

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: X Month of publication: October 2017 DOI: http://doi.org/10.22214/ijraset.2017.10066

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

On Tensor Product of Standard Graphs-II

K. V.s. Sarma¹, I.H. N. Rao²

¹Asst. Prof., Department of Mathematics, Gayatri Vidya Parishad Degree and P.G courses, School of Engineering Rushikonda, ²Sr.Prof. G.V.P. and Prof. Lakshmi Kantham Institute of Advanced Studies, GVP college of Enginering(A), Madhurawada, Visakhapatnam-48, India

Abstract: The characteristic properties of the graphs $K_m \wedge C_n$, $K_m \wedge P_n$, $C_m \wedge P_n$ are studied and mainly their Wiener Indices are obtained, wherever possible.

Index Terms: Tensor (Kronecker) product, Wiener index (number), connected graph, Hamiltonian graph.

I. INTRODUCTION

The Wiener index is initiated from the work of Wiener [5]. This Wiener number is an important topological index associated with the molecular graph of atoms which is a connected one. Further it is widely used to describe the molecular structures. Till now, no recursive method is known for the calculation of the Wiener number of a general connected graph.

In this paper, the Wiener numbers of $K_m \wedge C_n$, $K_m \wedge P_n$, $C_m \wedge P_n$, wherever possible are obtained. Some interesting observations are made. This paper is a continuation of our previous paper [3].

II. PRELIMINARIES

We present some known definitions and results (in the refined form, wherever necessary) for a ready reference to go through the work presented in the subsequent sections. For standard notation and further results, we refer Bondy & Murthy [1].

A. Definition 2.1 [4]

G, H are disjoint graphs. The Tensor product of G and H, denoted by G ^ H (that is isomorphic to H ^ G) is the graph whose vertex set is V(G) x V(H) and the edge set being the set of all elements of the form (u, v) (u¹, v¹) where u, u¹ \in V(G), v,v¹ \in V(H), uu¹ \in E(G) and vv¹ \in E(H).

- B. Observations 2.2
- 1) If one f G, H is an empty graph (i.e. has no edges) then G ^ H is also an empty graph.
- 2) If G, H are finite, simple graphs with m, n vertices respectively, then $G \wedge H$ is a finite, simple graph with mn vertices. Further, if $u \in V(G)$ and $v \in V(G)$ then

$$\deg_{G^{\wedge}H}(u, v) = \{\deg_{G}u\} \cdot \{\deg_{H}v\}.$$

C. Definition 2.3[5].

The Wiener index W(G) of a finite, connected graph is defined to be

$$W(G) = \frac{1}{2} \sum_{u,v \in V(G)} d(u, v),$$

where d(u, v) denotes the distance (the length of any shortest u - v path) between u & v in G.

1) Result 2.4[4]: G_1 , G_2 are connected graphs. Then $G_1 \wedge G_2$ is connected if and only if (iff) either G_1 or G_2 contains an odd cycle.

2) Result 2.5 [4]: If G_1 , G_2 re connected graphs with no odd cycles, then $G_1 \wedge G_2$ has exactly two components.

3) Result 2.6[1]: A nonempty connected graph is Eulerian iff every vertex is of even degree.

4) *Result* 2.7[1]: If G is a simple graph with the number of vertices $v \ge 3$ and the minimum degree $\delta \ge v/2$ then G is Hamiltonian.

5) *Result 2.8[1]:* A simple graph is bipartite iff it contains no odd cycles.

In what follows m and n are positive integers.

§3. Results on $K_m \wedge C_n$ (m, n being positive integers & $n \ge 3$). Initially, we have

III. OBSERVATIONS.

 $K_1 \wedge C_n$ is an empty graph (with n vertices).

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue X, October 2017- Available at www.ijraset.com

So, we consider $m \ge 2$ (and $n \ge 3$).

Denote $V(K_m) = \{u_1, u_2, ..., u_m\}$ and $V(C_n) = \{v_1, v_2, ..., v_n\}$. Then $K_m \wedge C_n$ is the graph with $V(K_m \wedge C_n) = \{(u_i, v_j) : i = 1, 2, ..., m; j = 1, 2, ..., m\}$ and the edge set being the set of elements of the form (u_i, v_j) $(u_i \vee v_j \vee v_j)$ where $i, i^1 \in \{1, 2, ..., m\}$ with $i^1 \neq i$; $j, j^1 \in \{1, 2, ..., n\}$ with $j^1 = j - 1$ or j + 1 under the convention $v_0 = v_n, v_{n+1} = v_1$.

- A. *Theorem*. $K_m \wedge C_n$ (isomorphic to $C_n \wedge K_m$) is a simple, finite and 2(m-1) regular graph (an even integer) with mn vertices and (m-1) mn edges (observe that the degree does not depend on n).
- *B.* proof. Since K_m , C_n are simple, finite graphs and so is $K_m \wedge C_n$. As K_m is (m-1) regular and C_n is 2-regular, it follows that $K_m \wedge C_n$ is 2(m-1)- regular. Since $K_m \wedge C_n$ has mn vertices, it follows that there are (m-1)mn edges. This proves the Theorem.
- C. Observations. K₂, C_n are connected graphs and K₂ does not contain an odd cycle (in fact, any cycle).
 - a) By Result (2.4), it follows that $K_2 \wedge C_n$ is connected iff n is odd (since C_n contains the cycle C_n only).
 - b) By Result (2.5), it follows that $K_2 \wedge C_n$ has exactly two components iff n is even.
- D. Theorem. $K_2 \wedge C_{2n+1}$ ($n \ge 1$) is isomorphic to $C_{2(2n+1)}$ and $W(K_2 \wedge C_{2n+1}) = (2n+1)^{3}$.
- *E. Proof.* By Th. (3.2) and Obs.(3.3) (a), $K_2 \wedge C_{2n+1}$ is a connected 2-regular graph with 2(2n+1) vertices and (1)(2)(2n+1) = 2(2n+1) edges. So $K_2 \wedge C_{2n+1}$ is isomorphic to $C_{2(2n+1)}$. Hence, by a known result [see 2], it follows that $W(K_2 \wedge C_{2n+1}) = W(C_{2(2n+1)}) = (2n+1)^3$.

In fact, in the usual notation, $K_2 \wedge C_{2n+1}$ is the cycle { $(u_1, v_1), (u_2, v_2), (u_1, v_3), \dots, (u_2, v_{2n}), (u_1, v_{2n+1}), (u_2, v_1), (u_1, v_2), \dots, (u_1, v_{2n+1}), (u_2, v_{2n+1}), (u_1, v_2), \dots, (u_1, (u_1, v_2),$

By Th.(3.2), $K_2 \wedge C_{2n}$ is a 2-regular graph with 4n vertices and 4n edges. By observation (3.3)(b), this has exactly two components. Now follows that each component is a cycle. Clearly the components are the cycles { $(u_1,v_1),(u_2,v_2),(u_1,v_3),...,(u_1,v_{2n-1}),(u_2,v_{2n}),(u_1,v_1)$ } and { $(u_2,v_1),(u_1,v_2),(u_2,v_3)...,(u_2,v_{2n-1}),(u_1,v_{2n}),(u_2,v_1)$ }. Each is C_{2n} . Hence by a known result [see 2] follows the theorem.

G. Observations.

Since $K_2 \wedge C_{2n+1}$ ($n \ge 1$) is an even cycle, follows that this graph is bipartite, Eulerian and Hamiltonian.

Since $K_2 \wedge C_{2n}$ $(n \ge 2)$ is union of C_{2n} and C_{2n} , follows that the graph is bipartite and each component (C_{2n}) is Eulerian and Hamiltonian.

H. Theorem. For m, $n \ge 3$, $K_m \wedge C_n$ is a) connected b) Eulerian and c) bipartite iff n is even.

Proof. Since K_m , C_n are connected and K_m ($m \ge 3$) contains the odd cycles K_3 , by Result (2.4), it follows that $K_m^{\wedge} C_n$ is connected. This proves (a).

Since the degree of each vertex of $K_m \wedge C_n$ is even (see Th.(3.2)), by the characterization result (2.6), it follows that $K_m \wedge C_n$ is Eulerian.

This proves (b).

Suppose n is even $(\Rightarrow n \ge 4)$.

In the usual notation,

 $X = \{(u_i, v_j): i = 1, 2, ..., m; j = 1, 3, ..., (n - 1)\},\$

and

 $Y = \{(u_i, v_j): i = 1, 2, ..., m; j = 2, 4, ..., n\}$

are such that $\{X, Y\}$ is a bipartition of the vertex set $K_m \wedge C_n$. So the graph is bipartite.

When n is odd,

 $\{(u_1, v_1), (u_2, v_2), (u_3, v_3), \dots, (u_n, v_n), (u_1, v_1)\} \text{ is a cycle of length } n \text{ (odd) in } K_m \wedge C_n. \text{ So it is not bipartite.}$ This completes the proof of the Theorem. }

I. Observations

 $K_2 \wedge C_n \ (n \ge 3)$ is discussed in this article.

 $K_m \wedge C_3 = K_m \wedge K_3$ and this is discussed in [3].

a) $K_3 \wedge C_n = C_3 \wedge C_n (n \ge 3)$ and this is discussed in [3].

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue X, October 2017- Available at www.ijraset.com

Thus, we are left with the graphs. $K_m \wedge C_n \, (m, \, n \geq 4 \,)$ and we discuss about these graphs.

- *J. Result.* $W(K_m \wedge C_4) = 4m (3m + 2) (m \ge 4)$.
- *K. Justification.* Since the graph is regular, it follows that the graph is symmetric w.r.t. all 4m vertices (u_i, v_j) (i = 1, 2, ..., m; j = 1, 2, 3, 4).

On Calculation

$$\begin{split} &d\{(u_1,\,v_1),\,(u_1,\,v_1)\}=0,\,d\{(u_1,\,v_1),\,(u_1,\,v_3)\}=2,\\ &d\{(u_1,\,v_1),\,(u_i,\,v_j)\}=2 \text{ for } i=2,\,3,\,\ldots,\,m;\,j=1,\,3.\\ &d\{(u_1,\,v_1),\,(u_1,\,v_2)\}=3=d\{(u_1,\,v_1),\,(u_1,\,v_4)\}\,,\\ &d\{(u_1,\,v_1),\,(u_i,\,v_j)\}=1 \text{ for } i=2,\,3,\,\ldots,\,m;\,j=2,\,4.\\ &So \end{split}$$

50

 $\sum_{i=1}^{m} \sum_{j=1}^{3} d\{(u_1, v_1), (u_i, v_j)\} = 1(0) + \{1 + 2(m-1)\}(2) + 2(3) + 2(m-1)(1)$ = (4m-2) + 6 + (2m-2)= 6m + 2.

We get the same sum for all the 4m vertices. Hence

$$\begin{split} W(K_m \wedge C_4) &= (1/2)(4m) \ (6m+2) \\ &= 4m \ (3m+1). \\ L. \quad Result. W(K_m \wedge C_5) &= 5m(4m+1) \ (m \geq 4). \\ M. \quad Justification. \ As the graph is regular, follows the graph is symmetric w.r.t. all the 5m vertices. \\ On Calculation, \\ d\{(u_1, v_1), (u_1, v_1)\} = 0, \\ d\{(u_1, v_1), (u_1, v_j)\} &= 3 \ for \ j = 2, 5, \\ d\{(u_1, v_1), (u_1, v_j)\} = 2 \ for \ j = 3, 4. \\ d\{(u_1, v_1), (u_i, v_j)\} = 1 \ for \ i = 2, 3, ..., m; \ j = 2, 5. \\ So \end{split}$$

$$d\{(\mathbf{u}_{1}, \mathbf{v}_{1}) (\mathbf{u}_{i}, \mathbf{v}_{j})\} = \sum_{i=1}^{m} \sum_{j=1}^{3} d\{(\mathbf{u}_{1}, \mathbf{v}_{1}), (\mathbf{u}_{i}, \mathbf{v}_{j})\}$$

= 1(0) + { 2+ 3(m - 1)}(2) + 2(3) + 2(m - 1) (1)
= (6m - 2) + 6 + (2m - 2) = 8m + 2.

We get the same sum for all the 5m vertices. Hence W(K_m C) = (1/2) (5m) (8m + 2) = 5m(4m + 1). Finally, we exhibit the following:

N. A diagrammatic representation of $k_4 \wedge c_5$.

O. Open problem. To find a general formula for the Wiener number of $K_m \wedge C_n (m, n \ge 4)$.

IV. RESULTS

ON $K_m \wedge P_n$ (m, n being positive integers). Primarily, we have

- A. Observations.
- 1) If atleast one of m, n is 1, then Km ^ Pn is an empty graph. So, we consider m, $n \ge 2$.
- 2) $K_m \wedge P_2 = K_m \wedge K_2 \ (m \ge 2)$ and this is discussed in [3]. So, we take $n \ge 3$.
- 3) $K_2 \wedge Pn = P_2 \wedge P_n \ (n \ge 2)$ and this is discussed in [3]. So, we take $m \ge 3$.

Thus, we discuss about the graphs where $m,\,n\geq 3$

4) Denote V(K_m) = {u₁, u₂, ..., u_m} and V(P_n) = {v₁, v₂,..., v_n}, then Km ^ Pn is the graph with V(Km ^ Pn) = {(u_i, v_j): i=1,2,...,m; j=1,2,...,m} and the edge set being the set of elements of the form (u_i, v_j) $(u_{i'}, v_{j'})$ where $i, i' \in \{1, 2, ..., m\}$ with $i' \neq i, j, j' \in \{1, 2, ..., m\}$ with $i' \neq i, j, j' \in \{1, 2, ..., m\}$

 $\{1, 2, ..., n\}, j' = 2$ when j = 1, j' = n - 1 when j = n and j' = j - 1 or j + 1 when $2 \le j \le n - 1$.

Since deg $_{Km}(u_i) = m - 1$ and $deg_{Pn}(v_j) = 1$ or 2 according as j=1, n or j=2, ..., (n-1), it follows that

deg Km
n
 Pn (u_i, v_j) =

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 $2(m-1) \ \ for \ i=1, \ 2, \ ..., \ m; \ j=2, \ 3, \ ...(n-1).$

(Observe that the degree does not depend on 'n').

- B. Theorem. $K_m \wedge P_n$ (m, $n \ge 3$) (isomorphic to $P_n \wedge K_m$) is a simple, finite graph with mn vertices and m(m 1)(n 1) edges.
- 1) *Proof.* Since K_m , P_n are simple, finite graphs and so is $K_m \wedge P_n$. It has 2m vertices of degree (m 1) and has (n 2)m vertices of degree 2(m 1); it follows that the number of edges in $K_m \wedge P_n$ is $\frac{1}{2} [2m(m 1) + (n 2)m + 2(m 1)] = m(m 1)(n 1)$.

C. Theorem. $K_m \wedge P_n (m, n \ge 3)$ is

connected b) bipartite and c) Eulerian iff m is odd.

1) *Proof.* Since K_m , P_n are connected graphs and K_m ($m \ge 3$) contains the odd cycle K_3 , by Result (2.4), it follows that $K_m \wedge P_n$ is connected. This proves (a).

In the usual notation, let

 $V_1 = \{(u_i, v_j): i = 1, 2, ..., m, j = 1, 3, ..., n-1 \text{ or } n \text{ as according } n \text{ is even or odd}\},\$

 $V_2 = \{(u_i, v_j): i = 1, 2, ..., m, j = 2, 4, ..., n-1 \text{ or } n \text{ as according } n \text{ is odd or even} \}.$

Clearly no two vertices of either V_1 or V_2 are adjacent in $K_m \wedge P_n$. This implies that $\{V_1, V_2\}$ is a bipartition of the vertex set of $K_m \wedge P_n$. Thus $K_m \wedge P_n$ is bipartite. This proves (b).

By the characterization Result (2.6), $K_m \wedge P_n$ is Eulerian iff each of its vertex is of even degree and \Leftrightarrow m is odd. This proves (c).

Thus the proof of the theorem is complete.

- D. REMARK. $|V_1| = mn/2 = |V_2|$ when n is even and $|V_1| = m(n + 1)/2$ & $|V_2| = m(n 1)/2$ when n is odd.
- *E.* Theorem. $K_m \wedge P_3$ ($m \ge 3$) is a ((m 1), 2(m 1)) biregular graph and W($K_m \wedge P_3$) = m(7m + 1).
- 1) PROOF. By Th.(4.3), it follows that the graph is bipartite with a bipartition $\{V_1, V_2\}$, where

 $V_1 = \{(u_i, v_j): i = 1, 2, ..., m; j = 1, 3\}$

and

 $V_2 = \{(u_i, v_2): i = 1, 2, ..., m\}.$

Clearly every vertex of V_1 is of degree (m - 1) and that of V_2 is 2(m - 1). Thus the graph is a $((m - 1, 2(m - 1)) - biregular graph. Clearly <math>|V_1| = 2m$ and $|V_2| = m$.

Its diagrammatic representation is

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue X, October 2017- Available at www.ijraset.com

 $\begin{aligned} &d\{(u_1, v_1), (u_1, v_2)\} = 3\\ &and\\ &d\{(u_1, v_1), (u_i, v_2)\} = 1 \quad (i=2,3, \ldots, m);\\ &\therefore \sum_{i=1}^m \sum_{i=1}^3 \quad d\{(u_1, v_1), (u_i, v_1)\} = 0 + 2(m-1) + 2(m) + 3 + (m-1) = 5m. \end{aligned}$

Since, interchanging any two vertices in V_1 , does not affect the graph follows that we get the same sum for all the 2m points in V_1 . Also

 $\begin{aligned} &d\{(u_1, v_2), (u_1, v_1)\} = 3 = d\{(u_1, v_2), (u_1, v_3)\}, \\ &d\{(u_1, v_2), (u_i, v_j)\} = 1 \ \text{ for } i=2 \ , \ldots \ m \ \text{and} \ j=1, \ 3 \\ &\text{ and } d\{(u_1, v_2), (u_1, v_2) = 0\}, \ d\{(u_1, v_2), (u_i, v_2)\} = 2 \ \text{ for } i=2 \ , \ldots, \ m-1. \end{aligned}$

Thus
$$\sum_{i=1}^{m} \sum_{j=1}^{n} d\{ (u_1, v_2), (u_i, v_j) \} = (3+3) + (2m-2) 1 + 0 + (m-1)(2)$$

$$= 6 + 2m - 2 + 2m - 2$$

= 4m + 2.

As in V₁, we get the same sum for all points of V₂. Thus $W(K_m \wedge P_3) = \frac{1}{2} [(2m)(5m) + m(4m+2)]$

 $= 5m^{2} + m(2m+1)$ = m(7m + 1).

F. Result. W(K_m ^ P_n) =
$$\frac{m}{6}$$
 [mn (n² + 5) + 6(n - 2)]. (m ≥ 3 & n ≥ 3 and n is even).

In the usual notation, $K_m \wedge P_n$ is a bipartite graph with a bipartition, (X, Y) where

 $X = \{(u_i, v_j): \ i = 1, 2, ..., m; j = 1, 3, ..., (n-1)\},\$

and

$$Y = \{(u_i, v_j): i = 1, 2, ..., m; j = 2, 4, ..., n\}.$$

Clearly |X| = |Y| = mn/2. As the graph is symmetric w.r.t X and Y, we observe that

$$\sum_{i'=1}^{m} \sum_{j'odd} \sum_{i=1}^{m} \sum_{j=1}^{n} d\{(u_{i'}, v_{j'}), (u_{i}, v_{j})\} = \sum_{i'=1}^{m} \sum_{j'even}^{m} \sum_{i=1}^{n} d\{(u_{i'}, v_{j'}), (u_{i}, v_{j})\}$$

(That means sum taken over the vertices in X is same as the sum taken over the vertices in Y). On Calculation,

$$d\{(u_{1}, v_{1}), (u_{i}, v_{1})\} = \begin{cases} 0 \text{ if } i = 1, \\ 2 \text{ if } i \neq 1. \end{cases}$$
$$d\{(u_{1}, v_{1}), (u_{i}, v_{2})\} = \begin{cases} 1 \text{ if } i = 1, \\ 1 \text{ if } i \neq 1. \end{cases}$$

 $d\{(u_1, v_1), (u_i, v_j)\} = (j - 1) \text{ for all } i and j = 3, ..., n.$

$$\begin{split} \sum_{i=1}^{m} & \sum_{j=1}^{n} \quad d\{(u_{1}, v_{1}), (u_{i}, v_{j})\} = [\ 1(0) + (m-1)2 + 1(3) + (m-1)1 + m \ \sum_{j=3}^{n} \quad (j-1)] \\ & = [(2m-2) + 3 + (m-1) + m \sum_{j=2}^{n-1} \quad j] \end{split}$$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue X, October 2017- Available at www.ijraset.com

Since u_1 is adjacent with all $u_{i'}$ ($i' \neq 1$), it follows that we get the same sum when u_1 is replaced by u_i' . Further

 $d\{(u_1, v_3), (u_i, v_i)\} = (j - 3)$ for all i and j = 5, ..., n (when $n \ge 5$). $\Rightarrow \sum_{i=1}^{m} \sum_{i=1}^{n} d\{(u_1, v_3), (u_i, v_j)\} = \frac{m(n^2 - 5n + 16) + 4}{2}$ (ii) For $j^{i} = 5, 7, ..., (m - 1)$ (when $m \ge 8$) $d\{(u_1, v_{i'}), (u_i, v_1)\} = (j' - 1)$ for all i, $d\{(u_1, v_{i'}), (u_i, v_2)\} = (j' - 2)$ for all i, ---- $d\{(u_1, v_{i'}), (u_i, v_{i'-2})\} = 2$ for all i. $\int_{1 \text{ if } i \neq 1.}^{J}$ $d\{(u_1, v_{i'}), (u_i, v_{i'-1})\} = d\{(u_1, v_{i'}), (u_i, v_{i'+1})\} =$ if i = 1, $d\{(u_1, v_{j'}), (u_i, v_{j'-1})\} = d\{(u_1, v_{j'}), (u_i, v_{j'+1})\} =$ _____ $d\{(u_1, v_{j'}), (u_i, v_{j'+2})\} = 2$ for all i, _____ _____ $d\{(u_1, v_{j'}), (u_i, v_n)\} = (n - j')$ for all i. $\therefore \sum_{i=1}^{m} \sum_{j=1}^{n} d\{(u_1, v_{j'}), (u_i, v_j)\} = m[(j' - 1) + (j' - 2) + ... + 2] + ... + 2]$ $2\{1(3) + (m-1)(1)\} + \{1(0) + (m-1)(2) + m [2+3+...+(n-j')]$ = m [2 + ... + (j' - 1)] + (4m + 2) + m [2 + ... + (n - j')] $= m[\frac{(j'-1)j'}{2} - 1] + (4m+2) + m[\frac{(n-j')(n-j'+1)}{2} - 1]$ =m($\frac{n^2 + n + 4}{2}$) + 2 + m [j'^2 - (n + 1) j']. $\therefore \sum_{i'=5,7,...,(m-1)} d\{(u_1, v_{j'}), (u_i, v_j)\}$ $=m\{\frac{(n^{2} + n + 4)}{4} + 4\}(n-4) - \frac{m(n+1)(n^{2} - 16)}{4} - 10m + \frac{mn(n^{2} - 1)}{6}$

Now follows from (i), (ii) &(iii),

(iii)▶

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue X, October 2017- Available at www.ijraset.com

$$\begin{split} W(K_{m} \wedge P_{n}) &= \frac{1}{2} (2) m - \frac{m}{2} \left(n^{2} - n + 4 \right) + \frac{m \left(n^{2} - 5n + 16 \right) + 4}{2} \\ &+ \left\{ \frac{m \left(n^{2} + n + 4 \right) + 4}{4} \right\} (n - 4) - \frac{m \left(n + 1 \right) \left(n^{2} - 16 \right)}{4} \\ &- 10m + \frac{mn \left(n^{2} - 16 \right)}{6} \\ &= \frac{1}{6} [m^{2} (n^{3} + 5n) + 6m (n - 2)] (On simplification) \\ &= \frac{m}{6} [mn(n^{2} + 5) + 6(n - 2)]. \end{split}$$

This completes the proof of the result.

G. Open problem. To find a general formula for the Wiener Number of

 $K_m \wedge P_n$ when $m \ge 3$ and n is odd.

H. Result. $W(K_m \wedge P_5) = m(25m + 3) (m \ge 3)$.

1) ROOF. Clearly $K_m \wedge P_5$ is a bipartite graph with bipartition X, Y where $X = \{(u_i, v_j): i = 1, 2, ..., m; j = 1, 3, 5\},\$

and

 $Y = \{(u_i, v_j): i = 1, 2, ..., m; j = 2, 4\}.$

On calculation

 $d\{(u_1,\,v_1),\,(u_1,\,v_1)\}=0,\ d\{(u_1,\,v_1),\,(u_i,\,v_1)\}=2 \text{ for } i\neq 1.$

 $\begin{array}{l} d\{(u_1,\,v_1),\,(u_i,\,v_3)\} \ = 2 \\ \\ d\{(u_1,\,v_1),\,(u_i,\,v_5)\} \ = 4 \\ \\ Also \ d\{(u_1,\,v_1),\,(u_i,\,v_i)\} \ = 3 \ \ for \ j=2,\,4; \end{array} \label{eq:linearized} for all \ i.$

So

$$\sum_{i=1}^{m} \sum_{j=1}^{5} d\{(u_1, v_1), (u_i, v_j)\} = 1(0) + \{(m-1) + m\}(2) + m(4) + \{2 + (m-1)3\} + (m-1)1 = (4m-2) + 4m + (3m+3) + (m-1)$$

We observe that we get the same sum with all the 2m vertices (u_i, v_j) (i = 1, 2, ..., m; j = 1, 4). Now $d\{(u_1, v_3), (u_i, v_j)\} = 2$ for all i and j = 1, 5 $d\{(u_1, v_3), (u_1, v_3)\} = 0$ and $d\{(u_1, v_3), (u_i, v_3)\} = 2$ for $i \neq 1$. $d\{(u_1, v_3), (u_1, v_j)\} = 1$ for j = 2, 4. $d\{(u_1, v_3), (u_i, v_j)\} = 1$ for $i \neq 1$ and j = 2, 4.

So

$$\sum_{i=1}^{m} \sum_{j=1}^{5} d\{(u_1, v_3), (u_i, v_j)\} = 1(0) + \{2m + (m-1)\}2 + 2(3) + 2(m-1)(1) = (6m-2) + 6 + (2m-2)$$

$$= 8m + 2.$$

We observe that we get the same sum with all the m vertices (u_i, v_3) (i=1, 2, ..., m). Further

 $\begin{array}{l} d\{(u_1,\,v_2),\,\,(u_i,\,v_j)\} &= 3 \quad \text{for } j = 1,\,3.\\ d\{(u_1,\,v_2),\,\,(u_i,\,v_j)\} &= 1 \quad \text{for } i \neq 1 \text{ and } j = 1,\,3.\\ d\{(u_1,\,v_2),\,\,(u_i,\,v_5)\} &= 3 \quad \text{for all } i.\\ d\{(u_1,\,v_2),\,\,(u_1,\,v_2)\} &= 0; \ d\{(u_1,\,v_2),\,\,(u_i,\,v_2)\} &= 2 \quad \text{for } i \neq 1,\\ d\{(u_1,\,v_2),\,\,(u_i,\,v_4)\} &= 2 \text{ for all } i.\\ \text{So}\\ \sum_{i=1}^m \sum_{j=1}^5 \quad d\{(u_1,\,v_2),\,\,(u_i,\,v_j)\} &= (2+m)(3) + 2(m-1)\,(1) + 1(0) + \{(m-1\,)+m\}\,(2)\\ &= (6+3m) + (2m-2) + (4m-2)\\ &= 9m+2. \end{array}$

We observe that we get the same sum with all the 2m vertices (u_i, v_j) (i=1,2,...,m; j=2, 4).

Hence

$$W(K_m \wedge P_5) = \frac{1}{2} [2m(12m) + m(8m + 2) + 2m (9m + 2)]$$
$$= \frac{1}{2} [50m^2 + 6m]$$
$$= m(25m + 3).$$

V. RESULTS ON $C_M \wedge P_N$ (M, N BEING POSITIVE INTEGERS WITH $M \ge 3$)

Initially we have

- A. Observations.
- *1)* $C_m \wedge P_1$ is an empty graph (with m vertices).
 - So we take $n \ge 2$.
- 2) $C_m \wedge P_2 = C_m \wedge K_2 = K_2 \wedge C_m$ and this is considered in § 2
- 3) $C_3 \wedge P_n = K_3 \wedge P_n$ and this is considered in § 4 when n=3 or 4.
 - So, we are left with the graphs for which $m \ge 4$ and $n \ge 3$

Denote $V(C_m) = \{u_1, u_2, ..., u_m\}$ and $V(P_n) = \{v_1, v_2, ..., v_n\}$. Then $C_m \wedge P_n$ is the graph with $V(C_m \wedge P_n) = \{(u_i, v_j): i = 1, 2, ..., m; j = 1, 2, ..., m\}$ and the edge set being the set of edges of the form $(u_i, u_j) (u_{i'}, v_{j'})$ where $i, i^{|} \in \{1, 2, ..., m\}$ with $i^{|} = i-1$ or i+1 under the convention $u_0 = u_m$ and $u_{m+1} = u_1, j, j^{|} \in \{1, 2, ..., n\}$ with $j^{|} = 2$ when $j = 1, j^{|} = n-1$ when j=n and j = j+1 or j-1 when $2 \le j \le n-1$.

e) Since deg
$$c_m(u_i) = 2$$
 and deg $P_n(v_j) = 1$ or 2 according as $j \in \{1, n\}$ or $2 \le i \le (n-1)$ it follows that
deg $c_{m^{\wedge}Pn}(u_i, v_j) =$
$$4 \qquad for i=1, 2, ..., m; j=1 \text{ or } n,$$
$$4 \qquad for i=1, 2, ..., m; 2 \le j \le n-1.$$

(Thus the degree of each vertex is even & is independent of m and n).

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue X, October 2017- Available at www.ijraset.com

B. Theorem.

For m, $n \ge 3$, $C_m \land P_n$ (isomorphic to $P_n \land C_m$) is a simple, finite graph such that the degree of each vertex is either 2 or 4 with mn vertices and 2m(m-1) edges and is bipartite.

Since C_m , P_n are simple, finite and so is $C_m \wedge P_n$. Clearly it has mn vertices. From observation (5.1)(e), it follows that the degree of each verter is either 2 or 4. Further, there are 2m vertices of degree 2 and (n - 2)m vertices of degree 4. Hence, the number of edges is $\frac{1}{2} [2m(2) + (n - 2)m(4)] = \frac{1}{2} [4m + 4mn - 8m]$

$$= 2mn - 2m = 2m(n - 1).$$

Let $V(C_m) = \{u_1, u_2, ..., u_m\}$ and $V(P_n) = \{v_1, v_2, ..., v_n\}$. Denote

 $V_1 = \{(u_i, v_i): i = 1, 2, ..., m, j = 1, 3, ..., n-1 \text{ or } n \text{ according as } n \text{ is even or odd}\}$

and $V_2 = \{(u_i, v_i): i = 1, 2, ..., m, j = 2, 4, ..., n-1 \text{ or } n \text{ according as } n \text{ is odd or even}\}.$

Clearly, no two vertices of either V_1 or V_2 are adjacent in $C_m \wedge P_n$. Now, follows that $\{V_1, V_2\}$ is a bipartition of this graph. Hence, the graph is bipartite.

This completes the proof of the theorem.

C. Observations

- 1) follows that is $C_m \wedge P_n$ is connected when and only when m is odd.
- 2) Since C_m , P_n are connected, P_n does not contain any cycle and C_m does not contain an odd cycle when m is even, by Result (2.5), it follows that $C_m \wedge P_n$ contain exactly two components, when m is even.
- 3) Since, each vertex is $C_m \wedge P_n$ is of even degree, it follows that $C_m \wedge P_n$ is Eulerian when m is odd and is a union of two disjoint Eulerian graphs when m is even. (Since each component is Eulerian).
- 4) $C_m \wedge P_n \ (m \ge 4, n \ge 3)$ is not connected when m is even and is connected when m is odd ($\Rightarrow m \ge 5$).
- *D. Open problem.* To find a general formula for the Wiener number of $C_m \wedge P_n$ for m odd & ≥ 5 and $n \geq 3$. We end up this by finding the following:
- *C. Result.* W($C_5 \wedge P_3$) = 280.
- 1) Justification. A diagrammatic representation of $C_5 \wedge P_3$ is
- (u_1, v_1) (u_1, v_3) (u_2, v_1) (u_2, v_3) (u_3, v_1) (u_3, v_3) (u_4, v_1) (u_4, v_3) (u_5, v_1) (u_5, v_3)

We observe that the graph is symmetric w.r.t. the vertices of degree two, namely (u_i, v_j) (i = 1, 2, ..., 5; j = 1, 3) as well as w.r.t. the vertices of degree 4, namely (u_i, v_j) (i = 1, 2, ..., 5, j = 2).

Now,

 $d\{(u_1, v_1), (u_1, v_1)\} = 0, d\{(u_1, v_1), (u_1, v_3)\} = 2,$

 $d\{(u_1, v_1), (u_i, v_1)\} = 2 = d\{(u_1, v_1), (u_i, v_3)\}$ (i =3, 4),

 $d\{(u_1, v_1), (u_i, v_1)\} = 4 = d\{(u_1, v_1), (u_i, v_3)\} (i = 2, 5);$

Also

 $d\{(u_1, v_1), (u_1, v_2)\} = 5,$

 $\begin{aligned} &d\{(u_1, v_1), (u_i, v_2)\} = 2 & (i=3, 4), \\ &d\{(u_1, v_1), (u_i, v_2)\} = 1 & (i=2, 5). \end{aligned}$

©IJRASET (UGC Approved Journal): All Rights are Reserved

So
$$\sum_{i=1}^{5} \sum_{j=1}^{4} d\{(u_1, v_1), (u_i, v_j)\} = 1(0) + 2(1) + 7(2) + 4(4) + 1(5)$$

= 37.

There are 10 points having the same sum. Further

 $\begin{aligned} &d\{(u_1, v_2), (u_1, v_j)\} = 5 & (j = 1, 3), \\ &d\{(u_1, v_2), (u_i, v_j)\} = 1 & (i = 2, 5 \text{ and } j = 1, 3), \\ &d\{(u_1, v_2), (u_i, v_j)\} = 3 & (i = 3, 4 \text{ and } j = 1, 3). \\ &d\{(u_1, v_2), (u_1, v_2)\} = 0, \\ &d\{(u_1, v_2), (u_i, v_2)\} = 2 & (i = 3, 4), \\ &d\{(u_1, v_2), (u_i, v_2)\} = 4 & (i = 2, 5). \\ &\text{So} \\ &\sum_{i=1}^{5} \sum_{j=1}^{4} d\{(u_1, v_2), (u_i, v_2)\} = 2(5) + 4(1) + 4(5) + 1(10) + 2(2) + 2(4) \end{aligned}$

= 38.

There are '5' points having the same sum. Hence, $W(C_5 \wedge P_3) = (1/2) [10(37) + 5(38)] = 280$.

 (u_1, v_2) (u_1, v_4) (u_2, v_2) (u_2, v_4) (u_3, v_2) (u_3, v_4) (u_4, v_2) (u_4, v_4) (u_5, v_2) (u_5, v_4) We observe that the graph is symmetric w.r.t. the vertices of degree two, namely (u_i, v_j) (i = 1, 2, ..., 5; j = 1, 3) as well as w.r.t. the vertices of degree 4, namely (u_i, v_j) (i = 1, 2, ..., 5; j = 1, 3) as well as w.r.t. the vertices of degree 4, namely (u_i, v_j) (i = 1, 2, ..., 5; j = 1, 3) as well as w.r.t. the vertices of degree 4, namely (u_i, v_j) (i = 1, 2, ..., 5; j = 1, 3) as well as w.r.t. the vertices of degree 4, namely (u_i, v_j) (i = 1, 2, ..., 5, j = 2, 3).

$$\begin{split} &d\{(u_1, v_1), (u_1, v_1)\} = 0, d\{(u_1, v_1), (u_1, v_3)\} = 2, \\ &d\{(u_1, v_1), (u_i, v_j)\} = 4 \\ &(i = 2, 5; j = 1, 3), \\ &d\{(u_1, v_1), (u_i, v_j)\} = 2 \\ &(i = 3, 4; j = 1, 3); \\ &d\{(u_1, v_1), (u_i, v_2)\} = 1 \\ &(i = 2, 5), \\ &d\{(u_1, v_1), (u_i, v_j)\} = 3 \\ &(i = 3, 4; j = 2, 4), \\ &d\{(u_1, v_1), (u_i, v_4)\} = 3 \\ &(i = 1, 2), \\ &d\{(u_1, v_1), (u_1, v_j)\} = 5 \\ &(j = 2, 4). \end{split}$$

So

$$\sum_{i=1}^{5} \sum_{j=1}^{4} d\{(u_1, v_1), (u_i, v_j)\} = 1(0) + 2(1) + 5(2) + 6(3) + 4(4) + 2(5)$$
$$= 2 + 10 + 18 + 16 + 10$$

= 56.

There are 10 such points. We get the same sum for all these points. Also

 $d\{(u_{1}, v_{3}), (u_{1}, v_{1})\} = 2, d\{(u_{1}, v_{3}), (u_{1}, v_{3})\} = 0,$ $d\{(u_{1}, v_{3}), (u_{i}, v_{j})\} = 2 (i = 3, 4; j = 1, 3),$ $d\{(u_{1}, v_{3}), (u_{i}, v_{j})\} = 4 (i = 2,5; j = 1, 3),$ $d\{(u_{1}, v_{3}), (u_{i}, v_{j})\} = 5 (i = 2,5; j = 2, 4),$ $d\{(u_{1}, v_{3}), (u_{i}, v_{j})\} = 1 (i = 2,5; j = 2, 4),$ $d\{(u_{1}, v_{3}), (u_{i}, v_{j})\} = 3 (i = 3,4; j = 2, 4),$ $So <math display="block">\sum_{i=1}^{5} \sum_{j=1}^{4} d\{(u_{1}, v_{3}), (u_{i}, v_{j})\} = 1(0) + 4(1) + 5(2) + 4(3) + 4(4) + 2(5) \\ = 4 + 10 + 12 + 16 + 10 \\ = 52.$

There are 10 such points. We get the same sum for all these points.

Hence, $W(C_5 \wedge P_4) = \frac{1}{2} (10) [56 + 52]$ = 5(108) = 540.

VI. CONCLUSIONS.

As there is significant use of Tensor product graphs in computational Chemistry, an attempt is made to obtain Wiener index of $K_m \wedge P_n$, $K_n \wedge P_n$ and $C_m \wedge C_n$ in the preceeding paper [see 3]. Now we attempted to determine the Wiener index of $K_m \wedge P_n$, $K_m \wedge P_n$ and $C_m \wedge P_n$ wherever possible.

REFERENCES

[1] Bondy. A & Murthy U.S.R; Graph Theory with Applications, The Macmillan Press Ltd. (1976).

[2] Rao.I.H.N. & Sarma. K.V.S., The Wiener Number For a Special Type of Graphs, Varahamihir Journal of Mathematical Sci. (VJMS) Vol.2, 2007.

[3] Rao.I.H.N. & Sarma. K.V.S., On Tensor Product of Standard Graphs, International Journal of Computational Cogination (IJCC), Vol. 8(3), (2010).

[4] Sampath Kumar E., On Tensor Product Graphs, International Jour.Aust.Math.Soc., 20 (series) (1975), 268-273.

[5] Wiener, H., Structural determination of Paraffin Boiling Points, J.Amer.Chem.Soc., 69 (1947), 17 - 20.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)