 
provide these mechanisms at a fine granularity.
There is rich prior work on addressing the visibility problem of 
attributing consumption to application principals. Control, in 
contrast, has seen much less effort. Early systems like 
EcoSystem proposed high level application power limits. 
Mobile applications today, however, are much more complex: 
they spawn and invoke other services and have a much richer set 
of peripherals to manage. We believe that for users and 
applications to effectively control power, an operating system 
must provide three mechanisms: isolation, subdivision, and 
delegation. We motivate these mechanisms through three 
application examples that we follow through the rest of the 
paper. Isolation is a fundamental part of an operating system. 
Memory and IPC isolation provide security, while cpu and disk 
space isolation ensure that processes cannot starve others by 
hogging needed resources. As a more concrete example, the 
energy a phone reserves for an emergency 911 call should be 
isolated from the rest of the system, so that other programs 
cannot use it. Web browsers run (sometimes untrusted) plugins. 
Given that a browser receives a finite amount of power, it might 
want to protect itself from buggy or poorly written plugins that 
waste CPU energy. The browser would like to subdivide its 
energy so that it can give plugins a small fraction, knowing that 
isolation will prevent them from using its own lion’s share. The 
ability to subdivide energy is critical for applications to be able 
to invoke other services without sacrificing all of their own 

resources. Finally, there are times when applications need to 
allow others to use their energy, but do not want to carve off a 
reserved, isolated subdivision. The ability to delegate resources 
is an important enabler of inter-application cooperation. For 
example, the Cinder networking stack implicitly transfers 
energy into a common radio activation pool when an application 
cannot afford the high initial expense of powering up the radio. 
By delegating their energy to the radio, multiple processes can 
contribute to expensive operations; this can not only improve 
quality of service, but even reduce energy consumption. Prior 
systems like EcoSystem and Currency provide isolation, but not 
subdivision or delegation. Isolation is sufficient when 
applications are static entities, but not when they themselves 
spawn new processes or invoke complex services. Subdivision 
lends naturally to standard abstractions such as process trees, 
resource containers and quotas, while delegation is a kin to 
priority inheritance.

III. DESIGN
Cinder is based on the HiStar operating system which is a secure 
exo-kernel that controls information flow using a label 
mechanism. The kernel provides a small set of kernel object 
types to applications, from which the rest of system is built: 
threads, address spaces, segments, gates, containers, and 
devices. Cinder adds two new kernel object types: reserves and 
taps. This section gives an overview of HiStar, describes 
reserves and taps, gives examples of how they can be used, and 
provides details on their security and information flow.

HiStar
HiStar is composed of six first-class kernel objects, all protected
by a security label. Its segments, threads, address spaces, and 
devices are similar to those of conventional kernels. Containers 
enable hierarchical control over deallocation of kernel objects –
objects must be referenced by a container or face garbage 
collection. Gates provide protected control transfer of a thread 
from one address space to a named offset in another; they are 
the basis for all IPC.

Reserves
A reserve describes a right to use a given quantity of a resource, 
such as energy. When an application consumes a resource the 
Cinder kernel reduces the values in the corre- sponding reserve. 
The kernel prevents threads from performing actions for which 
their reserves do not have sufficient resources. Reserves, like all 
other kernel objects, are protected by a security label (§3.5) that 
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controls which threads can ob- serve, use, and manipulate it. 
Reserves allow threads to delegate and subdivide re- sources. 
Reserves also provide accounting by tracking application 
resource consumption. Applications may access this accounting 
information in order to provide energy-aware features. Finally, 
reserves can be deleted directly or indirectly when some 
ancestor of their container is deleted, just as a file can be deleted 
either directly or indirectly when a directory containing it is 
deleted in a UNIX system.

Taps
A tap transfers a fixed quantity of resources between two 
reserves per unit time, which controls the maximum rate at 
which a resource can be consumed. For example, an appli-
cation reserve may be connected to the system battery via a tap 
supplying 1 mJ/s (1 mW).
Taps aid in subdividing resources between applications since 
partitioning fixed quantities is impractical for most policies. A 
user may want her phone to last at least 5 hours if she is surfing 
the web; the amount of energy the browser should receive is 
relative to the length of time it is used. Providing resources as a 
rate naturally addresses this. Taps are made up of four pieces of 
state: a rate, a source reserve, a sink reserve, and a security label 
containing the privileges necessary to transfer the resources 
between the source and sink

Figure:

A 15 kJ battery, or root reserve, connected to a reserve via a tap. 
The battery is protected from being misused by the web 
browser. The web browser draws energy from an isolated 
reserve which is fed by a 750 mW tap.

Access Control & SecurityAny thread can create and share 
reserves or taps to subdivide and delegate its resources. This 

ability introduces a problem of fine grained access control. To 
solve this, reserves and taps are protected by a security label, 
like all other kernel objects. The label describes the privileges 
needed to observe, modify, and use the reserve or tap. Since a 
tap actively moves resources between a source and sink reserve, 
it needs privileges to observe and modify both reserve levels; to 
aid with this, taps can have privileges embedded in them.

IV. CINDER ON THE HTC DREAM

Controlling energy requires measuring or estimating its 
consumption. This section describes Cinder’s implementation 
and its energy model. The Cinder kernel runs on AMD64, i386, 
and ARM architectures. All source code is freely avail- able 
under open-source licenses. Our principal experimental platform 
is the HTC Dream (Google G1), a modern smart- phone based 
on the Qualcomm MSM7201A chipset.

Energy accounting
Energy accounting on the HTC Dream is difficult due to the 
closed nature of its hardware. It has a  two-processor design. 
The operating system and applications run on an ARM11 
processor. A secure, closed ARM9 coprocessor manages the 
most energy hungry, dynamic, and informative components (e.g. 
GPS, radio, and battery sensors). The ARM9, for example, 
exposes the battery level as an integer from 0 to 100. Recent 
work on processors has shown that fine-grained performance 
counters can enable accurate energy estimates within a few 
percent [Economou 2006; Snowdon 2009]. Without access to 
such state in the HTC Dream, however, Cinder relies on the 
simpler well-tested technique of building a model from offline-
measurements of device power states in a controlled setting 
[Flinn 1999b; Fonseca 2008; Zeng 2002]. Phones today use this 
approach, and so Cinder has equivalent accuracy to commodity 
systems.

Power Model
Our energy model uses device states and their duration to
estimate energy consumption. We measured the Dream’s energy 
consumption during various states and operations. All 
measurements were taken using an Agilent Technologies
E3644A, a DC power supply with a current sense resistor that 
can be sampled remotely via an RS-232 interface. We sampled 
both voltage and current approximately every 200 ms, and 
aggregated our results from this data. While idling in Cinder, the 
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Dream uses about 699 mW and another 555 mW when the 
backlight is on. Spinning the CPU increases consumption by 
137 mW. Memory-intensive instruction streams increase CPU 
power draw by 13% over a simple arithmetic loop. However, the 
HTC Dream does not have hardware support to estimate what 
percentage of instructions are memory accesses. The ARM 
processor also lacks a floating point unit, leaving us with only 
integer, control flow, and memory instructions. For these 
reasons, our CPU model currently does not take instruction mix 
into account and assumes the worst case power draw (all 
memory intensive operations).

Peripheral Power
The baseline cost of activating the radio is exceptionally high: 
small isolated transfers are about 1000 times more expensive,
per byte, than large transfers. Results demonstrate that the 
overhead involved dominates the total power cost for flows 
lasting less than 10 seconds in duration, regardless of the bitrate.
An application powers up the radio by sending a single 1-byte 
UDP packet. The secure ARM9 automatically returns to a low 
power mode after 20 seconds of inactivity. Because the ARM9 
is closed, Cinder cannot change this inactivity timeout. With this 
workload, it costs 9.5 joules to send a single byte! One lesson 
from this is that coordinating applications to amortize energy 
start-up costs could greatly improve energy efficiency. In x5.5 
we demonstrate how Cinder can use reserves and taps for 
exactly this purpose.

Mobility & Power Model Improvements
Cinder’s aim is to leverage advances in energy accounting to 
allow users and applications to provision and manage their 
limited budgets. Accurate energy accounting is an orthogonal 
and active area of research. Cinder is adaptable and can take 
advantage of new accounting techniques
or information exposed by device manufacturers. 

V. APPLICATIONS

To gain experience with Cinder’s abstractions, we developed 
applications using reserves and taps.

Energy wrap
Taking advantage of the composability of Cinder’s resource 
graph, the energy wrap utility allows any application to be 
sandboxed even if it is buggy or malicious. Energywrap takes a 

rate limit and a path to an application binary. The utility creates 
a new reserve and attaches it to the reserve in which energywrap
started by a tap with the rate given as input. After forking, 
energywrap begins drawing resources from the newly allocated 
reserve rather than the original re- serve of the parent process 
and executes the specified program. This allows even energy-
unaware applications to be augmented with energy policies.
energywrap has proved useful in implementing policies while 
designing and testing Cinder, particularly for legacy applications 
that have no notion of reserves or taps. Since energywrap runs 
an arbitrary executable, it is possible to use energywrap to wrap 
itself or shell scripts, which may invoke energywrap with other 
scripts or applications. allows a wide class of ad hoc policies to 
be scripted using standard shell scripting or on-the-fly at the 
command line.
Figure.

(a) A web browser configured to run for at least 6 hours on a 15 
kJ battery. The web browser further ensures that its plugin 
cannot use more than 10% of its energy.

(b) (b) Adding 0.1x backward proportional taps promotes 
sharing of excess energy unused by the browser and plugin.

Energy-Aware Applications
Using Cinder, developers can gain fine grained control of 
resources within their applications, providing a better experience 
to end users. This includes adaptive policies for pro- grams 
where partial or degraded results are still useful, andoffer a 
compromise between battery life and user experience. For 
example, smart applications may scale the quality of streaming 
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video or reduce texture quality in a game when available energy 
is low, since the user can still watch a video or play a game 
when insufficient resources are available to run at full fidelity.

Figure.

RSS is running in the foreground so the task manager has set 
its tap to give it additional power. Mail is          running in the 
background, and can only draw energy from the background 
reserve. This ensures that actual battery consumption matches 
the user’s expectation that the visible application is responsible 
for most energy consumption.

VI. EXPERIENCE DEVELOPING ON A MOBILE 
PLATFORM

We ported Cinder to the HTC Dream mobile phone. Because
developing a kernel for a mobile phone platform is a nontrivial
task that is rarely attempted, we describe our process here in 
detail. To run Cinder on the HTC Dream, we first ported the 
kernel to the generic ARM architecture (2,380 additional lines
of C and assembly).MSM7201A-specific kernel device support
for timers, serial ports, framebuffer, interrupts, GPIO pins, and 
keypad required another 1,690 lines of C. Cinder implements 
the GSM/GPRS/EDGE radio functionality in userspace with 
Android driver ports. Implementing radio functionality is 
particularly difficult, as it requires access to secure and 
undocumented hardware that is not directly accessible from the 
processor. For instance, the MSM7201A chipset includes two 
cores: the ARM11 runs application code (Cinder), while a 
secure ARM9 controls the radio and other sensitive features. 
Accessing these features requires communicating between the 

cores using a combination of shared memory and interrupt lines. 
We first mapped the shared memory segment into a privileged 
user-level process and ported the Android Linux kernel’s shared 
memory device to userspace .This daemon, smdd (4,756 lines),
exports ARM9 services via gate calls to other consumers,
including the radio interface library (RIL). The RIL generates
and consumes messages between cores that initiate and respond 
to radio events, such as dialing a number or being notified of an 
incoming call. In Android, the radio interface library consists of 
two parts: an open source generic interface library that provides
common radio functions across different hardware platforms, 
and a device-specific, Android-centric shared object that 
interfaces with specific modem hardware (libril.so).
Unfortunately, libril.so is closed-source and precompiled for
Android: this makes it excessively difficult to incorporate into 
another operating system. Without hardware documentation or 
tremendous reverse engineering, using the radio requires 
running this shared object in Cinder. To do so, we wrote a 
compatibility shim layer to emulate both Android’s “bionic” libc 
interface, as well as the various /dev devices it normally uses to 
talk to the ARM9 (1,302 lines of C). We rewrote the library’s 
symbol table to link against our compatibility calls, rather than 
the binary-incompatible uClibc functions and syscalls that 
regular Cinder applications use. Finally, we wrote a port of the 
radio interface library frontend that provides gates to service 
radio requests from applications needing network access. Cinder 
currently supports the radio data path (IP), and can send and 
receive SMS text messages. Cinder can also initiate and receive 
voice calls, but as it does not yet have a port of the audio library, 
calls are silent. In retrospect, since hardware documentation is 
unavailable, basing our solution on Android, rather than HiStar, 
would have been far simpler from a device support perspective. 
Crucially, however, our implementation atop Linux trades the 
simple and accurate IPC resource accounting needed in energy 
management for device drivers (x7.1).We felt that a cleaner 
slate justified the additional tedium as well as the reduced 
hardware support present in our prototype. In summary, even 
trivial radio operation is quite complicated, requiring about 
12,000 lines of userspace code along with the 263 KiB closed 
libril.so. In comparison, the entire Cinder kernel consists of 
about 27,000 lines of C for all four CPU architectures and all 
device drivers. The kernel is only 644 KiB – less than 2.5 times 
the size of libril.so.
Cinder-Linux versus Cinder-HiStar



www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D 
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 448

Cinder was initially implemented on HiStar because several key 
behaviors of the platform are naturally expressible using
HiStar’s abstractions. One such feature of Cinder is resource 
delegation between principals. Consider a common situation 
where a client process P requires work to be performed on its 
behalf by a daemon process D. A real world example is the
radio interface layer daemon on the Android platform. Cinder
must ensure P is charged for any work D performs on its behalf 
– or, equivalently, it must ensure that P provides the resources 
that D’s code uses to run. HiStar’s abstractions achieve this 
behavior cleanly and simply. A process in HiStar is a container, 
containing an address space and one or more threads. IPC is 
performed through special gates defined by the process – a 
thread belonging to process P can enter a gate defined by 
process D, after which the thread has access to D’s address 
space, though while under control of D’s code text. When 
process P requires service from daemon D a thread, T, 
belonging to P enters D’s address space via a gate. Cinder debits 
T for work it performs as usual even though it executes under 
the control of D’s code, correctly billing consumption to P. This 
way, HiStar’s IPC mechanism easily achieves the desired 
delegation behavior. Linux, on the other hand, uses several 
different facilities to provide IPC, many of which are based 
upon message passing between processes. A few examples are 
pipes, Unix domain sockets, message queues, and semaphores. 
These forms of IPC occur without any resource sharing or 
attribution between processes. This subverts delegation since 
process P may elicit work by daemon D on its behalf without
providing the resources for the work. To compensate, Linux 
needs to verify that the calling process has provided adequate 
resources to perform the desired request. However, existing IPC 
mechanisms in Linux are not built with the goal of discovering 
the identity of the caller in mind. Consider a daemon D that 
reads requests from a named pipe in the filesystem. When D 
reads from the pipe, it only knows the writing process has 
permissions to access the pipe. In general, it cannot identify 
which process in the system made the request, and thus does not 
know which process to debit. To mitigate this problem, Cinder-
Linux needs a way for the daemon to determine the identity of 
the calling process. One possibility is to have a user level 
protocol in which a calling process P encodes both its identity 
and a description of how D can access resources that P has set 
aside for D within the request. For example, it could format a 
request as a triple: hpid, reserve id, requesti. D accesses the
reserve named in the request, and only performs work once it 

ensures the caller has provided sufficient resources in payment.
Since a user level process can lie abouts it credentials, the 
protocol is not robust against malicious applications. A more 
robust mechanism would require new kernel IPC mechanisms.
Both Cinder-HiStar and Cinder-Linux must prevent resource
misuse. In particular, D must not co-opt P’s resources for 
performing unrelated tasks, and process P must provide 
resources for work performed by D on its behalf. Providing 
these guarantees on Linux requires either a fine grained 
permissions system or, alternatively, some form of information 
flow control or tracking (with which the daemon could 
determine which process sent a given request). In contrast,
HiStar’s existing information flow control mechanisms easily 
provide the necessary protection. Linux has the benefit of being 
an established operating system with vast device driver support 
and the entire Android platform. As a result, it is easier to write 
real-world applications. Consequently, we have written an initial 
implementation of Cinder that runs on top of the Linux and the
Android platform on the Dream. The basics of Cinder-Linux
remain the same as Cinder-HiStar aside from resource 
attribution issues for IPC and fine-grained permissions. Most
implementation of the Cinder abstractions are independent of 
the underlying operating system and similar on HiStar and 
Linux. Some differences in the implementation do exist,
however. For example, Cinder-HiStar flows taps during
scheduler timer interrupts, while Cinder-Linux uses a kernel
thread. One area of future work is further testing the concepts
and features of Cinder on the Cinder-Linux platform.

VII. RELATED WORK

We group related work into three categories: resource 
management, energy accounting, and energy efficiency.

Resource Management
Cinder’s taps and reserves build on the abstraction of resource
containers [Banga 1999]. Like resource containers, they provide 
a platform for attributing resource consumption to a specific 
principal. By separating resource management into rates and 
quantities, however, Cinder allows applications to delegate with 
reserves, yet reclaim unused resources. This separation also 
makes policy decisions much easier. Since resource containers 
serve both as limits and reservations, hierarchical composition 
either requires a single policy (limit or reserve) or ad hoc rules 
(a guaranteed CPU slot cannot be the child of a CPU usage 
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limit). Linux has recently incorporated “cgroups” [Menage
2008] into the mainline kernel, which are similar to resource
containers, but group processes rather than threads. They are
hierarchical and rely on “subsystem” modules that schedule
particular resources (CPU time, CPU cores, memory).
ECOSystem [Zeng 2002, 2003] presents an abstraction for 
energy, “currentcy”, which unifies a system’s device power 
states. It represents logical tasks using a flat form of resource 
containers [Banga 1999] by grouping related processes in the 
same container. This flat approach makes it impossible for an 
application to delegate, as it must either share its container with 
a child or put it in a new container that competes for resources. 
Like ECOSystem, Cinder estimates energy consumption with a 
software-based model that ties runtime power states to power 
draw. ECOSystem achieves pooling similar to Cinder’s netd for 
devices with non-linear power consumption (disk and network 
access), using unique cost models for each device. Cinder 
simplifies construction of these policies using its fine-grained 
protection mechanism and reserves to provide the same result in 
userspace.

Measurement, Modeling, and Accounting
Accurately estimating a device’s energy consumption is an 
ongoing area of research. Early systems, such as ECOSystem 
[Zeng 2002], use a simple linear combination of device states. 
Most modern phone operating systems, such as Symbian and OS 
X, follow this approach. PowerScope improves CPU energy 
accuracy by correlating instrumented traces of basic blocks with 
program execution [Flinn 1999b]. A more recent system, Koala, 
explores how modern architectures can have counter-intuitive 
energy/performance tradeoffs, presenting a model based on 
performance counters and other state [Snowdon 2009]. A Koala-
enabled system can use these estimates to specify a range of 
policies, including minimizing energy, maximizing 
performance, and minimizing the energy-delay product. The 
Mantis system achieves similar measurement accuracy to Koala 
using CPU performance counters [Economou 2006]. Quanto 
[Fonseca 2008] extends the TinyOS operating system to support 
fine-grained energy accounting across activities. Using a custom 
measurement circuit, Quanto generates an energy model of a 
device and its peripherals using a linear regression of power 
measurements. By monitoring the power state of each peripheral 
and dynamically tracking which activity is active, Quanto can 
give precise breakdowns of where a device is spending energy. 
PowerBooter and PowerTutor [Zhang 2010] explore the 

generation of detailed power models for a full-featured 
smartphone (the HTC Magic) providing application power 
consumption estimation and feedback for tuning. Cinder 
complements this work on modeling and accounting. Improved 
hardware support to determine where energy is going would 
make its accounting and resource control more accurate. On top 
of these models, Cinder provides a pair of abstractions that 
allow applications to flexibly and easily enforce a range of 
policies.

Energy Efficiency
There is rich prior work on improving the energy efficiency of 
individual components, such as CPU voltage and frequency 
scaling [Flautner 2002; Govil 1995], spinning down disks 
[Douglis 1995; Helmbold 1996], or carefully selecting memory 
pages [Lebeck 2000]. Phone operating systems today tend to 
depend on much simpler, but still effective optimization 
schemes than in the research literature, such as hard timeouts for 
turning off devices. The exact models or mechanisms used for 
energy efficiency are orthogonal to Cinder: they allow 
applications to complete more work within a given power 
budget. The image viewer described in x5.3 is an example of an 
energy-adaptive application, as is typical in the Odyssey system 
[Flinn 1999a].

VII. FUTURE WORK

We believe that the reserve and tap abstractions may be 
fruitfully applied to other resource allocation problems beyond 
energy consumption. For instance, the high cost of mobile data 
plans makes network bits a precious resource. Applications 
should not be able to run up a user’s bill due to expensive data 
tariffs, just as they should not be able to run down the battery 
unexpectedly. Since data plans are frequently offered in terms of 
megabyte quotas, Cinder’s mechanisms could be repurposed to 
limit application network access by replacing the logical battery 
with a pool of network bytes. Similarly, reserves could also be 
used to enforce SMS text message quotas. Using the HTC 
Dream’s limited battery level information Cinder could adapt its 
energy model based on past component and application usage, 
dynamically refining its costs. Though Cinder can facilitate this, 
and we have made some adjustments to test this, evaluating the 
complex and dynamic system this would yield will require 
additional research.
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IX. CONCLUSION

Cinder is an operating system for modern mobile devices. It 
uses techniques similar to existing systems to model device 
energy use, while going beyond the capabilities of current 
operating systems by providing an IPC system that 
fundamentally accounts for resource usage on behalf of 
principals. It extends this accounting to add subdivision and 
delegation, using its reserve and tap abstractions.We have 
described and applied this system to a variety of applications 
demonstrating, in particular, their ability to partition 
applications to energy bounds even with complex policies. 
Additionally, we showed Cinder facilitates policies which 
enable efficient use of expensive peripherals despite non-linear 
power models.
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