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Abstract: The characteristic properties of the graphs Km ^ Cn, Km ^ Pn, Cm ^ Pn are studied and mainly their Wiener Indices are 
obtained, wherever possible. 
Index Terms: Tensor (Kronecker) product, Wiener index (number), connected graph, Hamiltonian graph. 

I. INTRODUCTION 
The Wiener index is initiated from the work of Wiener [5]. This Wiener number is an important topological index associated with 
the molecular graph of atoms which is a connected one. Further it is widely used to describe the molecular structures. Till now,  no 
recursive method is known for the calculation of the Wiener number of a general connected graph. 
In this paper, the Wiener numbers of Km ^ Cn, Km ^ Pn, Cm ^ Pn, wherever possible are obtained. Some interesting observations are 
made. This paper is a continuation of our previous paper [3]. 
 

II. PRELIMINARIES 
We present some known definitions and results (in the refined form, wherever necessary) for a ready reference to go through the 
work presented in the subsequent sections. For standard notation and further results, we refer Bondy & Murthy [1]. 

A. Definition 2.1 [4] 
 G, H are disjoint graphs. The Tensor product of G and H, denoted by G ^ H (that is isomorphic to H ^ G) is the graph whose vertex 
set is V(G) x V(H) and the edge set being the set of all elements of the form (u, v) (u1, v1) where u, u1  V(G), v,v1  V(H), uu1 
E(G) and vv1 E(H). 
 
B. Observations 2.2 
1) If one f G , H is an empty graph (i.e. has no edges) then G ^ H is also an empty graph. 
2) If G, H are finite, simple graphs with m, n vertices respectively, then     G ^ H is a finite, simple graph with mn vertices. 

Further, if uV(G) and v  V(G) then 
deg G ^ H  (u, v) =  {deg G u} . { deg H v}. 

C. Definition 2.3[5]. 
The Wiener index W(G) of a finite, connected graph is defined to be  

W(G) = 
1
2

 
, ( )u v V G
 d(u, v), 

where d(u, v) denotes the distance (the length of any shortest u – v path) between   u & v in G. 
1) Result 2.4[4]: G1, G2 are connected graphs. Then G1 ^ G2 is connected if and only if (iff) either G1 or G2 contains an odd cycle. 
2) Result 2.5 [4]: If G1, G2 re connected graphs with no odd cycles, then G1 ^ G2 has exactly two components. 
3) Result 2.6[1]: A nonempty connected graph is Eulerian iff every vertex is of even degree. 
4) Result 2.7[1]: If G is a simple graph with the number of vertices   3 and the minimum degree   /2 then G is Hamiltonian. 
5) Result 2.8[1]: A simple graph is bipartite iff it contains no odd cycles. 
In what follows m and n are positive integers. 
§3. Results on Km ^  Cn (m, n being positive integers & n ≥ 3). 
Initially, we have  

III. OBSERVATIONS. 
K1 ^ Cn is an empty graph (with n vertices ). 
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So, we consider m  ≥ 2 (and n  ≥ 3). 
Denote V(Km) = { u1,u2,…,um } andV(Cn) = { v1,v2,…,vn }. Then Km ^ Cn is the graph  with V(Km ^ Cn) = { (ui,vj ) : i = 1,2,…,m ;  j = 
1,2,…,n } and the edge set being the set of elements of the form (ui, vj)  (u i ,v j ) where                 i, i1  {1,2,…,m } with i1 ≠ i ; j, 
j1{ 1,2,…,n} with j1 = j – 1 or j + 1 under the convention   v0 = vn, vn+1 = v1. 

A. Theorem. Km ^ Cn (isomorphic to Cn ^ Km ) is a simple, finite and                 2(m – 1) – regular graph ( an even integer ) with mn 
vertices and (m-1) mn edges (observe that the degree does not depend on n). 

B. proof. Since Km, Cn are simple, finite graphs and so is Km ^ Cn.. As Km is          (m-1) - regular and Cn is 2-regular, it follows that 
Km ^ Cn is  2(m-1)- regular. Since Km ^ Cn has mn vertices, it follows that there are (m-1)mn edges. 
 This proves the Theorem. 

C.  Observations. K2, Cn are connected graphs and K2 does not contain an odd cycle (in fact, any cycle). 
a) By Result (2.4), it follows that K2 ^ Cn is connected iff n is odd (since Cn contains the cycle Cn only). 
b) By Result (2.5), it follows that K2 ^ Cn has exactly two components iff n is even. 

D. Theorem. K2 ^ C2n+1 ( n ≥ 1 ) is isomorphic to C2(2n+1) and          
      W(K2 ^ C2n+1) =(2n+1)3. 

E. Proof. By Th. (3.2) and Obs.(3.3) (a),  K2 ^ C2n+1 is a connected 2-regular graph with 2(2n+1) vertices and (1)(2)(2n+1) = 2(2n+1) 
edges. So K2 ^ C2n+1 is isomorphic to C2(2n+1). Hence, by a known result [see 2], it follows that                                                    W(K2 ^ 
C2n+1) = W (C 2(2n+1)) =(2n+1)3. 

In fact, in the usual notation, K2 ^ C2n+1 is the cycle {(u1,v1),(u2,v2),(u1,v3),…,(u2,v2n),(u1,v2n+1),(u2,v1),(u1,v2),…,(u1,v2n),(u2,v2n+1),(u1,v
F. Theorem. K2 ^ C2n ( n ≥ 2) is isomorphic to the (disjoint) union of C2n & C2n and  the Wiener number of each component is n3. 
By Th.(3.2), K2 ^ C2n is a 2-regular graph with 4n vertices and 4n edges. By observation (3.3)(b), this has exactly two components. 
Now follows that each component is a cycle. Clearly the components are the cycles {(u1,v1),(u2,v2),(u1,v3),…,(u1,v2n-

1),(u2,v2n),(u1,v1)}and {(u2,v1),(u1,v2),(u2,v3)…,(u2,v2n-1),(u1,v2n),(u2,v1)}. Each is C2n. Hence by a known result [see 2] follows the 
theorem. 
G.  Observations. 
Since K2 ^ C2n+1 (n≥ 1) is an even cycle, follows that this graph is bipartite, Eulerian and Hamiltonian. 
Since K2 ^ C2n (n ≥ 2) is union of C2n and C2n, follows that the graph is bipartite and each component (C2n) is Eulerian and 
Hamiltonian. 

 
H. Theorem.For m, n ≥ 3, Km ^ Cn is  a) connected  b) Eulerian and                c) bipartite iff n is even. 
Proof. Since Km ,Cn are connected and Km (m  3) contains the odd cycles K3, by Result (2.4), it follows that Km^ Cn is connected. 
This proves (a). 
 Since the degree of each vertex of Km ^ Cn is even (see Th.(3.2)), by the characterization result (2.6), it follows that Km ^ Cn is 
Eulerian.  
This proves (b). 
 Suppose n is even  ( n ≥ 4). 
In the usual notation, 

X = {(ui, vj): i =1, 2, …, m; j = 1, 3, …, (n – 1)}, 
and 

Y = {(ui, vj): i =1, 2, …, m; j = 2, 4, …, n} 
are such that {X, Y} is a bipartition of the vertex set Km ^ Cn. So the graph is bipartite. 
 When n is odd, 
{(u1, v1), (u2, v2), (u3, v3), …., (un, vn), (u1, v1)} is a cycle of length n (odd) in              Km ^ Cn. So it is not bipartite. 
 This completes the proof of the Theorem. 
 
I. Observations 
K2 ^ Cn  (n ≥ 3 ) is discussed in this article. 
Km ^ C3 = Km ^ K3 and this is discussed in [3]. 

a) K3 ^ Cn = C3 ^ Cn (n≥ 3) and this is dicussed in [3]. 
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Thus, we are left with the graphs. Km ^ Cn (m, n ≥ 4 ) and we discuss about these graphs. 
J. Result. W(Km ^ C4) = 4m (3m + 2) (m ≥ 4). 
K. Justification. Since the graph is regular, it follows that the graph is symmetric w.r.t. all 4m vertices (ui, vj) (i = 1, 2, …, m; j = 1, 

2, 3, 4). 
On Calculation 
d{(u1, v1), (u1, v1)} = 0, d{(u1, v1), (u1, v3)} = 2, 
d{(u1, v1), (ui, vj)} = 2 for i = 2, 3, …, m; j = 1, 3. 
d{(u1, v1), (u1, v2)} = 3 = d{(u1, v1), (u1, v4)} , 
d{(u1, v1), (ui, vj)} = 1 for i = 2, 3, …, m; j = 2, 4. 
So  

3

1 1

m

i j 
  d{(u1, v1), (ui, vj)} = 1(0) + { 1+ 2(m – 1)}(2) + 2(3) + 2(m – 1) (1) 

     = (4m – 2) + 6 + (2m – 2) 
     = 6m + 2. 
We get the same  sum for all the 4m vertices. Hence 
 
W(Km ^ C4) = (1/2)(4m) (6m + 2) 
  = 4m (3m + 1). 
L. Result. W(Km ^ C5) = 5m(4m + 1) ( m ≥ 4). 
M. Justification. As the graph is regular, follows the graph is symmetric w.r.t. all the 5m vertices. 
On Calculation, 
d{(u1, v1), (u1, v1)} = 0,  
d{(u1, v1), (u1, vj)} = 3 for j = 2, 5, 
d{(u1, v1), (u1, vj)} = 2 for j = 3,4. 
d{(u1, v1), (ui, vj)} = 1 for i = 2, 3, …, m; j = 2, 5. 
So 

d{(u1, v1) (ui, vj)}  = 
3

1 1

m

i j 
  d{(u1, v1), (ui, vj)}  

                              = 1(0) + { 2+ 3(m – 1)}(2) + 2(3) + 2(m – 1) (1) 
   = (6m – 2) + 6 +(2m – 2) = 8m + 2. 
We get the same sum for all the 5m vertices. Hence 
W(Km ^ C5) = (1/2) (5m) (8m + 2) = 5m(4m + 1). 
Finally, we exhibit the following: 
 
N. A diagrammatic representation of k4 ^ c5. 
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    (u1, v4)   (u5, v3)       (u4, v2)              (u3,v1)     (u2,v4)            (u1, v3) 
       
 
 
      (u2, v1)                (u5, v2) 

   
 
 
   (u3, v2)                                                            (u4, v1) 

 
 
 
 (u4, v3)                                                            (u3, v4) 
 
 
 
  (u5, v4) (u5, v3) (u5, v3)   (u1, v4)        (u5, v3)              (u4, v5)               (u2, v3)                
  
 
 
 
 (u1, v1)               (u2, v2)       (u3, v3)          (u4,v4)          (u5,v1)             (u1, v2)                                          

 
 
 
 

O. Open problem. To find a general formula for the Wiener number of       Km ^ Cn (m, n ≥ 4). 

IV. RESULTS 
ON Km ^ Pn (m, n being positive integers). 
Primarily, we have  

A. Observations. 
1) If atleast one of m, n is 1, then  Km ^ Pn is an empty graph. 

So, we consider m, n ≥ 2.  
2) Km ^ P2 = Km ^ K2 (m  2) and this is discussed in [3].  

So, we take n  3. 
3) K2 ^ Pn = P2 ^ Pn (n  2) and this is discussed in [3]. 

So, we take m  3. 
Thus, we discuss about the graphs where m, n  3 
4) Denote V(Km) = {u1, u2, …, um} and V(Pn) = {v1,v2,…,vn}, then Km ^ Pn is the graph with V(Km ^ Pn) = {(ui,vj): i=1,2,…,m; 
j=1,2,…,n} and the edge set being the set of elements of the form (ui, vj)  ( ui , v j ) where i, i   {1, 2, … , m} with  i  i,  j, j  

{1, 2, …, n}, j = 2 when j =1,   j = n – 1 when j = n and j  = j – 1 or j +1 when 2  j  n – 1. 

Since deg Km (ui) = m – 1 and   deg Pn (vj) = 1 or 2 according as j=1, n or  j=2, …,    (n – 1), it follows that  

 
           1(m – 1)  for i=1, 2, …, m; j=1 or n, 
deg Km ^ Pn  (ui, vj)  =  
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           2(m – 1)  for i=1, 2, …, m; j =2, 3, …(n – 1). 
(Observe that the degree does not depend on ‘n’). 
B.  Theorem. Km ^ Pn (m, n  3) (isomorphic to Pn ^ Km) is a simple, finite graph with mn vertices and m(m – 1)(n – 1) edges.  
1) Proof. Since Km, Pn are simple, finite graphs and so is Km ^ Pn. It has 2m vertices of degree (m – 1) and has (n – 2)m vertices of degree

2(m – 1); it follows that the number of edges in Km^ Pn is   ½ [2m(m – 1) + (n – 2)m + 2(m – 1)] = m(m – 1)(n – 1). 
 
C. Theorem. Km ^ Pn  (m, n  3) is  
connected  b) bipartite and c) Eulerian iff m is odd. 
1) Proof. Since Km , Pn  are connected graphs and Km (m  3) contains the odd cycle K3, by Result (2.4), it follows that Km ^ Pn is 

connected. This proves (a). 
 In the usual notation, let 

V1 = {(ui, vj): i = 1, 2, …, m, j = 1, 3, …, 1n  or n as according n is even or odd}, 
 

V2 = {(ui, vj): i = 1, 2, …, m, j = 2, 4, …, 1n or n as according n is odd or even}. 
Clearly no two vertices of either V1 or V2 are adjacent in Km ^ Pn. This implies that {V1, V2} is a bipartition of the vertex set of Km ^ 
Pn . Thus Km ^ Pn is bipartite. This proves (b). 
 By the characterization Result (2.6), Km ^ Pn  is Eulerian iff each of its vertex is of even degree and  m is odd. This 
proves (c). 
Thus the proof of the theorem is complete. 
 
D. REMARK. |V1| = mn/2 = |V2| when n is even and |V1| = m(n + 1)/2 &            |V2| = m(n – 1)/2 when n is odd. 
 
E. Theorem. Km ^ P3 ( m  3) is a ((m – 1), 2(m – 1)) - biregular graph and  W(Km ^ P3) = m(7m + 1). 
1) PROOF. By Th.(4.3), it follows that the graph is bipartite with a bipartition        {V1, V2}, where  

V1 = {(ui, vj) :   i = 1,2, …, m; j = 1,3} 
and 

V2 = {(ui, v2) :   i = 1,2, …, m}. 
Clearly every vertex of V1 is of degree (m – 1) and that of V2 is   2(m – 1). Thus the graph is a ((m – 1, 2(m – 1)) – biregular graph. 
Clearly |V1| =2m and |V2| = m. 
Its diagrammatic representation is  
(u1, v1)    (u1, v3)      (u2, v1)                       (u2, v3)                            (um, v1)    (um, v3) 
                                                                …………………………… 
 
 
 
 
 
 
 
 
 
                   
                                                      ………… 
                (u1, v2)                                    u2, v2)                                (um, v2)         
Now, 
d{(u1, v1), (u1, v1)} = 0 
d{(u1, v1), (ui, v1)} = 2     (i=2, …, m), 
d{(u1, v1), (ui, v3)} = 2     (i=2, …, m), 
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d{(u1, v1), (u1, v2)} = 3 
and 
d{(u1, v1), (ui, v2)} = 1    (i=2,3, …, m); 

 
3

1 1

m

i j 
 d{(u1, v1), (ui, v1)} = 0 + 2(m – 1) + 2(m) + 3 + (m – 1) = 5m. 

Since, interchanging any two vertices in V1, does not affect the graph follows that we get the same sum for all the 2m points in V1. 
Also  
d{(u1, v2), (u1, v1)} = 3 = d{(u1, v2), (u1, v3)}, 
d{(u1, v2), (ui, vj)}  = 1  for i=2 , … m and  j=1, 3 
and d{(u1, v2), (u1, v2) = 0}, d{(u1, v2), (ui, v2)} = 2 for i= 2 ,…, m – 1.   

Thus 
1 1

m n

i j 
 d{ (u1,v2),(ui, vj)} = (3+3) + (2m-2) 1 + 0 + (m-1)(2) 

                                                = 6 + 2m – 2 + 2m – 2 
                 = 4m + 2. 

As  in V1, we get the same sum for all points of V2. 
Thus W(Km ^ P3) = ½ [ (2m)(5m) + m(4m+2) ] 
                            = 5m2 + m(2m+1) 
                            = m(7m + 1). 

F.  Result. W(Km ^ Pn) = 
m
6

[mn (n2 + 5) + 6(n – 2)].   (m ≥ 3 & n ≥ 3 and n is even). 

In the usual notation, Km  ^ Pn is a bipartite graph with a bipartition,     (X, Y) where  
X = {(ui, vj):  i =1, 2, …, m; j = 1, 3, …, (n – 1)}, 

and 
Y = {(ui, vj):  i =1, 2, …, m; j = 2, 4, …, n}. 

Clearly |X| = |Y|= mn/2. As the graph is symmetric w.r.t  X and Y, we observe that  

1 1 1

m m n

i j odd i j   
     d{(u i ,v j ), (ui,vj)} = 

1 1 1

m m n

i j even i j   
     d{(u i ,v j ), (ui,vj)} 

(That means sum taken over the vertices in X is same as the sum taken over the vertices in Y). 
On Calculation, 

0  if  i = 1,  
d{(u1, v1), (ui, v1)} =  
    2   if i ≠ 1. 
 
 

3  if  i = 1,  
d{(u1, v1), (ui, v2)} =  
    1  if i ≠ 1. 
 
d{(u1, v1), (ui, vj)} = (j – 1) for all  i and  j = 3, …, n. 
 

1 1

m n

i j 
   d{(u1, v1), (ui, vj)} = [ 1(0) + (m – 1)2 + 1(3) + (m – 1)1 + m 

3

n

j
 (j – 1)] 

      = [(2m – 2) + 3 + (m – 1) + m
1

2

n

j




 j] 
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     = 
m
2

(n2 – n + 4)   (i) 

Since u1 is adjacent with all u i ( i ≠ 1), it follows that we get the same sum when u1 is replaced by u i .  
Further 
d{(u1, v3), (ui, vj)} = (j – 3) for all i and j = 5, …, n (when n ≥ 5). 


1 1

m n

i j 
   d{(u1, v3), (ui, vj)}  = 

 2m n  –  5n  16   4

2

 
                          (ii) 

For j| = 5, 7, …, (m – 1) (when m ≥ 8) 
d{(u1, v j ), (ui, v1)} = ( j - 1) for all i, 

d{(u1, v j ), (ui, v2)} = ( j - 2) for all i, 
--------------------------------------------- 
--------------------------------------------- 
d{(u1, v j ), (ui, v 2j  )} = 2 for all i. 

3  if  i = 1,  
d{(u1, v j ), (ui, v 1j  )} = d{(u1, v j ), (ui, v 1j  )} =  
         1  if i ≠ 1. 
  if  i = 1,  
d{(u1, v j ), (ui, v 1j  )} = d{(u1, v j ), (ui, v 1j  )} =  
         2  if i ≠ 1. 
 
--------------------------------------------- 
--------------------------------------------- 
d{(u1, v j ), (ui, v 2j  )} = 2 for all i, 
--------------------------------------------- 
--------------------------------------------- 
d{(u1, v j ), (ui, vn)} = (n - j ) for all i. 


1 1

m n

i j 
   d{(u1, v j ), (ui, vj)} = m[( j  - 1) + ( j - 2) + … + 2] + 

                      2{1(3) + (m – 1) (1)} + {1(0) + (m – 1)(2) + m [ 2 + 3 + … + ( n - j )] 

              = m [ 2 + … + ( j - 1)] + (4m + 2) + m[2 + … + (n - j )] 

    = m[
( 1)

2
j j 

 - 1] + (4m + 2) + m [
( )( 1)

2
n j n j   

 - 1 ] 

  =m( 
2n   n  4

2
 

) + 2 + m [ j 2 – (n + 1) j ]. 

 
 


5,7,...( 1)j m 
  d{(u1, v j ), (ui, vj)  

   = m{
2(n   n  4) 

4
 

+ 4}(n – 4) – 
  2 m n 1 n –16

4


 – 10m +
 2mn n  –  1

6
                       (iii) 

Now follows from (i), (ii) &(iii), 
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W(Km ^ Pn) = 
1
2

(2) m    
2
m

(n2 – n + 4) + 
 2m n  –  5n  16   4

2
 

    

                           + {
 2m n   n  4   4

4
  

} (n – 4) – 
   2m n  1  n  –  16

4


  

     – 10m + 
 2mn n  –  16

6
 

= 
1
6

[m2 (n3 + 5n) + 6m (n – 2)] (On simplification) 

=
6
m

[mn(n2 + 5) + 6(n – 2)]. 

 This completes the proof of the result. 
 
G. Open problem. To find a general formula for the Wiener Number of        Km ^ Pn when m ≥ 3 and n is odd. 
 
H.  Result. W(Km ^ P5)  = m(25m + 3) ( m ≥ 3). 
1) ROOF. Clearly Km ^ P5 is a bipartite graph with bipartition X, Y where 

X = {(ui, vj):  i =1, 2, …, m; j = 1, 3, 5}, 
and 

Y = {(ui, vj):  i =1, 2, …, m; j = 2, 4 }. 
On calculation 
d{(u1, v1), (u1, v1)} = 0,  d{(u1, v1), (ui, v1)} = 2 for i ≠ 1. 
 
d{(u1, v1), (ui, v3)}  = 2 
     for all i. 
d{(u1, v1), (ui, v5)}  = 4 
 
Also d{(u1, v1), (ui, vj)}  = 3  for j = 2, 4; 
 
 
d{(u1, v1), (ui, v4)}  = 3 
     for i ≠ 1. 
d{(u1, v1), (ui, v2)}  = 1 
 
So 

5

1 1

m

i j 
  d{(u1, v1), (ui, vj)} = 1(0) + {(m – 1) + m}(2) +m(4) +{2 + (m – 1)3} + (m – 1)1 

               = (4m – 2) + 4m + (3m + 3) + (m – 1) 
     = 12m. 
We observe that we get the same sum with all the 2m vertices (ui, vj)   (i = 1, 2, …, m; j = 1, 4). 
Now 
d{(u1, v3), (ui, vj)}  = 2 for all i and j = 1, 5 
d{(u1, v3), (u1, v3)} = 0 and d{(u1, v3), (ui, v3)} = 2  for i ≠ 1. 
d{(u1, v3), (u1, vj)} =  1  for j = 2, 4, 
d{(u1, v3),  (ui, vj)}   = 1   for i ≠ 1 and  j = 2, 4. 
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So  
5

1 1

m

i j 
   d{(u1, v3),  (ui, vj)}  = 1(0) + {2m + (m – 1) }2  + 2(3) +2(m – 1) (1) 

        = (6m – 2) + 6 + (2m – 2) 
        = 8m + 2. 
We observe that we get the same sum with all the m vertices (ui, v3) (i=1, 2, …, m). 
Further 
d{(u1, v2),  (ui, vj)}   = 3   for  j = 1, 3. 
d{(u1, v2),  (ui, vj)}   = 1   for i ≠ 1 and  j = 1, 3. 
d{(u1, v2),  (ui, v5)}   = 3   for all i. 
d{(u1, v2),  (u1, v2)}   = 0;  d{(u1, v2),  (ui, v2)}   = 2   for i ≠ 1, 
d{(u1, v2),  (ui, v4)}   =2 for all i.  
So  

5

1 1

m

i j 
   d{(u1, v2),  (ui, vj)}  =  (2+m)(3) + 2(m – 1) (1) + 1(0) +{(m – 1 ) + m} (2) 

         = (6 + 3m) + (2m – 2) + (4m – 2) 
         = 9m + 2. 
We observe that we get the same sum with all the 2m vertices (ui, vj) (i=1,2,…,m;  j=2, 4). 
 
Hence 

W(Km ^ P5)  = 
1
2

[2m(12m) + m(8m +2) +2m (9m +2)] 

  = 
1
2

[50m2 + 6m] 

  = m(25m + 3). 
 

V. RESULTS ON CM ^ PN (M, N BEING POSITIVE INTEGERS WITH M ≥ 3) 
Initially we have 
 
A. Observations. 
1) Cm ^ P1 is an empty graph (with m vertices). 

So we take n ≥ 2. 
2) Cm ^ P2 = Cm ^ K2 = K2 ^ Cm and this is considered in § 2 
3) C3 ^ Pn = K3 ^ Pn and this is considered in § 4 when n=3 or 4. 
            So, we are left with the graphs for which m ≥ 4 and n ≥ 3 
Denote V(Cm) = {u1, u2, …, um} and V(Pn) = {v1, v2, …, vn}. Then Cm ^ Pn  is the graph with V(Cm ^ Pn) = {(ui, vj): i = 1, 2, …, m;       
j = 1, 2, …, n} and the edge set being the set of edges of the form (ui, uj) (u i ,v j ) where i, i| {1, 2, …, m} with i| = i-1 or i+1 under 
the convention  u0 = um and  um+1 = u1, j, j|  {1, 2, …, n} with j|  = 2 when  j = 1, j|  = n-1 when j=n and j = j+1 or j-1 when 2 ≤ j ≤ n-
1. 
     e) Since deg mC (ui)  = 2 and deg

nP (vj)  =  1 or 2 according as   j {1, n} or   2  i  (n – 1)          it follows that 

         2  for i=1, 2, …, m; j=1 or n, 
deg Cm ^ Pn  (ui, vj)  =  

         4  for i=1, 2, …, m; 2  j  n – 1. 
 
(Thus the degree of each vertex is even & is independent of m and n). 
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B. Theorem.  
For m, n ≥ 3, Cm ^ Pn (isomorphic to Pn ^ Cm) is a simple, finite graph such that the degree of each vertex is either 2 or 4 with mn 
vertices and    2m(m – 1) edges and is bipartite.  
Since Cm , Pn are simple, finite and so is Cm ^ Pn. Clearly it has mn vertices. From observation (5.1)(e), it follows that the degree of each vertex 
is either 2 or 4. Further, there are 2m vertices of degree 2 and (n – 2)m vertices of degree 4. Hence, the number of edges is  ½ [2m(2) + (n 
2)m(4)]  = ½ [4m + 4mn – 8m] 
        = 2mn – 2m = 2m(n – 1). 
Let V(Cm) = {u1, u2, …, um} and V(Pn} = {v1, v2, …, vn}. Denote         

V1 = {(ui, vj): i = 1, 2, …, m, j = 1, 3, …, n-1 or n according as n is even or odd}  

 and V2 = {(ui, vj): i = 1, 2, …, m,  j = 2, 4, …, n-1 or n according as n is odd or even}. 
Clearly, no two vertices of either V1 or V2 are adjacent in Cm ^ Pn. Now, follows that {V1, V2} is a bipartition of this graph. Hence, 
the graph is bipartite. 
This completes the proof of the theorem. 
 
C. Observations 
1) follows that is Cm ^ Pn is connected when and only when m is odd. 
2)  Since Cm , Pn are connected, Pn does not contain any cycle and Cm does not contain an odd cycle when m is even, by Result 

(2.5), it follows that Cm ^ Pn contain exactly two components, when m is even. 
3) Since, each vertex is Cm ^ Pn is of even degree, it follows that Cm ^ Pn is Eulerian when m is odd and is a union of two disjoint 

Eulerian graphs when m is even. (Since each component is Eulerian). 
4) Cm ^ Pn (m ≥ 4, n ≥ 3) is not connected when m is even and is connected when m is odd ( m ≥ 5). 
 
D. Open problem.  To find a general formula for the Wiener number of          Cm ^ Pn  for m odd & ≥ 5 and n ≥ 3. We end up this 

by finding the following: 
 
C. Result.  W( C5 ^ P3) = 280. 
1) Justification. A diagrammatic representation of C5 ^ P3 is 
(u1, v1)   (u1, v3)   (u2, v1)   (u2, v3)   (u3, v1)  (u3, v3)   (u4, v1)   (u4, v3)   (u5, v1)   (u5, v3) 
           
 
 
 
 
 
 
 
(u1, v2)              (u2, v2)                     (u3, v2)                (u4, v2)                   (u5, v2)    
 We observe that the graph is symmetric w.r.t. the vertices of degree two, namely (ui, vj) (i = 1, 2, …, 5; j = 1, 3) as well as 
w.r.t. the vertices of degree 4, namely  (ui, vj) (i= 1, 2, …, 5, j = 2). 
Now,  
d{(u1, v1), (u1, v1)} = 0, d{(u1, v1), (u1, v3)} = 2, 
d{(u1, v1), (ui, v1)} = 2 = d{(u1, v1), (ui, v3)} ( i =3, 4), 
d{(u1, v1), (ui, v1)} = 4 = d{(u1, v1), (ui, v3)} (i = 2, 5); 
Also  
d{(u1, v1), (u1, v2)} = 5, 
d{(u1, v1), (ui, v2)} = 2  (i=3, 4), 
d{(u1, v1), (ui, v2)} = 1  (i=2, 5) . 
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So 
5 4

1 1i j 
   d{(u1, v1), (ui, vj)} = 1(0) + 2(1) + 7(2) + 4(4) + 1(5) 

            = 37. 
There are 10 points having the same sum. 
Further  
d{(u1, v2), (u1, vj)} = 5   (j = 1, 3), 
d{(u1, v2), (ui, vj)} = 1            (i = 2, 5 and j = 1, 3), 
d{(u1, v2), (ui, vj)} = 3  (i = 3, 4 and j = 1, 3). 
d{(u1, v2), (u1, v2)} = 0, 
d{(u1, v2), (ui, v2)} = 2  (i = 3, 4), 
d{(u1, v2), (ui, v2)} = 4   (i = 2, 5). 
So 

5 4

1 1i j 
  d{(u1, v2), (ui, v2)} = 2(5) + 4(1) + 4(5) + 1(10) +2(2) + 2(4) 

                = 38. 
There are ‘5’ points having the same sum. 
Hence, W(C5 ^ P3) = (1/2) [10(37) + 5(38)] = 280. 
 
D. Result.  W(C5 ^ P4) = 540. 
 A diagrammatic representation of  C5 ^ P4 is  
(u1, v1)   (u1, v3)   (u2, v1)   (u2, v3)   (u3, v1)  (u3, v3)   (u4, v1)   (u4, v3)   (u5, v1)   (u5, v3) 
           
 
 
 
 
 
 
 
 
 
 
 
(u1, v2)    (u1, v4)   (u2, v2)   (u2, v4)   (u3, v2)   (u3, v4)    (u4, v2)    (u4, v4)   (u5, v2)   (u5, v4)    
We observe that the graph is symmetric w.r.t. the vertices of degree two, namely (ui, vj) (i = 1, 2, …, 5; j = 1, 3) as well as w.r.t. the 
vertices of degree 4, namely     (ui, vj) (i= 1, 2, …, 5,    j = 2,3). 
Now 
d{(u1, v1), (u1, v1)} = 0, d{(u1, v1), (u1, v3)} = 2, 
 d{(u1, v1), (ui, vj)} = 4  (i =2, 5; j = 1, 3), 
d{(u1, v1), (ui, vj)} = 2  (i =3, 4; j = 1, 3); 
d{(u1, v1), (ui, v2)} = 1  (i =2, 5), 
d{(u1, v1), (ui, vj)} = 3  (i =3, 4; j = 2, 4), 
d{(u1, v1), (ui, v4)} = 3  (i =1, 2), 
d{(u1, v1), (u1, vj)} = 5  (j = 2, 4). 
 
So   
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5 4

1 1i j 
  d{(u1, v1), (ui, vj)} = 1(0) + 2(1) + 5(2) + 6(3) + 4(4) + 2(5) 

                   =  2 + 10 + 18 + 16 + 10 
                                                         =  56. 
There are 10 such points. We get the same sum for all these points. 
Also 
d{(u1, v3), (u1, v1)} = 2, d{(u1, v3), (u1, v3)} = 0, 
d{(u1, v3), (ui, vj)} = 2  ( i = 3, 4; j = 1, 3), 
d{(u1, v3), (ui, vj)} = 4  (i = 2,5; j = 1, 3), 
d{(u1, v3), (ui, vj)} = 5 (i = 2,5; j = 2, 4), 
d{(u1, v3), (ui, vj)} = 1  (i = 2,5; j = 2, 4), 
d{(u1, v3), (ui, vj)} = 3  (i = 3,4; j = 2, 4), 

So 
5 4

1 1i j 
  d{(u1, v3), (ui, vj)} = 1(0) + 4(1) + 5(2) + 4(3) + 4(4) + 2(5) 

                                                = 4 + 10 + 12 + 16 + 10 
= 52. 

There are 10 such points. We get the same sum for all these points. 
 
Hence,  W(C5 ^ P4)  =  ½ (10) [56 + 52] 
               =  5(108) =  540. 

VI. CONCLUSIONS. 
As there is significant use of Tensor product graphs in computational Chemistry, an attempt is made to obtain Wiener index of Km ^ 
Kn, Pm ^ Pn and      Cm ^ Cn in the preceeding paper [see 3]. Now we attempted to determine the Wiener index of Km ^ Pn, Km ^ Pn 
and Cm ^ Pn wherever possible. 
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