

2 IX September 2014

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 443

Energy Management in Mobile Devices with the
Cinder Operating System

Anjali Agrawal1, Aashima Randhawa2, Karan Bhalla3

1,2,3Dronacharya College Of Engineering, Gurgaon

Abstract: We present Cinder, an operating system for mobile phones and devices, that allows users and applications to control
and manage limited device resources such as energy. We argue that controlling energy allocation is an important and
increasingly useful feature for operating systems, especially on mobile devices. We present two new low-level abstractions in the
Cinder operating system, taps and reserves, which store and distribute energy for application use. We identify three key
properties of control isolation, delegation, and subdivision and show how using these abstractions can achieve them. We also
show how the architecture of the HiStar information flow control kernel lends itself well to control energy. We prototype and
evaluate Cinder on a popular smart phone, the Android G1.
Keyword: Energy, mobile phones, power management.

I. INTRODUCTION

In the past decade, mobile phones have emerged as a dominant
computing platform for end users. These very personal
computers depend heavily on graphical user interfaces, always-
on connectivity, and long battery life, yet in essence run
operating systems originally designed for workstations (Mac OS
X/Mach) or time-sharing systems (Linux/Unix). Historically,
operating systems have had poor energy management and
accounting. This is not surprising, as their APIs standardized
before energy was an issue. This limited control and visibility of
energy is especially problematic for mobile phones, where
energy and power define system lifetime. In the past decade,
phones have evolved from low-function proprietary applications
to robust multi- programmed systems with applications from
thousands of sources. Apple announced that as their App Store
houses 185,000 apps for the iPhone with more than 4 billion
application downloads. This shift away from single-vendor
software to complex application platforms means that the
phone’s software must provide effective mechanisms to manage
and control energy as a resource. Such control will be even more

important as the danger grows from buggy or poorly designed
applications to potentially malicious ones.

In the past year, mobile phone operating systems began
providing better support for understanding system energy use.
Android, for example, added a UI that estimates application
energy consumption with system call and event instrumentation,
such as processor scheduling and packet counts. This is a step
forward, helping users understand the mysteries of mobile
device lifetime. This paper presents Cinder, a new operating
system de- signed for mobile phones and other energy-
constrained computing devices. Cinder extends the HiStar
secure kernel to provide new abstractions for controlling and
accounting for energy: reserves and taps. Taps and reserves
compose together to allow applications to express their
intentions, enabling policy enforcement by the operating system.

Cinder estimates energy consumption using standard device-
level accounting and modeling. HiStar’s explicit information
flow control allows Cinder to track which parties are responsible
for resource use. Cinder is the first research operating system
that runs on a mobile phone.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 444

This paper makes three research contributions. Firstly, it
proposes reserves and taps as new operating system mechanisms
for managing and controlling energy consumption. Secondly, it
describes experiences in writing a mobile phone operating
system, out- lining the challenges and impediments faced when
conducting systems research on the dominant end-user
computing platform of this decade. Thirdly, it evaluates the
effectiveness and power of these mechanisms in a variety of
realistic and complex application scenarios running on a real
mobile phone.

II. A CASE FOR ENERGY CONTROL

This section motivates the need for low-level, fine-grained
energy control in a mobile device operating
system. It starts by reviewing some of the prior work on energy
visibility and the few examples of coarse energy control. The
next section describes reserves and taps, abstractions which
provide these mechanisms at a fine granularity.
There is rich prior work on addressing the visibility problem of
attributing consumption to application principals. Control, in
contrast, has seen much less effort. Early systems like
EcoSystem proposed high level application power limits.
Mobile applications today, however, are much more complex:
they spawn and invoke other services and have a much richer set
of peripherals to manage. We believe that for users and
applications to effectively control power, an operating system
must provide three mechanisms: isolation, subdivision, and
delegation. We motivate these mechanisms through three
application examples that we follow through the rest of the
paper. Isolation is a fundamental part of an operating system.
Memory and IPC isolation provide security, while cpu and disk
space isolation ensure that processes cannot starve others by
hogging needed resources. As a more concrete example, the
energy a phone reserves for an emergency 911 call should be
isolated from the rest of the system, so that other programs
cannot use it. Web browsers run (sometimes untrusted) plugins.
Given that a browser receives a finite amount of power, it might
want to protect itself from buggy or poorly written plugins that
waste CPU energy. The browser would like to subdivide its
energy so that it can give plugins a small fraction, knowing that
isolation will prevent them from using its own lion’s share. The
ability to subdivide energy is critical for applications to be able
to invoke other services without sacrificing all of their own

resources. Finally, there are times when applications need to
allow others to use their energy, but do not want to carve off a
reserved, isolated subdivision. The ability to delegate resources
is an important enabler of inter-application cooperation. For
example, the Cinder networking stack implicitly transfers
energy into a common radio activation pool when an application
cannot afford the high initial expense of powering up the radio.
By delegating their energy to the radio, multiple processes can
contribute to expensive operations; this can not only improve
quality of service, but even reduce energy consumption. Prior
systems like EcoSystem and Currency provide isolation, but not
subdivision or delegation. Isolation is sufficient when
applications are static entities, but not when they themselves
spawn new processes or invoke complex services. Subdivision
lends naturally to standard abstractions such as process trees,
resource containers and quotas, while delegation is a kin to
priority inheritance.

III. DESIGN
Cinder is based on the HiStar operating system which is a secure
exo-kernel that controls information flow using a label
mechanism. The kernel provides a small set of kernel object
types to applications, from which the rest of system is built:
threads, address spaces, segments, gates, containers, and
devices. Cinder adds two new kernel object types: reserves and
taps. This section gives an overview of HiStar, describes
reserves and taps, gives examples of how they can be used, and
provides details on their security and information flow.

HiStar
HiStar is composed of six first-class kernel objects, all protected
by a security label. Its segments, threads, address spaces, and
devices are similar to those of conventional kernels. Containers
enable hierarchical control over deallocation of kernel objects –
objects must be referenced by a container or face garbage
collection. Gates provide protected control transfer of a thread
from one address space to a named offset in another; they are
the basis for all IPC.

Reserves
A reserve describes a right to use a given quantity of a resource,
such as energy. When an application consumes a resource the
Cinder kernel reduces the values in the corre- sponding reserve.
The kernel prevents threads from performing actions for which
their reserves do not have sufficient resources. Reserves, like all
other kernel objects, are protected by a security label (§3.5) that

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 445

controls which threads can ob- serve, use, and manipulate it.
Reserves allow threads to delegate and subdivide re- sources.
Reserves also provide accounting by tracking application
resource consumption. Applications may access this accounting
information in order to provide energy-aware features. Finally,
reserves can be deleted directly or indirectly when some
ancestor of their container is deleted, just as a file can be deleted
either directly or indirectly when a directory containing it is
deleted in a UNIX system.

Taps
A tap transfers a fixed quantity of resources between two
reserves per unit time, which controls the maximum rate at
which a resource can be consumed. For example, an appli-
cation reserve may be connected to the system battery via a tap
supplying 1 mJ/s (1 mW).
Taps aid in subdividing resources between applications since
partitioning fixed quantities is impractical for most policies. A
user may want her phone to last at least 5 hours if she is surfing
the web; the amount of energy the browser should receive is
relative to the length of time it is used. Providing resources as a
rate naturally addresses this. Taps are made up of four pieces of
state: a rate, a source reserve, a sink reserve, and a security label
containing the privileges necessary to transfer the resources
between the source and sink

Figure:

A 15 kJ battery, or root reserve, connected to a reserve via a tap.
The battery is protected from being misused by the web
browser. The web browser draws energy from an isolated
reserve which is fed by a 750 mW tap.

Access Control & SecurityAny thread can create and share
reserves or taps to subdivide and delegate its resources. This

ability introduces a problem of fine grained access control. To
solve this, reserves and taps are protected by a security label,
like all other kernel objects. The label describes the privileges
needed to observe, modify, and use the reserve or tap. Since a
tap actively moves resources between a source and sink reserve,
it needs privileges to observe and modify both reserve levels; to
aid with this, taps can have privileges embedded in them.

IV. CINDER ON THE HTC DREAM

Controlling energy requires measuring or estimating its
consumption. This section describes Cinder’s implementation
and its energy model. The Cinder kernel runs on AMD64, i386,
and ARM architectures. All source code is freely avail- able
under open-source licenses. Our principal experimental platform
is the HTC Dream (Google G1), a modern smart- phone based
on the Qualcomm MSM7201A chipset.

Energy accounting
Energy accounting on the HTC Dream is difficult due to the
closed nature of its hardware. It has a two-processor design.
The operating system and applications run on an ARM11
processor. A secure, closed ARM9 coprocessor manages the
most energy hungry, dynamic, and informative components (e.g.
GPS, radio, and battery sensors). The ARM9, for example,
exposes the battery level as an integer from 0 to 100. Recent
work on processors has shown that fine-grained performance
counters can enable accurate energy estimates within a few
percent [Economou 2006; Snowdon 2009]. Without access to
such state in the HTC Dream, however, Cinder relies on the
simpler well-tested technique of building a model from offline-
measurements of device power states in a controlled setting
[Flinn 1999b; Fonseca 2008; Zeng 2002]. Phones today use this
approach, and so Cinder has equivalent accuracy to commodity
systems.

Power Model
Our energy model uses device states and their duration to
estimate energy consumption. We measured the Dream’s energy
consumption during various states and operations. All
measurements were taken using an Agilent Technologies
E3644A, a DC power supply with a current sense resistor that
can be sampled remotely via an RS-232 interface. We sampled
both voltage and current approximately every 200 ms, and
aggregated our results from this data. While idling in Cinder, the

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 446

Dream uses about 699 mW and another 555 mW when the
backlight is on. Spinning the CPU increases consumption by
137 mW. Memory-intensive instruction streams increase CPU
power draw by 13% over a simple arithmetic loop. However, the
HTC Dream does not have hardware support to estimate what
percentage of instructions are memory accesses. The ARM
processor also lacks a floating point unit, leaving us with only
integer, control flow, and memory instructions. For these
reasons, our CPU model currently does not take instruction mix
into account and assumes the worst case power draw (all
memory intensive operations).

Peripheral Power
The baseline cost of activating the radio is exceptionally high:
small isolated transfers are about 1000 times more expensive,
per byte, than large transfers. Results demonstrate that the
overhead involved dominates the total power cost for flows
lasting less than 10 seconds in duration, regardless of the bitrate.
An application powers up the radio by sending a single 1-byte
UDP packet. The secure ARM9 automatically returns to a low
power mode after 20 seconds of inactivity. Because the ARM9
is closed, Cinder cannot change this inactivity timeout. With this
workload, it costs 9.5 joules to send a single byte! One lesson
from this is that coordinating applications to amortize energy
start-up costs could greatly improve energy efficiency. In x5.5
we demonstrate how Cinder can use reserves and taps for
exactly this purpose.

Mobility & Power Model Improvements
Cinder’s aim is to leverage advances in energy accounting to
allow users and applications to provision and manage their
limited budgets. Accurate energy accounting is an orthogonal
and active area of research. Cinder is adaptable and can take
advantage of new accounting techniques
or information exposed by device manufacturers.

V. APPLICATIONS

To gain experience with Cinder’s abstractions, we developed
applications using reserves and taps.

Energy wrap
Taking advantage of the composability of Cinder’s resource
graph, the energy wrap utility allows any application to be
sandboxed even if it is buggy or malicious. Energywrap takes a

rate limit and a path to an application binary. The utility creates
a new reserve and attaches it to the reserve in which energywrap
started by a tap with the rate given as input. After forking,
energywrap begins drawing resources from the newly allocated
reserve rather than the original re- serve of the parent process
and executes the specified program. This allows even energy-
unaware applications to be augmented with energy policies.
energywrap has proved useful in implementing policies while
designing and testing Cinder, particularly for legacy applications
that have no notion of reserves or taps. Since energywrap runs
an arbitrary executable, it is possible to use energywrap to wrap
itself or shell scripts, which may invoke energywrap with other
scripts or applications. allows a wide class of ad hoc policies to
be scripted using standard shell scripting or on-the-fly at the
command line.
Figure.

(a) A web browser configured to run for at least 6 hours on a 15
kJ battery. The web browser further ensures that its plugin
cannot use more than 10% of its energy.

(b) (b) Adding 0.1x backward proportional taps promotes
sharing of excess energy unused by the browser and plugin.

Energy-Aware Applications
Using Cinder, developers can gain fine grained control of
resources within their applications, providing a better experience
to end users. This includes adaptive policies for pro- grams
where partial or degraded results are still useful, andoffer a
compromise between battery life and user experience. For
example, smart applications may scale the quality of streaming

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 447

video or reduce texture quality in a game when available energy
is low, since the user can still watch a video or play a game
when insufficient resources are available to run at full fidelity.

Figure.

RSS is running in the foreground so the task manager has set
its tap to give it additional power. Mail is running in the
background, and can only draw energy from the background
reserve. This ensures that actual battery consumption matches
the user’s expectation that the visible application is responsible
for most energy consumption.

VI. EXPERIENCE DEVELOPING ON A MOBILE
PLATFORM

We ported Cinder to the HTC Dream mobile phone. Because
developing a kernel for a mobile phone platform is a nontrivial
task that is rarely attempted, we describe our process here in
detail. To run Cinder on the HTC Dream, we first ported the
kernel to the generic ARM architecture (2,380 additional lines
of C and assembly).MSM7201A-specific kernel device support
for timers, serial ports, framebuffer, interrupts, GPIO pins, and
keypad required another 1,690 lines of C. Cinder implements
the GSM/GPRS/EDGE radio functionality in userspace with
Android driver ports. Implementing radio functionality is
particularly difficult, as it requires access to secure and
undocumented hardware that is not directly accessible from the
processor. For instance, the MSM7201A chipset includes two
cores: the ARM11 runs application code (Cinder), while a
secure ARM9 controls the radio and other sensitive features.
Accessing these features requires communicating between the

cores using a combination of shared memory and interrupt lines.
We first mapped the shared memory segment into a privileged
user-level process and ported the Android Linux kernel’s shared
memory device to userspace .This daemon, smdd (4,756 lines),
exports ARM9 services via gate calls to other consumers,
including the radio interface library (RIL). The RIL generates
and consumes messages between cores that initiate and respond
to radio events, such as dialing a number or being notified of an
incoming call. In Android, the radio interface library consists of
two parts: an open source generic interface library that provides
common radio functions across different hardware platforms,
and a device-specific, Android-centric shared object that
interfaces with specific modem hardware (libril.so).
Unfortunately, libril.so is closed-source and precompiled for
Android: this makes it excessively difficult to incorporate into
another operating system. Without hardware documentation or
tremendous reverse engineering, using the radio requires
running this shared object in Cinder. To do so, we wrote a
compatibility shim layer to emulate both Android’s “bionic” libc
interface, as well as the various /dev devices it normally uses to
talk to the ARM9 (1,302 lines of C). We rewrote the library’s
symbol table to link against our compatibility calls, rather than
the binary-incompatible uClibc functions and syscalls that
regular Cinder applications use. Finally, we wrote a port of the
radio interface library frontend that provides gates to service
radio requests from applications needing network access. Cinder
currently supports the radio data path (IP), and can send and
receive SMS text messages. Cinder can also initiate and receive
voice calls, but as it does not yet have a port of the audio library,
calls are silent. In retrospect, since hardware documentation is
unavailable, basing our solution on Android, rather than HiStar,
would have been far simpler from a device support perspective.
Crucially, however, our implementation atop Linux trades the
simple and accurate IPC resource accounting needed in energy
management for device drivers (x7.1).We felt that a cleaner
slate justified the additional tedium as well as the reduced
hardware support present in our prototype. In summary, even
trivial radio operation is quite complicated, requiring about
12,000 lines of userspace code along with the 263 KiB closed
libril.so. In comparison, the entire Cinder kernel consists of
about 27,000 lines of C for all four CPU architectures and all
device drivers. The kernel is only 644 KiB – less than 2.5 times
the size of libril.so.
Cinder-Linux versus Cinder-HiStar

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 448

Cinder was initially implemented on HiStar because several key
behaviors of the platform are naturally expressible using
HiStar’s abstractions. One such feature of Cinder is resource
delegation between principals. Consider a common situation
where a client process P requires work to be performed on its
behalf by a daemon process D. A real world example is the
radio interface layer daemon on the Android platform. Cinder
must ensure P is charged for any work D performs on its behalf
– or, equivalently, it must ensure that P provides the resources
that D’s code uses to run. HiStar’s abstractions achieve this
behavior cleanly and simply. A process in HiStar is a container,
containing an address space and one or more threads. IPC is
performed through special gates defined by the process – a
thread belonging to process P can enter a gate defined by
process D, after which the thread has access to D’s address
space, though while under control of D’s code text. When
process P requires service from daemon D a thread, T,
belonging to P enters D’s address space via a gate. Cinder debits
T for work it performs as usual even though it executes under
the control of D’s code, correctly billing consumption to P. This
way, HiStar’s IPC mechanism easily achieves the desired
delegation behavior. Linux, on the other hand, uses several
different facilities to provide IPC, many of which are based
upon message passing between processes. A few examples are
pipes, Unix domain sockets, message queues, and semaphores.
These forms of IPC occur without any resource sharing or
attribution between processes. This subverts delegation since
process P may elicit work by daemon D on its behalf without
providing the resources for the work. To compensate, Linux
needs to verify that the calling process has provided adequate
resources to perform the desired request. However, existing IPC
mechanisms in Linux are not built with the goal of discovering
the identity of the caller in mind. Consider a daemon D that
reads requests from a named pipe in the filesystem. When D
reads from the pipe, it only knows the writing process has
permissions to access the pipe. In general, it cannot identify
which process in the system made the request, and thus does not
know which process to debit. To mitigate this problem, Cinder-
Linux needs a way for the daemon to determine the identity of
the calling process. One possibility is to have a user level
protocol in which a calling process P encodes both its identity
and a description of how D can access resources that P has set
aside for D within the request. For example, it could format a
request as a triple: hpid, reserve id, requesti. D accesses the
reserve named in the request, and only performs work once it

ensures the caller has provided sufficient resources in payment.
Since a user level process can lie abouts it credentials, the
protocol is not robust against malicious applications. A more
robust mechanism would require new kernel IPC mechanisms.
Both Cinder-HiStar and Cinder-Linux must prevent resource
misuse. In particular, D must not co-opt P’s resources for
performing unrelated tasks, and process P must provide
resources for work performed by D on its behalf. Providing
these guarantees on Linux requires either a fine grained
permissions system or, alternatively, some form of information
flow control or tracking (with which the daemon could
determine which process sent a given request). In contrast,
HiStar’s existing information flow control mechanisms easily
provide the necessary protection. Linux has the benefit of being
an established operating system with vast device driver support
and the entire Android platform. As a result, it is easier to write
real-world applications. Consequently, we have written an initial
implementation of Cinder that runs on top of the Linux and the
Android platform on the Dream. The basics of Cinder-Linux
remain the same as Cinder-HiStar aside from resource
attribution issues for IPC and fine-grained permissions. Most
implementation of the Cinder abstractions are independent of
the underlying operating system and similar on HiStar and
Linux. Some differences in the implementation do exist,
however. For example, Cinder-HiStar flows taps during
scheduler timer interrupts, while Cinder-Linux uses a kernel
thread. One area of future work is further testing the concepts
and features of Cinder on the Cinder-Linux platform.

VII. RELATED WORK

We group related work into three categories: resource
management, energy accounting, and energy efficiency.

Resource Management
Cinder’s taps and reserves build on the abstraction of resource
containers [Banga 1999]. Like resource containers, they provide
a platform for attributing resource consumption to a specific
principal. By separating resource management into rates and
quantities, however, Cinder allows applications to delegate with
reserves, yet reclaim unused resources. This separation also
makes policy decisions much easier. Since resource containers
serve both as limits and reservations, hierarchical composition
either requires a single policy (limit or reserve) or ad hoc rules
(a guaranteed CPU slot cannot be the child of a CPU usage

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 449

limit). Linux has recently incorporated “cgroups” [Menage
2008] into the mainline kernel, which are similar to resource
containers, but group processes rather than threads. They are
hierarchical and rely on “subsystem” modules that schedule
particular resources (CPU time, CPU cores, memory).
ECOSystem [Zeng 2002, 2003] presents an abstraction for
energy, “currentcy”, which unifies a system’s device power
states. It represents logical tasks using a flat form of resource
containers [Banga 1999] by grouping related processes in the
same container. This flat approach makes it impossible for an
application to delegate, as it must either share its container with
a child or put it in a new container that competes for resources.
Like ECOSystem, Cinder estimates energy consumption with a
software-based model that ties runtime power states to power
draw. ECOSystem achieves pooling similar to Cinder’s netd for
devices with non-linear power consumption (disk and network
access), using unique cost models for each device. Cinder
simplifies construction of these policies using its fine-grained
protection mechanism and reserves to provide the same result in
userspace.

Measurement, Modeling, and Accounting
Accurately estimating a device’s energy consumption is an
ongoing area of research. Early systems, such as ECOSystem
[Zeng 2002], use a simple linear combination of device states.
Most modern phone operating systems, such as Symbian and OS
X, follow this approach. PowerScope improves CPU energy
accuracy by correlating instrumented traces of basic blocks with
program execution [Flinn 1999b]. A more recent system, Koala,
explores how modern architectures can have counter-intuitive
energy/performance tradeoffs, presenting a model based on
performance counters and other state [Snowdon 2009]. A Koala-
enabled system can use these estimates to specify a range of
policies, including minimizing energy, maximizing
performance, and minimizing the energy-delay product. The
Mantis system achieves similar measurement accuracy to Koala
using CPU performance counters [Economou 2006]. Quanto
[Fonseca 2008] extends the TinyOS operating system to support
fine-grained energy accounting across activities. Using a custom
measurement circuit, Quanto generates an energy model of a
device and its peripherals using a linear regression of power
measurements. By monitoring the power state of each peripheral
and dynamically tracking which activity is active, Quanto can
give precise breakdowns of where a device is spending energy.
PowerBooter and PowerTutor [Zhang 2010] explore the

generation of detailed power models for a full-featured
smartphone (the HTC Magic) providing application power
consumption estimation and feedback for tuning. Cinder
complements this work on modeling and accounting. Improved
hardware support to determine where energy is going would
make its accounting and resource control more accurate. On top
of these models, Cinder provides a pair of abstractions that
allow applications to flexibly and easily enforce a range of
policies.

Energy Efficiency
There is rich prior work on improving the energy efficiency of
individual components, such as CPU voltage and frequency
scaling [Flautner 2002; Govil 1995], spinning down disks
[Douglis 1995; Helmbold 1996], or carefully selecting memory
pages [Lebeck 2000]. Phone operating systems today tend to
depend on much simpler, but still effective optimization
schemes than in the research literature, such as hard timeouts for
turning off devices. The exact models or mechanisms used for
energy efficiency are orthogonal to Cinder: they allow
applications to complete more work within a given power
budget. The image viewer described in x5.3 is an example of an
energy-adaptive application, as is typical in the Odyssey system
[Flinn 1999a].

VII. FUTURE WORK

We believe that the reserve and tap abstractions may be
fruitfully applied to other resource allocation problems beyond
energy consumption. For instance, the high cost of mobile data
plans makes network bits a precious resource. Applications
should not be able to run up a user’s bill due to expensive data
tariffs, just as they should not be able to run down the battery
unexpectedly. Since data plans are frequently offered in terms of
megabyte quotas, Cinder’s mechanisms could be repurposed to
limit application network access by replacing the logical battery
with a pool of network bytes. Similarly, reserves could also be
used to enforce SMS text message quotas. Using the HTC
Dream’s limited battery level information Cinder could adapt its
energy model based on past component and application usage,
dynamically refining its costs. Though Cinder can facilitate this,
and we have made some adjustments to test this, evaluating the
complex and dynamic system this would yield will require
additional research.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 450

IX. CONCLUSION

Cinder is an operating system for modern mobile devices. It
uses techniques similar to existing systems to model device
energy use, while going beyond the capabilities of current
operating systems by providing an IPC system that
fundamentally accounts for resource usage on behalf of
principals. It extends this accounting to add subdivision and
delegation, using its reserve and tap abstractions.We have
described and applied this system to a variety of applications
demonstrating, in particular, their ability to partition
applications to energy bounds even with complex policies.
Additionally, we showed Cinder facilitates policies which
enable efficient use of expensive peripherals despite non-linear
power models.

REFERENCES

[1] [Com 1988] THE EXECUTIVE COMPUTER; Compaq
Finally Makes a Laptop.
http://www.nytimes.com/1988/10/23/ business/the-
executive-computer-compaq-finally-makes-a-laptop.html,
1988.

[2] [Fla 2009] Adobe and HTC Bring Flash Platform to
Android,June2009.http://www.adobe.com/aboutadobe/press
room/pressreleases/pdfs/200906/062409AdobeandHTC.pdf.

[3] [App 2010] Apple Previews iPhone OS 4, April 2010.
http://www.apple.com/pr/library/2010/04/08iphoneos.html.

[4] [Economou 2006] Dimitris Economou, Suzanne Rivoire,
and Christos Kozyrakis. Full-system power analysis and
modeling for server environments. In Proceedings of the
2nd Workshop on Modeling, Benchmarking and
Simulation, Boston, MA, 2006.

[5] [Flautner 2002] Krisztian Flautner and Trevor Mudge.
Vertigo: automatic performance-setting for linux. In
Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, pages 105–116, Boston, MA,
2002.

[6] [Flinn 1999a] Jason Flinn and M. Satyanarayanan. Energy-
aware adaptation for mobile applications. In Proceedings of
the 17th ACM Symposium on Operating Systems Principles,
pages 48– 63, Charleston, SC, 1999.

[7] [Flinn 1999b] Jason Flinn and M. Satyanarayanan.
PowerScope: A Tool for Profiling the Energy Usage of
Mobile Applications. In Proceedings of the 2nd IEEE

Workshop on Mobile Computer Systems and Applications,
New Orleans, LA, 1999.

[8] [Govil 1995] Kinshuk Govil, Edwin Chan, and Hal
Wasserman. Comparing algorithm for dynamic speed-
setting of a low-power CPU. In Proceedings of the 1st
Conference on Mobile Computing and Networking, pages
13–25, Berkeley, CA, 1995.

[9] [Helmbold 1996] David P. Helmbold, Darrell D. E. Long,
and Bruce Sherrod. A dynamic disk spin down technique
for mobile computing. In Proceedings of the 2nd
Conference on Mobile Computing and Networking, pages
130–142, Rye, NY, 1996.

[10] [Lebeck 2000] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng,
and Carla Ellis. Power aware page allocation. In
Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 105– 116, Cambridge, MA,
2000.

[11] [Snowdon 2009] David C. Snowdon, Etienne Le Sueur,
Stefan M. Petters, and Gernot Heiser. Koala: a platform for
OS-level power management. In Proceedings of the 4th
ACM European Conference on Computer Systems, pages
289–302, Nuremberg, Germany, 2009.

[12] [Zeldovich 2006] Nickolai Zeldovich, Silas Boyd-Wickizer,
Eddie Kohler, and David Mazi`eres. Making information
flow explicit in HiStar. In Proceedings of the 7th
Symposium on Operating Systems Design and
Implementation, pages 263–278, Seattle, WA, 2006.

[13] [Zeng 2003] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck,
and Amin Vahdat. Currentcy: A unifying abstraction for
expressing energy management policies. In Proceedings of
the 2003 USENIX Annual Technical Conference, pages
43–56, San Antonio, TX, 2003.

