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Abstract: Film studios in the America, every year produce several hundred movies that make the United States the third most 
abundant producer of films in the world. The budget of these movies is of the order of hundreds of millions of dollars, making 
their box office success absolutely essential for the survival of the industry. Knowing which movies are likely to succeed and 
which are likely to fail before the release could benefit the production houses greatly as it will enable them to focus their 
advertising campaigns which itself cost millions of dollars, accordingly. And it could also help them to know when it is most 
appropriate to release a movie by looking at the overall market. So, the prediction of movie success is of great importance to the 
industry. Machine learning algorithms are widely used to make predictions such as growth in the stock market, demand for 
products, nature of tumors, etc. This paper presents a detailed study of logistic regression, SVM regression, and linear regression 
on IMDb data to predict movie box office. 
Keywords: Data Mining, Logistic Regression, SVM Regression, Linear Regression. 

I. INTRODUCTION 
In the United States of America, 1000s of films are released every year. Since the 1920s, the American film industry has grossed more 
money every year than that of any other country [1]. Cinema in America is a multi-billion dollar industry where even individual films 
earn over a billion dollars. Large production houses control most of the film industry, with billions of dollars spent on advertisements 
alone. Advertising campaigns contribute heavily to the total budget of the movies. Sometimes the investment results in heavy losses 
to the producers. Warner Brothers, one of the largest production houses had a fall in their revenues last year, despite the inflation and 
the increased number of movies released. If it was somehow possible to know beforehand the likelihood of success of the movies, the 
production houses could adjust the release of their movies so as to gain maximum profit. They could use the predictions to know 
when the market is dull and when it is not. This shows a dire need for such software to be developed. Many have tried to accomplish 
this goal of predicting movie revenues. Techniques such as social media sentiment analysis has been used in the past. None of the 
studies thus far have succeeded in suggesting a model good enough to be used in the industry. In this study, we attempt to use IMDb 
data to predict the gross revenue of the movies as well as their IMDb rating. The paper organized as follows. Section II describes the 
role of data set collection and preprocessing indata mining. Regression methods and models have discussed in section III. Results are 
shown in section IV and Section V concludes the paper. General Design is shown in Figure 1. 

 
Fig. 1. General Design 

II.  DATASET COLLEECTION AND PREPROCESSING 
A. Dataset Collection 
data we obtained are highly susceptible to noisy, missing and inconsistent data due to the huge size and their likely origin from 
multiple, heterogeneous sources [2]. We mainly used IMDb and Rotten Tomatoes and Wikipedia. The main problem with datasets 
was missing fields. To overcome this missing field problem, we adopted a method which uses a measure of central tendency for the 
attribute. We used both mean and median as central tendency. Then removed duplicate items. 
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B. Data Preprocessing 
The data we obtained are highly susceptible to noisy, missing and inconsistent data due to the huge size and their likely origin from 
multiple, heterogeneous sources [2]. We mainly used IMDb and Rotten Tomatoes and Wikipedia. The main problem with datasets 
was missing fields. To overcome this missing field problem, we adopted a method which uses a measure of central tendency for the 
attribute. We used both mean and median as central tendency. Then removed duplicate items. 

C. Data Preprocessing 
The Data obtained from three different resources IMDb, Wikipedia and Rotten Tomatoes were then integrated into one database. In 
this step, integrated data are transformed or consolidated so that the regression process may be more efficient and easier. Dataset is 
mixed with both nominal [3] and numeric attributes, but for a regression process, we need all attributes to be numerical. We used a 
measure of central tendency of Box office revenue to convert corresponding nominal attributes to numerical. 

Type Features 

Nominal Actors, Directors, Writer, Production-House, Genre 

Numerical Budget, IMDb Rating, IMDb Votes, No of Rating, Meta-
score, Tomato Meter, Tomato User Rating, Tomato Reviews, 
Tomato Fresh, Tomato Rotten 

Table 1 Features 

D. Selecting Feature Subset 
Here we look for a correlation between all the different features under consideration and look for correlations with the target variable, 
i.e. movie revenue in dollars. We also look for a correlation between the features themselves in order to avoid redundancy and 
irrelevant attributes. Also, the extent of correlation is noted. Here we are using the greedy backward procedure to get best feature 
subset. The procedure starts with the set of all attributes. We iterate over the full attributes, at each iteration, it removes the top most 
unrelated attribute remaining in the set. Using the correlation with the target variable to identify the worst attribute in each iteration. 
At the end of the process, features that are not correlated with the target variable and those which are redundant are eliminated. Major 
steps involved in the greedy backward procedure have shown in Figure 2 

 

 

 

 

 

 

 

Fig. 2. Feature Selection 

III. CONSTRUCTION OF REGRESSION MODEL 

Supervised learning technique is adopted for this Study. We are using three models to predict the revenue and we will compare the 
performance of the different methods. 

A. Linear Regression Model 
In our first model, we use standard least-squares linear regression [4]. To do this, we intend to use stochastic gradient descent. Once 
we have trained a set of feature weights, we could then generate gross revenue predictions as follows: 

ݏݏ݋ݎܩ = ଴ߠ  + ଵߠ ∗ ଵܨ + ଶߠ  ∗ ⋯+ଶܨ  + ௡ߠ ∗  ௡ܨ
where ߠ௜ are the weights, ܨ௜arethe features, and n is number of features. 
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B. Logistic Regression Model 
We used logistic regression as our second prediction model. Since logistic regression can build a multi-class model having linear 
weights. And we can compare these to the feature weight obtained from the linear regression model. We needed to formulate the 
regression problem as classification problem to apply the logical regression. By splitting the range of the target variable into a finite 
number of buckets of equal size, we constructed it as a classification problem. For determining our classes, with the help of histogram 
we drew from movie revenues, we were able to create different buckets for prediction which were continuous ranges of movie 
revenues. We created buckets such that it covers the entire sample space. 

C. Support Vector Machine Regression Model 
SVMs can also be applied to regression problems [6]. SVM Regression tries to find a function f(x) that has at most deviation from 
the actually obtained targets y for all the training data, and at the same time is as flat as possible. SVM Regression does not care 
about errors as long as they are less than ". We used a linear kernel function to map the data into a high dimensional feature space 
where linear regression is performed. Since Training data is not large as compared to the number of features, we used a linear kernel 
function Hyperparameter C optimization was done using grid search. A grid search is an exhaustive search through a manually 
specified subset of the hyperparameter space. Cross-validation on the training was used as the performance matrix. 

IV. RESULTS 
The result we found out using linear regression was about 51% accurate. Whereas for logistic regression, we got 42.2% accuracy 
which is a comparatively low result. SVM approach had a success rate of 39%. The error tolerance for SVM and Linear regression 
was 20%. For logistic regression, the error tolerance was 12.5%. Of all the 20 features in the data-set, budget, director, writer, actor1, 
actor2, gender, tomato reviews were found to be the most significant features. Results are shown in table 2.  

 Model Linear 
Regression 

Logistic 
Regression 

SVM 

Tolerance 20.0% 12.5% 20.0% 

Success Rate 50.7% 42.3% 39.0% 

Correlation 0.965 - 0.956 

Table 2 Results 

V. CONCLUSION AND FUTURE WORKS 
After building the three models we found out that the linear model represents the movie features more accurately. The success 
percentage for all models, while not good enough for industrial use, is in the close proximity of values obtained in previous studies. 
Some of the results obtained are better than that of some standard libraries and similar studies. Even though results are not good 
enough for industrial purposes the models built can be used in online applications. A larger training set is the key to improving the 
performance of the model. We need to consider additional features to achieve this. News analysis [7], movie plot analysis [8] and 
social networks data analysis [9] could be done and the information thus obtained could be added to the training set. We can also use 
Google trends [10] result to improve the result. 
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