On Tensor Product of Standard Graphs-II

K. V.s. Sarma ${ }^{1}$, I.H. N. Rao ${ }^{2}$
${ }^{1}$ Asst. Prof., Department of Mathematics, Gayatri Vidya Parishad Degree and P.G courses, School of Engineering Rushikonda,
${ }^{2}$ Sr.Prof. G.V.P. and Prof. Lakshmi Kantham Institute of Advanced Studies, GVP college of Enginering(A), Madhurawada, Visakhapatnam-48, India

Abstract: The characteristic properties of the graphs $K_{m}{ }^{\wedge} C_{n}, K_{m} \wedge{ }^{\wedge} P_{n}, C_{m} \wedge P_{n}$ are studied and mainly their Wiener Indices are obtained, wherever possible.
Index Terms: Tensor (Kronecker) product, Wiener index (number), connected graph, Hamiltonian graph.

I. INTRODUCTION

The Wiener index is initiated from the work of Wiener [5]. This Wiener number is an important topological index associated with the molecular graph of atoms which is a connected one. Further it is widely used to describe the molecular structures. Till now, no recursive method is known for the calculation of the Wiener number of a general connected graph.
In this paper, the Wiener numbers of $\mathrm{K}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}, \mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}, \mathrm{C}_{\mathrm{m}}{ }^{\wedge} \mathrm{P}_{\mathrm{n}}$, wherever possible are obtained. Some interesting observations are made. This paper is a continuation of our previous paper [3].

II. PRELIMINARIES

We present some known definitions and results (in the refined form, wherever necessary) for a ready reference to go through the work presented in the subsequent sections. For standard notation and further results, we refer Bondy \& Murthy [1].

A. Definition 2.1 [4]

G, H are disjoint graphs. The Tensor product of G and H, denoted by $G{ }^{\wedge} H$ (that is isomorphic to $H^{\wedge} G$) is the graph whose vertex set is $V(G) x V(H)$ and the edge set being the set of all elements of the form $(u, v)\left(u^{1}, v^{1}\right)$ where $u, u^{1} \in V(G), v, v^{1} \in V(H), u u^{1} \in$ $\mathrm{E}(\mathrm{G})$ and $v v^{1} \in \mathrm{E}(\mathrm{H})$.
B. Observations 2.2

1) If one $f \mathrm{G}, \mathrm{H}$ is an empty graph (i.e. has no edges) then $\mathrm{G}^{\wedge} \mathrm{H}$ is also an empty graph.
2) If G, H are finite, simple graphs with m, n vertices respectively, then $G^{\wedge} H$ is a finite, simple graph with mn vertices. Further, if $u \in V(G)$ and $v \in V(G)$ then

$$
\operatorname{deg}_{G \wedge H}(u, v)=\left\{\operatorname{deg}_{G} u\right\} \cdot\left\{\operatorname{deg}_{H} v\right\}
$$

C. Definition 2.3[5].

The Wiener index $\mathrm{W}(\mathrm{G})$ of a finite, connected graph is defined to be

$$
\mathrm{W}(\mathrm{G})=\frac{1}{2} \sum_{u, v \in V(G)} \mathrm{d}(\mathrm{u}, \mathrm{v})
$$

where $\mathrm{d}(\mathrm{u}, \mathrm{v})$ denotes the distance (the length of any shortest $\mathrm{u}-\mathrm{v}$ path) between $\mathrm{u} \& \mathrm{v}$ in G .

1) Result 2.4[4]: $\mathrm{G}_{1}, \mathrm{G}_{2}$ are connected graphs. Then $\mathrm{G}_{1} \wedge \mathrm{G}_{2}$ is connected if and only if (iff) either G_{1} or G_{2} contains an odd cycle.
2) Result 2.5 [4]: If $\mathrm{G}_{1}, \mathrm{G}_{2}$ re connected graphs with no odd cycles, then $\mathrm{G}_{1} \wedge \mathrm{G}_{2}$ has exactly two components.
3) Result 2.6[1]: A nonempty connected graph is Eulerian iff every vertex is of even degree.
4) Result 2.7[1]: If G is a simple graph with the number of vertices $v \geq 3$ and the minimum degree $\delta \geq v / 2$ then G is Hamiltonian.
5) Result 2.8[1]: A simple graph is bipartite iff it contains no odd cycles.

In what follows m and n are positive integers.
§3. Results on $K_{m} \wedge C_{n}(m, n$ being positive integers \& $n \geq 3$).
Initially, we have

III. OBSERVATIONS.

$\mathrm{K}_{1} \wedge \mathrm{C}_{\mathrm{n}}$ is an empty graph (with n vertices).

So, we consider $m \geq 2$ (and $n \geq 3$).
Denote $V\left(K_{m}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ andV $\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $K_{m} \wedge C_{n}$ is the graph with $V\left(K_{m} \wedge C_{n}\right)=\left\{\left(u_{i}, v_{j}\right): i=1,2, \ldots, m ; j=\right.$ $1,2, \ldots, \mathrm{n}\}$ and the edge set being the set of elements of the form $\left(u_{i}, v_{j}\right)\left(u_{i^{\prime}}, v j^{\prime}\right)$ where $\quad i, i^{1} \in\{1,2, \ldots, m\}$ with $i^{1} \neq \mathrm{i} ; j$, $\mathrm{j}^{1} \in\{1,2, \ldots, \mathrm{n}\}$ with $\mathrm{j}^{1}=\mathrm{j}-1$ or $\mathrm{j}+1$ under the convention $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}+1}=\mathrm{v}_{1}$.
A. Theorem. $\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}$ (isomorphic to $\mathrm{C}_{\mathrm{n}} \wedge \mathrm{K}_{\mathrm{m}}$) is a simple, finite and $\quad 2(\mathrm{~m}-1)$ - regular graph (an even integer) with mn vertices and ($\mathrm{m}-1$) mn edges (observe that the degree does not depend on n).
B. proof. Since $\mathrm{K}_{\mathrm{m}}, \mathrm{C}_{\mathrm{n}}$ are simple, finite graphs and so is $\mathrm{K}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}$. As K_{m} is (m-1) - regular and C_{n} is 2-regular, it follows that $K_{m} \wedge C_{n}$ is $2(m-1)$ - regular. Since $K_{m} \wedge C_{n}$ has $m n$ vertices, it follows that there are ($m-1$)mn edges.

This proves the Theorem.
C. Observations. $\mathrm{K}_{2}, \mathrm{C}_{\mathrm{n}}$ are connected graphs and K_{2} does not contain an odd cycle (in fact, any cycle).
a) By Result (2.4), it follows that $K_{2} \wedge C_{n}$ is connected iff n is odd (since C_{n} contains the cycle C_{n} only).
b) By Result (2.5), it follows that $\mathrm{K}_{2}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}$ has exactly two components iff n is even.
D. Theorem. $\mathrm{K}_{2} \wedge \mathrm{C}_{2 \mathrm{n}+1}(\mathrm{n} \geq 1)$ is isomorphic to $\mathrm{C}_{2(2 \mathrm{n}+1)}$ and $\mathrm{W}\left(\mathrm{K}_{2} \wedge \mathrm{C}_{2 \mathrm{n}+1}\right)=(2 \mathrm{n}+1)^{3}$.
E. Proof. By Th. (3.2) and Obs.(3.3) (a), $\mathrm{K}_{2} \wedge \mathrm{C}_{2 \mathrm{n}+1}$ is a connected 2-regular graph with $2(2 \mathrm{n}+1)$ vertices and $(1)(2)(2 \mathrm{n}+1)=2(2 \mathrm{n}+1)$ edges. So $\mathrm{K}_{2} \wedge \mathrm{C}_{2 \mathrm{n}+1}$ is isomorphic to $\mathrm{C}_{2(2 \mathrm{n}+1)}$. Hence, by a known result [see 2], it follows that $\quad \mathrm{W}\left(\mathrm{K}_{2} \wedge\right.$ $\left.\mathrm{C}_{2 \mathrm{n}+1}\right)=\mathrm{W}\left(\mathrm{C}_{2(2 \mathrm{n}+1)}\right)=(2 \mathrm{n}+1)^{3}$.

In fact, in the usual notation, $\mathrm{K}_{2} \wedge \mathrm{C}_{2 n+1}$ is the cycle $\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right), \ldots,\left(\mathrm{u}_{2}, \mathrm{v}_{2 \mathrm{n}}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2 n+1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right), \ldots,\left(\mathrm{u}_{1}, \mathrm{v}_{2 \mathrm{n}}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{2 n+1}\right),\left(\mathrm{u}_{1}, \mathrm{v}\right.\right.$
F. Theorem. $\mathrm{K}_{2} \wedge \mathrm{C}_{2 \mathrm{n}}(\mathrm{n} \geq 2)$ is isomorphic to the (disjoint) union of $\mathrm{C}_{2 \mathrm{n}} \& \mathrm{C}_{2 \mathrm{n}}$ and the Wiener number of each component is n^{3}.

By Th.(3.2), $\mathrm{K}_{2} \wedge \mathrm{C}_{2 \mathrm{n}}$ is a 2 -regular graph with 4 n vertices and 4 n edges. By observation (3.3)(b), this has exactly two components.
Now follows that each component is a cycle. Clearly the components are the cycles $\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{1}, v_{3}\right), \ldots,\left(u_{1}, v_{2 n}-\right.\right.$ $\left.\left.{ }_{1}\right),\left(u_{2}, v_{2 n}\right),\left(u_{1}, v_{1}\right)\right\}$ and $\left\{\left(u_{2}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{3}\right) \ldots,\left(u_{2}, v_{2 n-1}\right),\left(u_{1}, v_{2 n}\right),\left(u_{2}, v_{1}\right)\right\}$. Each is $C_{2 n}$. Hence by a known result [see 2] follows the theorem.
G. Observations.

Since $\mathrm{K}_{2}{ }^{\wedge} \mathrm{C}_{2 \mathrm{n}+1}(\mathrm{n} \geq 1)$ is an even cycle, follows that this graph is bipartite, Eulerian and Hamiltonian.
Since $K_{2}{ }^{\wedge} C_{2 n}(n \geq 2)$ is union of $C_{2 n}$ and $C_{2 n}$, follows that the graph is bipartite and each component $\left(C_{2 n}\right)$ is Eulerian and Hamiltonian.
H. Theorem. For $\mathrm{m}, \mathrm{n} \geq 3, \mathrm{~K}_{\mathrm{m}} \wedge^{\wedge} \mathrm{C}_{\mathrm{n}}$ is a) connected b) Eulerian and
c) bipartite iff n is even.

Proof. Since K_{m}, C_{n} are connected and $K_{m}(m \geq 3)$ contains the odd cycles K_{3}, by Result (2.4), it follows that $K_{m} \wedge C_{n}$ is connected. This proves (a).

Since the degree of each vertex of $\mathrm{K}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}$ is even (see Th.(3.2)), by the characterization result (2.6), it follows that $\mathrm{K}_{\mathrm{m}}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}$ is Eulerian.
This proves (b).
Suppose n is even ($\Rightarrow \mathrm{n} \geq 4$).
In the usual notation,
$X=\left\{\left(u_{i}, v_{j}\right): i=1,2, \ldots, m ; j=1,3, \ldots,(n-1)\right\}$,
and

$$
Y=\left\{\left(u_{i}, v_{j}\right): i=1,2, \ldots, m ; j=2,4, \ldots, n\right\}
$$

are such that $\{\mathrm{X}, \mathrm{Y}\}$ is a bipartition of the vertex set $\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}$. So the graph is bipartite.
When n is odd,
$\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right), \ldots,\left(u_{n}, v_{n}\right),\left(u_{1}, v_{1}\right)\right\}$ is a cycle of length $n(o d d)$ in $\quad K_{m} \wedge C_{n}$. So it is not bipartite.
This completes the proof of the Theorem.

I. Observations

$\mathrm{K}_{2}{ }^{\wedge} \mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 3)$ is discussed in this article.
$\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{3}=\mathrm{K}_{\mathrm{m}} \wedge \mathrm{K}_{3}$ and this is discussed in [3].
a) $\mathrm{K}_{3} \wedge \mathrm{C}_{\mathrm{n}}=\mathrm{C}_{3} \wedge \mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 3)$ and this is dicussed in [3].

Thus, we are left with the graphs. $\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{\mathrm{n}}(\mathrm{m}, \mathrm{n} \geq 4)$ and we discuss about these graphs.
J. Result. $\mathrm{W}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{4}\right)=4 \mathrm{~m}(3 \mathrm{~m}+2)(\mathrm{m} \geq 4)$.
K. Justification. Since the graph is regular, it follows that the graph is symmetric w.r.t. all 4 m vertices $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)(\mathrm{i}=1,2, \ldots, \mathrm{~m} ; \mathrm{j}=1$, $2,3,4)$.
On Calculation
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\}=0, \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right)\right\}=2$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=2$ for $\mathrm{i}=2,3, \ldots, \mathrm{~m} ; \mathrm{j}=1,3$.
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)\right\}=3=\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{4}\right)\right\}$,
$d\left\{\left(u_{1}, v_{1}\right),\left(u_{i}, v_{j}\right)\right\}=1$ for $i=2,3, \ldots, m ; j=2,4$.
So

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{3} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1(0) & +\{1+2(\mathrm{~m}-1)\}(2)+2(3)+2(\mathrm{~m}-1)(1) \\
& =(4 \mathrm{~m}-2)+6+(2 \mathrm{~m}-2) \\
& =6 \mathrm{~m}+2
\end{aligned}
$$

We get the same sum for all the 4 m vertices. Hence
$\mathrm{W}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{4}\right)=(1 / 2)(4 \mathrm{~m})(6 \mathrm{~m}+2)$

$$
=4 \mathrm{~m}(3 \mathrm{~m}+1)
$$

L. Result. $\mathrm{W}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{5}\right)=5 \mathrm{~m}(4 \mathrm{~m}+1)(\mathrm{m} \geq 4)$.
M. Justification. As the graph is regular, follows the graph is symmetric w.r.t. all the 5 m vertices.

On Calculation,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\}=0$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{\mathrm{j}}\right)\right\}=3$ for $\mathrm{j}=2,5$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{\mathrm{j}}\right)\right\}=2$ for $\mathrm{j}=3,4$.
$d\left\{\left(u_{1}, v_{1}\right),\left(u_{i}, v_{j}\right)\right\}=1$ for $i=2,3, \ldots, m ; j=2,5$.
So

$$
\begin{aligned}
\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\} & =\sum_{i=1}^{m} \sum_{j=1}^{3} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\} \\
=1(0)+ & \{2+3(\mathrm{~m}-1)\}(2)+2(3)+2(\mathrm{~m}-1)(1) \\
& =(6 \mathrm{~m}-2)+6+(2 \mathrm{~m}-2)=8 \mathrm{~m}+2 .
\end{aligned}
$$

We get the same sum for all the 5 m vertices. Hence
$\mathrm{W}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{C}_{5}\right)=(1 / 2)(5 \mathrm{~m})(8 \mathrm{~m}+2)=5 \mathrm{~m}(4 \mathrm{~m}+1)$.
Finally, we exhibit the following:
N. A diagrammatic representation of $k_{4} \wedge c_{5}$.

IV. RESULTS
$\mathrm{ON} \mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}$ (m, n being positive integers).
Primarily, we have
A. Observations.

1) If atleast one of m, n is 1 , then $\mathrm{Km}{ }^{\wedge} \mathrm{Pn}$ is an empty graph.

So, we consider $\mathrm{m}, \mathrm{n} \geq 2$.
2) $K_{m} \wedge P_{2}=K_{m} \wedge K_{2}(m \geq 2)$ and this is discussed in [3].

$$
\text { So, we take } \mathrm{n} \geq 3 \text {. }
$$

3) $\mathrm{K}_{2} \wedge \mathrm{Pn}=\mathrm{P}_{2} \wedge \mathrm{P}_{\mathrm{n}}(\mathrm{n} \geq 2)$ and this is discussed in [3].

So, we take $m \geq 3$.
Thus, we discuss about the graphs where $m, n \geq 3$
4) Denote $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}\right\}$ and $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$, then $\mathrm{Km} \wedge \mathrm{Pn}$ is the graph with $\mathrm{V}\left(\mathrm{Km}^{\wedge} \mathrm{Pan}\right)=\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right.$: $\mathrm{i}=1,2, \ldots, \mathrm{~m}$; $\mathrm{j}=1,2, \ldots, \mathrm{n}\}$ and the edge set being the set of elements of the form $\left(u_{i}, v_{j}\right)\left(u_{i^{\prime}}, v_{j^{\prime}}\right)$ where $i, i^{\prime} \in\{1,2, \ldots, \mathrm{~m}\}$ with $i^{\prime} \neq i, j, j^{\prime} \in$ $\{1,2, \ldots, \mathrm{n}\}, j^{\prime}=2$ when $\mathrm{j}=1, \quad j^{\prime}=\mathrm{n}-1$ when $\mathrm{j}=\mathrm{n}$ and $j^{\prime}=\mathrm{j}-1$ or $\mathrm{j}+1$ when $2 \leq \mathrm{j} \leq \mathrm{n}-1$.

Since deg ${ }_{K m}\left(u_{i}\right)=m-1$ and $\operatorname{deg}_{P n}\left(v_{j}\right)=1$ or 2 according as $j=1, n$ or $j=2, \ldots, \quad(n-1)$, it follows that
$\operatorname{deg}_{K m \wedge P_{n}}\left(u_{i}, v_{j}\right)=\left\{\begin{array}{l}1(m-1) \text { for } i=1,2, \ldots, m ; j=1 \text { or } n, ~\end{array}\right.$

$$
2(m-1) \text { for } i=1,2, \ldots, m ; j=2,3, \ldots(n-1) .
$$

(Observe that the degree does not depend on ' n ').
B. Theorem. $\mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}(\mathrm{m}, \mathrm{n} \geq 3)$ (isomorphic to $\mathrm{P}_{\mathrm{n}}{ }^{\wedge} \mathrm{K}_{\mathrm{m}}$) is a simple, finite graph with mn vertices and $\mathrm{m}(\mathrm{m}-1)(\mathrm{n}-1)$ edges.

1) Proof. Since K_{m}, P_{n} are simple, finite graphs and so is $K_{m}{ }^{\wedge} P_{n}$. It has $2 m$ vertices of degree $(m-1)$ and has ($\left.n-2\right) m$ vertices of degre $2(m-1)$; it follows that the number of edges in $K_{m}{ }^{\wedge} P_{n}$ is $\quad 1 / 2[2 m(m-1)+(n-2) m+2(m-1)]=m(m-1)(n-1)$.
C. Theorem. $\mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}(\mathrm{m}, \mathrm{n} \geq 3)$ is
connected b) bipartite and c) Eulerian iff m is odd.
2) Proof. Since K_{m}, P_{n} are connected graphs and $K_{m}(m \geq 3)$ contains the odd cycle K_{3}, by Result (2.4), it follows that $K_{m} \wedge P_{n}$ is connected. This proves (a).

In the usual notation, let
$\mathrm{V}_{1}=\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right): \mathrm{i}=1,2, \ldots, \mathrm{~m}, \mathrm{j}=1,3, \ldots, \overline{n-1}\right.$ or n as according n is even or odd $\}$,
$\mathrm{V}_{2}=\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right): \mathrm{i}=1,2, \ldots, \mathrm{~m}, \mathrm{j}=2,4, \ldots, \overline{n-1}\right.$ or n as according n is odd or even $\}$.
Clearly no two vertices of either V_{1} or V_{2} are adjacent in $K_{m} \wedge P_{n}$. This implies that $\left\{V_{1}, V_{2}\right\}$ is a bipartition of the vertex set of $K_{m} \wedge$ P_{n}. Thus $K_{m} \wedge P_{n}$ is bipartite. This proves (b).

By the characterization Result (2.6), $\mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}$ is Eulerian iff each of its vertex is of even degree and $\Leftrightarrow \mathrm{m}$ is odd. This proves (c).
Thus the proof of the theorem is complete.
D. REMARK. $\left|\mathrm{V}_{1}\right|=\mathrm{m} \mathrm{n} / 2=\left|\mathrm{V}_{2}\right|$ when n is even and $\left|\mathrm{V}_{1}\right|=\mathrm{m}(\mathrm{n}+1) / 2 \& \quad\left|\mathrm{~V}_{2}\right|=\mathrm{m}(\mathrm{n}-1) / 2$ when n is odd.
E. Theorem. $\mathrm{K}_{\mathrm{m}} \wedge^{\wedge} \mathrm{P}_{3}(\mathrm{~m} \geq 3)$ is a $((\mathrm{m}-1), 2(\mathrm{~m}-1))$ - biregular graph and $\mathrm{W}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{3}\right)=\mathrm{m}(7 \mathrm{~m}+1)$.

1) PROOF. By Th.(4.3), it follows that the graph is bipartite with a bipartition $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$, where

$$
V_{1}=\left\{\left(u_{i}, v_{j}\right): \quad i=1,2, \ldots, m ; j=1,3\right\}
$$

and

$$
\mathrm{V}_{2}=\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{2}\right): \mathrm{i}=1,2, \ldots, \mathrm{~m}\right\}
$$

Clearly every vertex of V_{1} is of degree $(m-1)$ and that of V_{2} is $2(m-1)$. Thus the graph is a $((m-1,2(m-1))$ - biregular graph. Clearly $\left|\mathrm{V}_{1}\right|=2 \mathrm{~m}$ and $\left|\mathrm{V}_{2}\right|=\mathrm{m}$.
Its diagrammatic representation is

Now,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\}=0$
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{1}\right)\right\}=2 \quad(\mathrm{i}=2, \ldots, \mathrm{~m})$,
$d\left\{\left(u_{1}, v_{1}\right),\left(u_{i}, v_{3}\right)\right\}=2 \quad(i=2, \ldots, m)$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)\right\}=3$
and
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{2}\right)\right\}=1 \quad(\mathrm{i}=2,3, \ldots, \mathrm{~m}) ;$
$\therefore \sum_{i=1}^{m} \sum_{j=1}^{3} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{l}}\right)\right\}=0+2(\mathrm{~m}-1)+2(\mathrm{~m})+3+(\mathrm{m}-1)=5 \mathrm{~m}$.
Since, interchanging any two vertices in V_{1}, does not affect the graph follows that we get the same sum for all the 2 m points in V_{1}.
Also
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\}=3=\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right)\right\}$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1$ for $\mathrm{i}=2, \ldots \mathrm{~m}$ and $\mathrm{j}=1,3$
and $d\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{2}\right)=0\right\}, d\left\{\left(u_{1}, v_{2}\right),\left(u_{i}, v_{2}\right)\right\}=2$ for $i=2, \ldots, m-1$.
Thus $\sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=(3+3)+(2 \mathrm{~m}-2) 1+0+(\mathrm{m}-1)(2)$

$$
\begin{gathered}
=6+2 m-2+2 m-2 \\
=4 m+2 .
\end{gathered}
$$

As in V_{1}, we get the same sum for all points of V_{2}.
Thus $\mathrm{W}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{3}\right)=1 / 2[(2 \mathrm{~m})(5 \mathrm{~m})+\mathrm{m}(4 \mathrm{~m}+2)]$

$$
\begin{aligned}
& =5 \mathrm{~m}^{2}+\mathrm{m}(2 \mathrm{~m}+1) \\
& =\mathrm{m}(7 \mathrm{~m}+1) .
\end{aligned}
$$

F. Result. $\mathrm{W}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}\right)=\frac{\mathrm{m}}{6}\left[\mathrm{mn}\left(\mathrm{n}^{2}+5\right)+6(\mathrm{n}-2)\right]$. $(\mathrm{m} \geq 3 \& \mathrm{n} \geq 3$ and n is even $)$.

In the usual notation, $\mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}$ is a bipartite graph with a bipartition, $\quad(\mathrm{X}, \mathrm{Y})$ where

$$
X=\left\{\left(u_{i}, v_{j}\right): i=1,2, \ldots, m ; j=1,3, \ldots,(n-1)\right\},
$$

and

$$
Y=\left\{\left(u_{i}, v_{j}\right): i=1,2, \ldots, m ; j=2,4, \ldots, n\right\} .
$$

Clearly $|\mathrm{X}|=|\mathrm{Y}|=\mathrm{mn} / 2$. As the graph is symmetric w.r.t X and Y , we observe that

$$
\sum_{i^{\prime}=1}^{m} \sum_{j^{\prime} o d d} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{~d}\left\{\left(\mathrm{u}_{i^{\prime}}, \mathrm{v} j^{\prime}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=\sum_{i^{\prime}=1}^{m} \sum_{j^{\prime} \text { even }} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{~d}\left\{\left(\mathrm{u}_{i^{\prime}}, \mathrm{v} j^{\prime}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}
$$

(That means sum taken over the vertices in X is same as the sum taken over the vertices in Y).
On Calculation,

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=[1(0) & \left.+(\mathrm{m}-1) 2+1(3)+(\mathrm{m}-1) 1+\mathrm{m} \sum_{j=3}^{n}(\mathrm{j}-1)\right] \\
= & {\left[(2 \mathrm{~m}-2)+3+(\mathrm{m}-1)+\mathrm{m} \sum_{j=2}^{n-1} \mathrm{j}\right] }
\end{aligned}
$$

$$
=\frac{m}{2}\left(n^{2}-n+4\right) \quad \longrightarrow
$$

Since u_{1} is adjacent with all $u_{i^{\prime}}\left(i^{\prime} \neq 1\right)$, it follows that we get the same sum when u_{1} is replaced by $u i^{\prime}$.
Further
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=(\mathrm{j}-3)$ for all i and $\mathrm{j}=5, \ldots, \mathrm{n}$ (when $\mathrm{n} \geq 5$).
$\Rightarrow \sum_{i=1}^{m} \sum_{j=1}^{n} d\left\{\left(u_{1}, v_{3}\right),\left(u_{i}, v_{j}\right)\right\}=\frac{m\left(n^{2}-5 n+16\right)+4}{2}$

For $\mathrm{j}^{\prime}=5,7, \ldots,(\mathrm{~m}-1)($ when $\mathrm{m} \geq 8)$
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{j^{\prime}}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{1}\right)\right\}=\left(j^{\prime}-1\right)$ for all i ,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{j^{\prime}}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{2}\right)\right\}=\left(j^{\prime}-2\right)$ for all i ,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{j^{\prime}}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{j^{\prime}-2}\right)\right\}=2$ for all i.

$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{j^{\prime}}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{j^{\prime}+2}\right)\right\}=2$ for all i,

$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{j^{\prime}}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}}\right)\right\}=\left(\mathrm{n}-j^{\prime}\right)$ for all i.

$$
\begin{aligned}
& \therefore \sum_{i=1}^{m} \sum_{j=1}^{n} \quad \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{j^{\prime}}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=\mathrm{m}\left[\left(j^{\prime}-1\right)+\left(j^{\prime}-2\right)+\ldots+2\right]+ \\
& 2\{1(3)+(\mathrm{m}-1)(1)\}+\left\{1(0)+(\mathrm{m}-1)(2)+\mathrm{m}\left[2+3+\ldots+\left(\mathrm{n}-j^{\prime}\right)\right]\right. \\
& =\mathrm{m}\left[2+\ldots+\left(j^{\prime}-1\right)\right]+(4 \mathrm{~m}+2)+\mathrm{m}\left[2+\ldots+\left(\mathrm{n}-j^{\prime}\right)\right] \\
& =\mathrm{m}\left[\frac{\left(j^{\prime}-1\right) j^{\prime}}{2}-1\right]+(4 \mathrm{~m}+2)+\mathrm{m}\left[\frac{\left(n-j^{\prime}\right)\left(n-j^{\prime}+1\right)}{2}-1\right] \\
& \quad=\mathrm{m}\left(\frac{\mathrm{n}^{2}+\mathrm{n}+4}{2}\right)+2+\mathrm{m}\left[j^{\prime 2}-(\mathrm{n}+1) j^{\prime}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \sum_{j^{\prime}=5,7, \ldots(m-1)} \mathrm{d}\left\{\left(\mathrm{u}_{\mathrm{l}}, \mathrm{v}_{j^{\prime}}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right. \\
& =\mathrm{m}\left\{\frac{\left(\mathrm{n}^{2}+\mathrm{n}+4\right)}{4}+4\right\}(\mathrm{n}-4)-\frac{\mathrm{m}(\mathrm{n}+1)\left(\mathrm{n}^{2}-16\right)}{4}-10 \mathrm{~m}+\frac{\mathrm{mn}\left(\mathrm{n}^{2}-1\right)}{6}
\end{aligned}
$$

Now follows from (i), (ii) \&(iii),

$$
\begin{aligned}
\mathrm{W}\left(\mathrm{~K}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}\right)= & \frac{1}{2}(2) \mathrm{m} \frac{m}{2}\left[\mathrm{n}^{2}-\mathrm{n}+4\right)+\frac{\mathrm{m}\left(\mathrm{n}^{2}-5 \mathrm{n}+16\right)+4}{2} \\
+ & \left\{\frac{\mathrm{m}\left(\mathrm{n}^{2}+\mathrm{n}+4\right)+4}{4}\right\}(\mathrm{n}-4)-\frac{\mathrm{m}(\mathrm{n}+1)\left(\mathrm{n}^{2}-16\right)}{4} \\
& \left.-10 \mathrm{~m}+\frac{\mathrm{mn}\left(\mathrm{n}^{2}-16\right)}{6}\right] \\
= & \frac{1}{6}\left[\mathrm{~m}^{2}\left(\mathrm{n}^{3}+5 \mathrm{n}\right)+6 \mathrm{~m}(\mathrm{n}-2)\right] \text { (On simplification) } \\
= & \frac{m}{6}\left[m n\left(\mathrm{n}^{2}+5\right)+6(\mathrm{n}-2)\right] .
\end{aligned}
$$

This completes the proof of the result.
G. Open problem. To find a general formula for the Wiener Number of $\quad \mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}$ when $\mathrm{m} \geq 3$ and n is odd.
H. Result. $\mathrm{W}\left(\mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{5}\right)=\mathrm{m}(25 \mathrm{~m}+3)(\mathrm{m} \geq 3)$.

1) ROOF. Clearly $\mathrm{K}_{\mathrm{m}} \wedge \mathrm{P}_{5}$ is a bipartite graph with bipartition X, Y where $X=\left\{\left(u_{i}, v_{j}\right): i=1,2, \ldots, m ; j=1,3,5\right\}$,
and

$$
Y=\left\{\left(u_{i}, v_{j}\right): i=1,2, \ldots, m ; j=2,4\right\} .
$$

On calculation
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\}=0, \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{1}\right)\right\}=2$ for $\mathrm{i} \neq 1$.
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{3}\right)\right\}=2$
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{5}\right)\right\}=4$
Also $d\left\{\left(u_{1}, v_{1}\right),\left(u_{i}, v_{j}\right)\right\}=3$ for $j=2,4$;
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{4}\right)\right\}=3$

So

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{5} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\} & =1(0)+\{(\mathrm{m}-1)+\mathrm{m}\}(2)+\mathrm{m}(4)+\{2+(\mathrm{m}-1) 3\}+(\mathrm{m}-1) 1 \\
& =(4 \mathrm{~m}-2)+4 \mathrm{~m}+(3 \mathrm{~m}+3)+(\mathrm{m}-1) \\
= & 12 \mathrm{~m} .
\end{aligned}
$$

We observe that we get the same sum with all the 2 m vertices $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \quad(\mathrm{i}=1,2, \ldots, \mathrm{~m} ; \mathrm{j}=1,4)$.
Now

$$
\begin{aligned}
& \mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=2 \text { for all } \mathrm{i} \text { and } \mathrm{j}=1,5 \\
& \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right)\right\}=0 \text { and } \mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{3}\right)\right\}=2 \text { for } \mathrm{i} \neq 1 . \\
& \mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1 \text { for } \mathrm{j}=2,4, \\
& \mathrm{~d}\left\{\left(\mathrm{u}_{\mathbf{l}}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1 \text { for } \mathrm{i} \neq 1 \text { and } \mathrm{j}=2,4 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } \\
& \begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{5} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1(0) & +\{2 \mathrm{~m}+(\mathrm{m}-1)\} 2+2(3)+2(\mathrm{~m}-1)(1) \\
& =(6 \mathrm{~m}-2)+6+(2 \mathrm{~m}-2) \\
& =8 \mathrm{~m}+2
\end{aligned}
\end{aligned}
$$

We observe that we get the same sum with all the m vertices $\left(u_{i}, v_{3}\right)(i=1,2, \ldots, m)$.
Further
$d\left\{\left(u_{1}, v_{2}\right),\left(u_{i}, v_{j}\right)\right\}=3$ for $j=1,3$.
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1$ for $\mathrm{i} \neq 1$ and $\mathrm{j}=1,3$.
$d\left\{\left(u_{1}, v_{2}\right),\left(u_{i}, v_{5}\right)\right\}=3$ for all i.
$d\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{2}\right)\right\}=0 ; d\left\{\left(u_{1}, v_{2}\right),\left(u_{i}, v_{2}\right)\right\}=2$ for $i \neq 1$,
$d\left\{\left(u_{1}, v_{2}\right),\left(u_{i}, v_{4}\right)\right\}=2$ for all i.
So

$$
\begin{aligned}
& \sum_{i=1}^{m} \sum_{j=1}^{5} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=(2+\mathrm{m})(3)+2(\mathrm{~m}-1)(1)+1(0)+\{(\mathrm{m}-1)+\mathrm{m}\} \\
&=(6) \\
&=9 \mathrm{~m}+2 \mathrm{~m})+(2 \mathrm{~m}-2)+(4 \mathrm{~m}-2)
\end{aligned}
$$

We observe that we get the same sum with all the $2 m$ vertices $\left(u_{i}, v_{j}\right)(i=1,2, \ldots, m ; j=2,4)$.

Hence

$$
\begin{aligned}
\mathrm{W}\left(\mathrm{~K}_{\mathrm{m}} \wedge \mathrm{P}_{5}\right)=\frac{1}{2} & {[2 \mathrm{~m}(12 \mathrm{~m})+\mathrm{m}(8 \mathrm{~m}+2)+2 \mathrm{~m}(9 \mathrm{~m}+2)] } \\
& =\frac{1}{2}\left[50 \mathrm{~m}^{2}+6 \mathrm{~m}\right] \\
& =\mathrm{m}(25 \mathrm{~m}+3)
\end{aligned}
$$

V. RESULTS ON $\mathrm{C}_{\mathrm{M}}{ }^{\wedge} \mathrm{P}_{\mathrm{N}}$ (M, N BEING POSITIVE INTEGERS WITH $\mathrm{M} \geq 3$)

Initially we have
A. Observations.

1) $\mathrm{C}_{\mathrm{m}} \wedge \mathrm{P}_{1}$ is an empty graph (with m vertices).

So we take $\mathrm{n} \geq 2$.
2) $\mathrm{C}_{\mathrm{m}} \wedge \mathrm{P}_{2}=\mathrm{C}_{\mathrm{m}} \wedge \mathrm{K}_{2}=\mathrm{K}_{2} \wedge \mathrm{C}_{\mathrm{m}}$ and this is considered in $\S 2$
3) $\mathrm{C}_{3} \wedge \mathrm{P}_{\mathrm{n}}=\mathrm{K}_{3} \wedge \mathrm{P}_{\mathrm{n}}$ and this is considered in $\S 4$ when $\mathrm{n}=3$ or 4 .

So, we are left with the graphs for which $m \geq 4$ and $n \geq 3$
Denote $V\left(C_{m}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $C_{m} \wedge P_{n}$ is the graph with $V\left(C_{m} \wedge P_{n}\right)=\left\{\left(u_{i}, v_{j}\right): i=1,2, \ldots, m\right.$; $j=1,2, \ldots, n\}$ and the edge set being the set of edges of the form $\left(u_{i}, u_{j}\right)\left(u_{i^{\prime}}, v j^{\prime}\right)$ where $i, i \in\{1,2, \ldots, m\}$ with $i=i-1$ or $i+1$ under the convention $u_{0}=u_{m}$ and $u_{m+1}=u_{1}, j, j^{\prime} \in\{1,2, \ldots, n\}$ with $j=2$ when $j=1, j^{l}=n-1$ when $j=n$ and $j=j+1$ or $j-1$ when $2 \leq j \leq n-$ 1.
e) Since $\operatorname{deg}_{C_{m}}\left(u_{i}\right)=2$ and $\operatorname{deg}_{P_{n}}\left(v_{j}\right)=1$ or 2 according as $j \in\{1, n\}$ or $2 \leq i \leq(n-1) \quad$ it follows that

(Thus the degree of each vertex is even $\&$ is independent of m and n).

B. Theorem.

For $\mathrm{m}, \mathrm{n} \geq 3, \mathrm{C}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}$ (isomorphic to $\mathrm{P}_{\mathrm{n}} \wedge \mathrm{C}_{\mathrm{m}}$) is a simple, finite graph such that the degree of each vertex is either 2 or 4 with mn vertices and $2 m(m-1)$ edges and is bipartite.
Since C_{m}, P_{n} are simple, finite and so is $C_{m} \wedge P_{n}$. Clearly it has mn vertices. From observation (5.1)(e), it follows that the degree of each verte is either 2 or 4 . Further, there are $2 m$ vertices of degree 2 and $(n-2) m$ vertices of degree 4 . Hence, the number of edges is $1 / 2[2 m(2)+(n$ 2) $m(4)]=1 / 2[4 m+4 m n-8 m]$

$$
=2 m n-2 m=2 m(n-1) .
$$

Let $V\left(C_{m}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V\left(P_{n}\right\}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Denote
$V_{1}=\left\{\left(u_{i}, v_{j}\right): i=1,2, \ldots, m, j=1,3, \ldots, \overline{n-1}\right.$ or n according as n is even or odd $\}$
and $\mathrm{V}_{2}=\left\{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right): \mathrm{i}=1,2, \ldots, \mathrm{~m}, \mathrm{j}=2,4, \ldots, \mathrm{n}-1\right.$ or n according as n is odd or even $\}$.
Clearly, no two vertices of either V_{1} or V_{2} are adjacent in $C_{m} \wedge P_{n}$. Now, follows that $\left\{V_{1}, V_{2}\right\}$ is a bipartition of this graph. Hence, the graph is bipartite.
This completes the proof of the theorem.

C. Observations

1) follows that is $\mathrm{C}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}$ is connected when and only when m is odd.
2) Since C_{m}, P_{n} are connected, P_{n} does not contain any cycle and C_{m} does not contain an odd cycle when m is even, by Result (2.5), it follows that $C_{m} \wedge P_{n}$ contain exactly two components, when m is even.
3) Since, each vertex is $C_{m} \wedge P_{n}$ is of even degree, it follows that $C_{m} \wedge P_{n}$ is Eulerian when m is odd and is a union of two disjoint Eulerian graphs when m is even. (Since each component is Eulerian).
4) $C_{m} \wedge P_{n}(m \geq 4, n \geq 3)$ is not connected when m is even and is connected when m is odd $(\Rightarrow m \geq 5)$.
D. Open problem. To find a general formula for the Wiener number of $\mathrm{C}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}$ for m odd $\& \geq 5$ and $\mathrm{n} \geq 3$. We end up this by finding the following:
C. Result. $\mathrm{W}\left(\mathrm{C}_{5} \wedge \mathrm{P}_{3}\right)=280$.
5) Justification. A diagrammatic representation of $\mathrm{C}_{5} \wedge \mathrm{P}_{3}$ is
$\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right) \quad\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right)\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right)\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right)\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\left(\mathrm{u}_{4}, \mathrm{v}_{1}\right)\left(\mathrm{u}_{4}, \mathrm{v}_{3}\right)\left(\mathrm{u}_{5}, \mathrm{v}_{1}\right)\left(\mathrm{u}_{5}, \mathrm{v}_{3}\right)$

$\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)$
$\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$
$\left(u_{3}, v_{2}\right)$
$\left(\mathrm{u}_{4}, \mathrm{v}_{2}\right)$
$\left(u_{5}, v_{2}\right)$

We observe that the graph is symmetric w.r.t. the vertices of degree two, namely $\left(u_{i}, v_{j}\right)(i=1,2, \ldots, 5 ; j=1,3)$ as well as w.r.t. the vertices of degree 4 , namely $\left(u_{i}, v_{j}\right)(i=1,2, \ldots, 5, j=2)$.

Now,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\}=0, \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right)\right\}=2$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{1}\right)\right\}=2=\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{3}\right)\right\}(\mathrm{i}=3,4)$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{1}\right)\right\}=4=\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{3}\right)\right\}(\mathrm{i}=2,5) ;$
Also
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)\right\}=5$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{2}\right)\right\}=2 \quad(\mathrm{i}=3,4)$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{2}\right)\right\}=1 \quad(\mathrm{i}=2,5)$.

So $\sum_{i=1}^{5} \sum_{j=1}^{4} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1(0)+2(1)+7(2)+4(4)+1(5)$

$$
=37
$$

There are 10 points having the same sum.
Further
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=5 \quad(\mathrm{j}=1,3)$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1 \quad(\mathrm{i}=2,5$ and $\mathrm{j}=1,3)$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=3 \quad(\mathrm{i}=3,4$ and $\mathrm{j}=1,3)$.
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)\right\}=0$,
$d\left\{\left(u_{1}, v_{2}\right),\left(u_{i}, v_{2}\right)\right\}=2 \quad(i=3,4)$,
$d\left\{\left(u_{1}, v_{2}\right),\left(u_{i}, v_{2}\right)\right\}=4 \quad(i=2,5)$.

$$
\begin{gathered}
\sum_{i=1}^{5} \sum_{j=1}^{4} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{2}\right)\right\}=2(5)+4(1)+4(5)+1(10)+2(2)+2(4) \\
=38 .
\end{gathered}
$$

There are ' 5 ' points having the same sum.
Hence, $W\left(\mathrm{C}_{5} \wedge \mathrm{P}_{3}\right)=(1 / 2)[10(37)+5(38)]=280$.
D. Result. $\mathrm{W}\left(\mathrm{C}_{5} \wedge \mathrm{P}_{4}\right)=540$.

A diagrammatic representation of $\mathrm{C}_{5}{ }^{\wedge} \mathrm{P}_{4}$ is

$\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right) \quad\left(\mathrm{u}_{1}, \mathrm{v}_{4}\right) \quad\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \quad\left(\mathrm{u}_{2}, \mathrm{v}_{4}\right) \quad\left(\mathrm{u}_{3}, \mathrm{v}_{2}\right) \quad\left(\mathrm{u}_{3}, \mathrm{v}_{4}\right) \quad\left(\mathrm{u}_{4}, \mathrm{v}_{2}\right) \quad\left(\mathrm{u}_{4}, \mathrm{v}_{4}\right) \quad\left(\mathrm{u}_{5}, \mathrm{v}_{2}\right) \quad\left(\mathrm{u}_{5}, \mathrm{v}_{4}\right)$
We observe that the graph is symmetric w.r.t. the vertices of degree two, namely $\left(u_{i}, v_{j}\right)(i=1,2, \ldots, 5 ; j=1,3)$ as well as w.r.t. the vertices of degree 4 , namely $\quad\left(u_{i}, v_{j}\right)(i=1,2, \ldots, 5, j=2,3)$.
Now

$$
\begin{aligned}
& \mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{\mathrm{l}}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\}=0, \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right)\right\}=2 \text {, } \\
& d\left\{\left(u_{1}, v_{1}\right),\left(u_{i}, v_{j}\right)\right\}=4 \quad(i=2,5 ; j=1,3) \text {, } \\
& \mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=2 \quad(\mathrm{i}=3,4 ; \mathrm{j}=1,3) \text {; } \\
& \mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{2}\right)\right\}=1 \quad(\mathrm{i}=2,5), \\
& \mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=3 \quad(\mathrm{i}=3,4 ; \mathrm{j}=2,4) \text {, } \\
& \mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{4}\right)\right\}=3 \quad(\mathrm{i}=1,2) \text {, } \\
& d\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{j}\right)\right\}=5 \quad(j=2,4) \text {. }
\end{aligned}
$$

So

$$
\begin{gathered}
\sum_{i=1}^{5} \sum_{j=1}^{4} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1(0)+2(1)+5(2)+6(3)+4(4)+2(5) \\
=2+10+18+16+10 \\
=56
\end{gathered}
$$

There are 10 such points. We get the same sum for all these points.
Also
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\}=2, \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right)\right\}=0$,
$d\left\{\left(u_{1}, v_{3}\right),\left(u_{i}, v_{j}\right)\right\}=2 \quad(i=3,4 ; j=1,3)$,
$\mathrm{d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=4 \quad(\mathrm{i}=2,5 ; \mathrm{j}=1,3)$,
$d\left\{\left(u_{1}, v_{3}\right),\left(u_{i}, v_{j}\right)\right\}=5(i=2,5 ; j=2,4)$,
$d\left\{\left(u_{1}, v_{3}\right),\left(u_{i}, v_{j}\right)\right\}=1 \quad(i=2,5 ; j=2,4)$,
$d\left\{\left(u_{1}, v_{3}\right),\left(u_{i}, v_{j}\right)\right\}=3 \quad(i=3,4 ; j=2,4)$,
So $\sum_{i=1}^{5} \sum_{j=1}^{4} \mathrm{~d}\left\{\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\right\}=1(0)+4(1)+5(2)+4(3)+4(4)+2(5)$

$$
=4+10+12+16+10
$$

$$
=52
$$

There are 10 such points. We get the same sum for all these points.

Hence, $W\left(\mathrm{C}_{5} \wedge \mathrm{P}_{4}\right)=1 / 2(10)[56+52]$

$$
=5(108)=540
$$

VI. CONCLUSIONS.

As there is significant use of Tensor product graphs in computational Chemistry, an attempt is made to obtain Wiener index of $\mathrm{K}_{\mathrm{m}} \wedge$ $K_{n}, P_{m} \wedge P_{n}$ and $C_{m} \wedge C_{n}$ in the preceeding paper [see 3]. Now we attempted to determine the Wiener index of $K_{m} \wedge P_{n}, K_{m} \wedge P_{n}$ and $\mathrm{C}_{\mathrm{m}} \wedge \mathrm{P}_{\mathrm{n}}$ wherever possible.

REFERENCES

[1] Bondy. A \& Murthy U.S.R; Graph Theory with Applications, The Macmillan Press Ltd. (1976).
[2] Rao.I.H.N. \& Sarma. K.V.S., The Wiener Number For a Special Type of Graphs, Varahamihir Journal of Mathematical Sci. (VJMS) Vol.2, 2007.
[3] Rao.I.H.N. \& Sarma. K.V.S., On Tensor Product of Standard Graphs, International Journal of Computational Cogination (IJCC), Vol. 8(3), (2010).
[4] Sampath Kumar E., On Tensor Product Graphs, International Jour.Aust.Math.Soc., 20 (series) (1975), 268-273.
[5] Wiener, H., Structural determination of Paraffin Boiling Points, J.Amer.Chem.Soc., 69 (1947), 17 - 20.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

