
 

5 X October 2017

http://doi.org/10.22214/ijraset.2017.10329



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                        ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 

 Volume 5 Issue X, October 2017- Available at www.ijraset.com 
     

 
 
 

2231 ©IJRASET (UGC Approved Journal): All Rights are Reserved 

Double Partitioned Ranked Set Sampling: An 
Efficient Estimation Technique 

K.B.Panda1, M. Samantaray2 

1,2Department of Statistics, Utkal University, Bhubaneswar, Odisha, India 

Abstract: Following Ranked Set Sampling (RSS) due to McIntyre (1952), Takahasi and Wakimoto (1968), Dell and Clutter 
(1972) and the Median Ranked Set Sampling (MRSS) method by Muttlak(1997), a new sampling strategy has been proposed. 
While the newly proposed sampling design is called Double Partitioned Ranked Set Sampling(DPRSS), the estimator based 
thereon, besides being unbiased for the population mean, is found to be more efficient than the corresponding estimators in 
simple random sampling, ranked set sampling  and median ranked set sampling. The theoretical findings have been supported by 
suitable numerical illustration. 
Keywords: Simple Random Sampling, Ranked Set Sampling, Median Ranked Set Sampling, Double Ranked Set Sampling, 
Double Partitioned Ranked Set Sampling. 

I. INTRODUCTION 
McIntyre (1952) introduced a technique of sampling called Ranked Set Sampling (RSS) for estimating the mean of a finite 
population. This is possible where the sampling units in a survey can be more easily ranked than quantified. The estimator thus 
obtained comes out to be unbiased for population mean with a variance less than that of usual sample mean based on Simple 
Random Sampling of the same size. Muttalak (1997) proposed an estimator using Median Ranked Set Sampling(MRSS) with a view 
to increasing efficiency of the estimator and reducing errors in ranking. Muttalak(2003)  proposed Quartile Ranked Set Sampling 
(QRSS) for estimating population mean is also applicable for reducing error as compared to RSS. Al-Saleh and Al-Kadiri (2000) 
suggested Double Ranked Set Sampling (DRSS) for estimating the population mean. According to them the ranking at second stage 
is easier than first stage. 

II. SAMPLING METHODS 
A. Ranked Set Sampling (RSS) 
RSS procedure involves selection of m random samples with m units in each sample.  The m units in each sample are ranked with 
respect to a variable of interest without actually measuring them. Then the smallest rank is measured from the first sample, the 
second smallest rank from second sample and the procedure is continued till the unit with highest rank is measured from 
themthsample.  
Theorder of observations from the lowest to  the highest in the m samples can be presented as 
 x(11) x(12)   .......................... x(1m) 

 x(21) x(22)   .......................... x(2m) 

 x(m1) x(m2)   .......................... x(mm) 

The observations x(11),x(22) ,.......................... x(mm) are then accurately measured to form RSS data. If m is small, then the cycle may be 
repeated for r times so as to obtain a combinedsampleofsizemr. 

B.  Median Ranked Set Sampling (MRSS) 
MRSS procedure involves selection of m random samples each of size m units from population and ranked them within each 
sample. If sample size m is odd, then select  lowest ranks from each of the first (m-1)/2samples, the median from (m+1)/2th sample 
and the highest ranks from each of  the last (m-1)/2 sample. If sample size m is even, then select lowest rank from each ofthe first 
m/2 samples and highest rank from each of the lastm/2 samples. If m is small, then the cycle may be repeated for r times to have a 
combined sample of sizemr. The ranked units are then quantified. 

C. Partitioned Ranked Set Sampling (PRSS) 
According to PRSS procedure,select m2  units from the population and then divide them into m sets each of having size m.If sample 
size is odd, then select (p(m + 1))th rank from first (m-1/2) sets and (q(m + 1))th rank from last (m-1/2) sets, with median from 
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(m+1/2) set.If sample size is even, then select (p(m + 1))th rank from first (m/2) sets and (q(m+1))th rank from last (m/2) sets, where 
0≤ p ≤1 and q = (1- p) then p+q=1.If m is small, then the cycle may be repeated for r times to have a combined sample of size mr. 

D. Double Ranked Set Sampling (DRSS) 
According to DRSS, select m3 elements from a population and divide these units randomly into m2sets  eachof size m units.Apply 
the RSS procedure on each set to obtain m ranked set samples each of size m. Then repeat the RSS procedure again on m ranked  set 
sample to have DRSS of size m. Then repeat the cycle for r times as per requirement.Motivated by the above works, we have 
proposed a new RSS technique, called Double Partitioned Ranked  Set Sampling(DPRSS)along with an unbiased estimator for the 
population mean.The estimator thus proposed fares better than its competing estimators based on SRS, RSS and MRSS. It may be 
pointed out here that the proposed sampling technique can be viewed as a generalisation of Double Quartile Ranked Set Sampling 
(DQRSS). 

E. Double Partitioned Ranked Set Sampling (DPRSS) 
DPRSS technique comprises the following steps: 

1) Select m3 elements from the target population and divide these elements randomly into m2 sets each of size m. 
2) If sample size m is even,select the (p(m + 1))th rank from each set out of first m2/2 samples and from the second m2/2  samples 

the (q (m + 1))th rank from each set is selected. 
3) If sample size m is odd, select from the first (m(m-1)/2)  samples, the (p( m + 1))th rank from each set, the median from 

next  m samples, and from last (m(m-1)/2) samples, select (q (m + 1))th rank from each set. 
4) Here, p & q stand for pth and qthpartitioned observations, such that p + q = 1, for example p = 25% and q = 75% of the 

observations given. This can be done after arranging the series either inascending or in descending order visually. 
5) Applying PRSS procedure on m sets obtained in above step, gives us DPRSS procedure sample of size m. 
6) The whole cycle may be repeated r times to obtain a sample size of mr from DPRSS. 
7) From above we have to examine mr samples out of m3r population size using DPRSS. 
Here, we have to remember that, the ranking should be done by visual inspection or by any economical procedure and actual 
quantification is done at final stage.  
To understand the above procedure, let us consider the following two example. 

F. Example-1(when sample size is odd) 
For odd sample size, we have to apply DPRSSO method which may be described as follows. 
Let m=5, then we have to select random sample of 25 sets, each should contain 5 units. Let X(n)

j(i;m)  be the ith value (i=1,2,...,5) out 
of the jthset (1,2,.......25) at the nthstage. 
After ranking, the units within each subset may be taken as 

    
 

 
 

 
  5;51

0
5;21

0
51;1

00
1 ....X..........X,XX  , 

    
   

 
  5;52

0
5;22

(0)
5;12

00
2 ....X..........X,XX  , 

     
   

 
  5;552

0
5;225

(0)
5;125

00
25 ....X..........X,XX    

Now applying PRSSO method on each 25 sets, The first partitioned value p(m+1)th ( for p=25%) = 25% (5+1)th= 1.5th observation, 
which indicates the first or lowest observation, i.e.,  we have to assume p(m+1)thrank from each of first m(m-)/2=10sets.Similarly, 
the last partitioned value q(m+1)th (for q=75%)= 75%(5+1)th=4.5th observation indicates the fifth observation or largest rank from 
each of last 10 sets and median of each 5 sets containing 5 units will give middle 5 observations for next stage. 
Using the above procedure, we arrive at 

  
    0

1
1

5 ; 11 XminX 
,
 

  
    0

10
1

5 ; 101 XminX 
,
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  
    0

11
1

5 ; M11 XmedianX 
,
 

  
    0

12
1

5 ; M21 XmedianX 
,
 

 . 
 . 

  
    0

15
1

5 ; M51 XmedianX 
,
 

  
    0

16
1

5 ; 561 XmaxX 
,
 

  
    0

17
1

5 ; 571 XmaxX 
,
 

 ..and  
    0

25
1

5 ; 525 XmaxX   

 The above observations t can be reorganised in the following 5 sets 

  
 
 

 
 

 
  1

5;15
1

5;12
1

5;11
1

1 X......,X,XX 
,
 

  
 
 

 
 

 
  1

5;110
1

5;17
1

5;16
1

2 X......,X,XX 
,
 

  
 
 

 
 

 
  1

5;M15
1

5;M12
1

5;M11
1

3 X...,X,XX 
,
 

  
 
 

 
 

 
  1

5;520
1

5;517
1

5;516
1

4 X......,X,XX 
,
 

  
 
 

 
 

 
  1

5;525
1

5;522
1

5;521
1

5 ......XX,XX   

Now, applying the same procedure once again to the above data, we get DPRSSO technique which will have p(m+1) th rank from 
(m-1)/2= 2 sets and choose q(m+1)th = highest rank from last 2 set and the median from middle set. Then  DPRSSO partitioned 
sample is 

  
    1

1
2

5;11 XminX 
,
 

  
    1

2
2

5;12 XminX 
,
 

  
    1

3
2

5;M3 XmedianX 
,
 

  
    1

4
2

5;54 XmaxX   

and  
    1

5
2

5;55 XmaxX 
 

The sample observations thus obtained constitute a random sample, i.e., the observations are the realisation of 5 i.i.d. random 
variables. These 5 observation are to be measured. 
Let m=6, Hence we have to select  63=216 units in 36 sets, each have 6 units. Let us assume that, X(n)

j(i;m)  be the ith 
observation(i=1,2,....,6) out of the jthset (j=1,2,.......36) at the nthstage. 
After arranging, the units within each sets, we have 

  
 
 

 
 

 
  0

6;61
0

6;21
0

6;11
0

1 ......XX,XX 
,
 

  
 
 

 
 

 
  0

6;62
0

6;22
0

6;12
0

2 ......XX,XX 
,
 

  
 
 

 
 

 
  0

6;636
0

6;236
0

6;136
0

36 ......XX,XX 
.
 

Now,  applying of PRSSE method  on each of 36 sets,  
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The first partitioned values (p(m+1))thobservation,i.e., the lowest rank from each offirst m2/2=18 sets. The last partitioned value 
q(m+1)thrank,i.e,largest rank  from each of last  m2/2=18 observations. 
Using the above procedure, we have 

  
    0

1
1

5;11 XminX 
,
 

  
    0

2
1

5;12 XminX 
,
 

 . 

  
    0

18
1

6;118 XminX 
,
 

  
    0

19
1

6;619 XmaxX 
,
 

  
    0

20
1

6;620 XmaxX 
,
 

 and  
    0

36
1

6;636 XmaxX   

The obtained values can be rearranged in the following 5 sets 

  
 
 

 
 

 
  1

6;16
1

6;12
1

6;11
1

1 ......XX,XX 
,
 

  
 
 

 
 

 
  1

6;112
1

6;18
1

6;17
1

2 ......XX,XX 
,
 

  
 
 

 
 

 
  1

6;118
1

6;114
1

6;113
1

3 ......XX,XX 
,
 

  
 
 

 
 

 
  1

6;624
1

6;620
1

6;619
1

4 ......XX,XX 
,
 

  
 
 

 
 

 
  1

6;630
1

6;626
1

6;625
1

5 ......XX,XX 
,
 

  
 
 

 
 

 
  1

6;636
1

6;632
1

6;631
1

6 ......XX,XX   

Now , applying the same procedure once again to the above data, we have p(m+1)th,i.e., smallest rank out of  first m/2= 3 sets and 
q(m+1)th, i.e., highest observations from last 3 sets. Then  

  
    1

1
2

6;11 XminX 
,
 

  
    1

2
2

6;12 XminX 
,
 

  
    1

3
2

6;13 XminX 
,
 

  
    1

4
2

6;64 XmaxX 
,
 

  
    1

5
2

;665 XmaxX 
, 

  
    1

6
2

;666 XmaxX 
 

The sample observations thus obtained constitute a random sample, i.e., the observations are the realisation of 6 i.i.d. random 
variables. These 5 observation are to be measured. 
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III. GENERAL SET UP AND SOME BASIC RESULTS: 
Let X11, X12, ......X1m; 

X21, X22, ......X2m; 

Xm21, Xm22.......Xm2m;  

be m2 independent random sets of size m. 
Let us assume that, each variable Xij has common distribution functioncdf F(x) with probability density function pdf f(x) having 
mean µ and variance σ2 respectively.Let Xi(1), Xi(2).....Xi(m), where (i = 1, 2....m2) be the ordered statistics of the ith sample Xi1, 
Xi2, .....Xim(i = 1.2 ....m2) 

The SRS estimator of the population mean from a sample size m is given by,  

  



m

1i
iSRS X

m
1X , with variance m

2 .      (3.1) 

The estimator of the population mean for RSS of size m(McIntyre (1952)) is given by,  

  



m

1i
m)i(i;RSS X

m
1X

 

 and 



m

i
miiRSS X

m
XVar

1
);(2 )var(1)(  

   2

1
);(2

2

)(1 



m

i
miimm


       (3.2) 

since 0)( 2

1
);( 



m

i
mii  , RSSX is more efficient than SRSX based on same number of measured observations. 

The DRSS estimator of population mean from a sample of size m(Al-Saleh and Al-Omari (2002)) is given by 

 



m

i
iDRSS X

m
X

1

)2()2( 1
 

and ])(1[1)var(1)(
1

2)2(2

1

)2(
);(2

)2( 



m

i
i

m

i
miiDRSS mm

X
m

XVar     (3.3) 

where µ and σ2 are the mean and  the variance of the population respectively. 
It is interest to have attention that theDRSS method is suggested by Al-Saleh and Al-Omari (2002)constitude by apply the usual 
RSS method on m2sets each of size m, which is difference from our work based on DPRSS technique where we apply PRSS method 
on m2 sets each of size m. 
To estimate the population mean using DPRSS method, 
Suppose,atKth cycle, for (K = 1, 2 .... r),  

A. For even sample size, let   k1mpi
(2)X   be the first partitioned values for the i sets(i = 1, 2 .....,l ; l = m/2) and   k1mqj

(2)X 

be the last partitioned value for the jsets (j = l + 1, ......m). Then the partitioned sample,  

[ )2(

,))1((
2

)2(
,))1((2

)2(
,))1((1 .....,

kmpmkmpkmp XXX


 ][ )2(
,))1((

)2(

,))1((2
2

)2(

,))1((1
2

....., kmqmkmqmkmqm XXX 


]units are i.i.d., however, all units are 

mutually independent but not identically distributed. These measured units are DPRSSE(Double Partitioned Ranked Set Sampling 
even Size).   (3.4) 

B. If the sample size is odd. let   k1mpi
(2)X  be the first partitioned values of the i sets(i = 1, 2.....h; h=(m-1)/2),wit 
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k
2

1mm
)2(X 






    is the median and    k1mqj

(2)X   be the last partitioned values for the jsets ( j = h + 2, ....m). Then the partitioned 

samples are 

].....,[ )2(
))1((

)2(
,))1((2

)2(
,))1((1 kmphkmpkmp XXX  , ][ )2(

)1)(1( kmhX  ,
].....,[ )2(

))1((
)2(

,))1()(3(
)2(

,))1()(2( kmqmkmqhkmqh XXX  units are i.i.d., however, 

all units are mutually independent but not identically distributed. These measured units are DPRSSO(Double Partitioned Ranked Set 
Sampling odd Size).  (3.5) 
The estimators of the population mean using DPRSS for sample size even and odd respectively are given by, 

   
 

 
l

i

m

lj
mmqjmmpiDPRSSE XX

m
X

1 1

)2(
));1((

)2(
));1((

)2( )(1
 , where l=m/2    (3.6) 

   
 

 
h

i

m

hj
mhmmqjmmpiDPRSSO XXX

m
X

1 2

)2(
));1((

)2(
));1((

)2(
));1((

)2( )(1
, where h=(m-1)/2  (3.7) 

The variance of )2(
DPRSSEX  and )2(

DPRSSOX respectively are given by, 

   
 

 
l

i

m

lj
mmqjmmpiDPRSSE XX

m
XVar

1 1

)2(
));1((

)2(
));1((2

)2( ))var()var((1)(  

    )var
2

var
2

(1 )2(
));1((

)2(
));1((2 mmqmmp

mm
m    

    )var(var
2
1 )2(

));1((
)2(

));1(( mmqmmpm        (3.8) 

   
 

 
h

i

m

hj
mhmmqjmmpiDPRSSO XX

m
XVar

1 1

)2(
));1((

)2(
));1((

)2(
));1((2

)2( )var)var()var((1)(  

    )var(1)var.
2

1var.
2

1(1 )2(
);1(2

)2(
));1((

)2(
));1((2 mhmmqmmp X

m
mm

m  





  

    )var(1)var(var
2

1 )2(
);1(2

)2(
));1((

)2(
));1((2 mhmmqmmp X

mm
m

 


    (3.9) 

The properties of DPRSS estimators are 
If the parent distribution is symmetric about mean  , then 
 The DPRSS estimator is unbiased about population mean. 

)()()( )2(
SRSRSSDPRSS XVarXVarXVar   

 If the underlying distribution is asymmetric  about mean  , then it is found that  

 )var()var()( )2(
SRSRSSDPRSS XXXMSE  , where, MSE is the mean square error and  

 2)2()2()2( ))(()var()( DPRSSDPRSSDPRSS XbiasXXMSE   

   
IV. COMPARISION OF ESTIMATORS 

We can compare the three estimators for µ based on RSS, MRSS and DPRSS procedures. For this purpose, we define the following 
Relative Precisions (RP). 
   
A. For rss 

  
 
 μ̂Var
μVarPR 1  , if μ̂  is an unbiased estimator 
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 
 μ̂MSE
μVar

 , if μ̂  is a biased estimator 

B. For mrss 

  
 
 (1)2 μVar

μVarPR  , if (1)μ  is a an unbiased estimator 

   
 
 (1)μMSE
μVar

  , if (1)μ  is a biased estimator 

C. For dprss 

  
 
 (2)3 μVar

μVarPR  , if (2)μ is an unbiased estimator 

   
 
 (2)μMSE
μVar

 , if (2)μ  is a biased estimator 

   as      2(2)(2) biasμVarμMSE     
As we know from above results, there is no biased in population mean in case of symmetric distributions, we have to examine the 
PR for symmetric and asymmetric distribution. Table-1 shows the PR for 10 symmetric and asymmetric distributions for m=6, 7, 11, 
12 for each simulation 50,000 iterations are performed for p=25%. 

Table-1: PR efficiency for RSS, MRSS and DPRSS of 25% w.r.t. SRS with sample size 6,7, 11 and 12 
 
Distribution 

m                 RSS                MRSS              DPRSS 
 Bias  Bias  bias 

 
Uniform(0,1) 

6 3.400 0.000 3.114 0.000 14.966 0.000 
7 3.815 0.000 3.706 0.000 21.332 0.000 
11 6.213 0.000 5.617 0.000 45.425 0.000 
12 6.500 0.000 6.649 0.000 64.737 0.000 

 
 
Uniform(0,2) 

6 3.400 0.000 3.132 0.000 15.167 0.000 
7 3.815 0.000 3.671 0.000 22.021 0.000 
11 6.6213 0.000 5.632 0.000 45.213 0.000 
12 6.503 0.000 6.651 0.000 65.135 0.000 

 
 
Normal(0,1) 

6 3.191 0.000 3.593 0.000 10.609 0.000 
7 3.585 0.000 3.927 0.000 17.809 0.000 
11 5.112 0.000 5.980 0.000 31.127 0.000 
12 5.237 0.000 6.127 0.000 36.426 0.000 

 
 
Normal(1,2) 

6 3.110 0.000 3.445 0.000 10.952 0.000 
7 3.535 0.000 4.251 0.000 13.359 0.000 
11 5.195 0.000 6.240 0.000 35.046 0.000 
12 5.652 0.000 6.412 0.000 36.958 0.000 

 
 
Logistic(-1,1) 

6 2.668 0.000 3.592 0.000 11.207 0.000 
7 3.243 0.000 4.112 0.000 12.428 0.000 
11 4.599 0.000 6.755 0.000 34.804 0.000 
12 4.911 0.000 6.728 0.000 34.315 0.000 

 
 
Exponential(1) 

6 2.135 0.000 2.995 0.219 9.294 0.007 
7 2.564 0.000 3.213 0.049 8.219 0.015 
11 3.671 0.000 3.542 0.105 28.555 0001 
12 3.922 0.000 4.693 0.061 8.303 0.083 
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Exponential(2) 

6 2.207 0.000 3.122 0.168 8.372 0.015 
7 2.476 0.000 2.751 0.013 8.598 0.029 
11 3.659 0.000 3.521 0.053 28.406 0.000 
12 3.962 0.000 4.735 0.031 8.409 0.042 

 
 
Gamma(1,2) 

6 2.218 0.000 3.022 0.183 9.395 0.033 
7 2.537 0.000 3.111 0.012 8.135 0.178 
11 3.638 0.000 3.539 0.314 28.510 0.02 
12 3.990 0.000 4.711 0.184 8.350 0.250 

 
 
Gamma(1,3) 

6 2.416 0.000 3.025 0.0279 9.572 0.148 
7 2.669 0.000 3.282 0.023 8.496 0.047 
11 3.728 0.000 3.594 0.210 28.877 0.001 
12 3.918 0.000 4.697 0.123 8.372 0.167 

 
 
Weibull(1,3) 

6 2.459 0.000 3.029 0.274 9.660 0.047 
7 2.755 0.000 3.334 0.227 8.503 0.178 
11 3.699 0.000 3.576 0.313 28.675 0.002 
12 3.960 0.000 4.751 0.158 8.480 0.295 

From above, we get the following information 
A gain in efficiency attainted using DPRSS for estimation population mean for symmetric distribution. As example for N(1,2) with 
m=12, the relative efficiency of the DPRSS is 36.958 comparing it, with RSS and MRSS 5.652 and 6.412. 
For asymmetric asymmetric distribution, gain in efficiency is attainted with smaller bias using DPRSS. for example, for Weibull 
with m=12, the relative efficiency of DPRSS is 8.480 with bias 0.249 for estimating population mean having parameter1 and 3, 
comparing with RSS and MRSS is 3.960 and 4.751 with bias 0.185. 

V. RELATIVE SAVING 
From relative precision, we have   
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 is called relative saving(RS) for DPRSS.   (5.1) 

Similarly ,we can have RS for RSS  

  







 



2)1(
)(

1
2 )(1


 i

m

im
RS       (5.2) 

Hence, comparing *RS and RS, we have  
Relative Saving for DPRSS  > Relative Saving for RSS    
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VI. APPLICATION TO REAL DATA SET 
For the performance of mean estimation using a collection of real data set, which consists of the olive yield of each of 64 trees(for 
more details see Al-Saleh and Al-Omari (2002)). In this study, balanced ranked set sampling is considered. All the sampling done 
without replacement using the statistical programming 'R'. we obtained the mean and variance of sample mean using SRS, RSS, 
DPRSS technique using sample size m=3,4,5. We compare the averages of 70,000 sample estimate. 

Let,tibe the olive yield of the ith tree i-1,2,...,64. The mean  , and the variance 2  of the population, respectively, are , 

 



64

1
/766.9

64
1

i
i treekgt  

 



64

1

222 /114.26)(
64
1

i
i treekgt   

The skewness of the population is 0.475, indicates positively skewed ,i.e., asymmetrical distribution. Hence, we have to find out 

)( )2(
DPRSSXMSE  and efficiency values of )2(

RSSX and )2(
DPRSSX  relative to )2(

SRSX for m=3, 4, 5. 

TABLE 2: The efficiency values of RSS and DPRSS relative to SRS with sample size m=3,4,5 
 

 

 

 

 

 

 

 

 

 

On the basis of above table, the DPRSS mean at any stage is close to the population mean 9.766, and there is a bias along with MSE 
as it is a asymmetrical distribution. Hence,  DPRSS is much more efficient than SRS, RSS. 

VII. SAMPLING WITH ERROR IN RANKING 
In RSS, sampling mean is unbiased estimator of population mean without any proper information that, whether it is perfect or 
imperfect. Hence, it has a smaller variance as compared with SRS having same sample size. So Muttalak(2003) showed that QRSS 
with error in ranking is unbiased estimator of population mean with assumption that population is symmetric about its mean. Hence 
applying the above with DPRSS method in ranking with error may be defined as follows, 

     m;1mqi
(2)(2)

m;1mpi YandYLet  be the first and lastjudgement double partitioned value ofith sample (i=1,2,.....,m) having errors 

in ranking.Then using DPRSS technique, the estimator of population mean with error in ranking  canbe represented as 

  )(1ˆ
1 1 1

)2(
))1((

)2(
))1((

)2(   
  

 
r

k

l

i

m

li
kmqikmpiDPRSSE XX

mr
Y

e
,    l = m/2 

 
Sample size 

methods mean Variance efficicency 

 
 
m=3 
 
 

SRS 9.787 8.344 - 

RSS 9.784 4.294 1.954 

DPRSS 10.185 MSE BIAS 4.741 
1.760 0.407 

 
 
m=4 
 
 

SRS 9.784 6.159 - 
RSS 9.775 2.564 2.383 

DPRSS 10.899 MSE BIAS 2.960 
2.070 1.271 

 
 
 
m=5 
 

SRS 9.777 4.843 - 

RSS 9.775 1.696 2.870 

DPRSS 9.852 MSE BIAS 8.061 
0.598 0.111 
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)2(ˆ
eDPRSSY = ))((1ˆ )2(

]2/)1)[(1(
1 1 2

)2(
))1((

)2(
))1((

)2(
kmh

r

k

h

i

m

hi
kmqikmpiDPRSSO XXX

mr
Y

e 
  

     ,  h= (m-1)/2 

The estimator of population mean µ in ranking with error having following properties, 
)2(ˆ

eDPRSSY with ranking in error is unbiased estimator of population mean with assumption that population is symmetric about its 

mean. 

Var( )2(ˆ
eDPRSSY ) <Var (SRS) for symmetric distribution 

and for asymmetric distribution about its mean, MSE( )2(ˆ
eDPRSSY  ) <Var(SRS) for ranking in error. 

The above properties can be proved based on Takahasi and Wakimottto(1968),  Dell andClutter (1972), Muttalak (2003) and Al-
saleh and Al-kadiri(2000). 

VIII. CONCLUSION 
In this article,  it is observed that, the estimator of proposed Double Partitioned Ranked Set Sampling (DPRSS)is unbiased for 
population mean and is more efficient than SRS,RSS in case of Symmetrical distribution. From NPR analysis, it isfound that there is 
greater efficiency with smaller bias in case of estimating of population mean using DPRSS method for asymmetrical distribution. 
Again, using relative saving method, DPRSS has Greater RS as Compared with RSS.  
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APPENDIX 
A. Corollary-1: 
Let Xijbe the values assumed by the r.v. X, having probability density function f(X)(x) and cdf F(X)(x) with mean and variance µ and 
σ2 respectively. A sample of size m was selected and ranked. Let X(1)

s,m be the sth smallest  rank of the sample, where s=1,2,...,m. 

Then mean of X(1)
s,mwill be F-1[α(s)]and variance will be 

2
)1(

,ms . 

Proof: 
 Let Xijbe a random variable having mean µ and variance σ2 respectively and random sample of size m was selected and ranked. 
 Let,xs : m =Sth smallest value of the sample where S = 1, ......m, 

  Then pdf and cdf of Xs : m are  

            xfxF1xF
1sm,sB

1x sm1s

,

 


f ms
 

      1sms,;xFBFxF m:s  respectively.      

Where FB  (F (x) ; S, m – s + 1) follows a beta distribution function with parameters (S, m – S + 1) 

Let m:s
(1)

m:s
(1) Xofmeanμ   

  and lyrespectiveXofvarianceσ m:s
(1)

m:s
2(1)  , 

such that, Using Taylor series as given in David &Nagarajah (2003), 
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         sm;s
1

m:sm;s
(1)

m;s
(1) PF;dxxf.xμXE   

  and,       sm:s P1sms,;xFBFxF         

  sm;s
1

m;s
(1) PFμ    

      sF 1           where

    1sm.s;PPBs s   is an partitioned function for beta distribution with ps=s/m+1 

Similarly, 
       s.1sm:xFFBxF m;1sm   = qs       

  sm:1sm
1

m;1sm
(1) qFμ 


   

            =   s1,sm;qPBF s
1   

            =   s1F 1   

     where,    s1,sm;P1PBs1,sm;qPB ss   

          = 1- PB( Ps :s, m-s+1) 
        =  s1   
          and ps + qs= 1 

If f (x) follows symmetrical distribution for any   1s0   

  Then ss Pμμq   

        sFμμs1F 11     

         μ2sFs1F 11     

   μ2μμ m;1sm
(1)

m;s
(1)          

The variance of Xs ; m is given by 

        dxxfμxσ m;s
2

m;s
(1)

m;s
(1)2  

          
2

m;s
(1)

m;s
2 μμ-dxxfμx  

          dxxfμxμμσ m;s
22

m;s
(1)

m;s
(1)2  

              


 dx)(xF1)(F
1sm;sB

1μx sm1s2 xfx  

     <ʃ (x -µ)2f(x) dx = σ2 

     22
m:s

(1)
m;s

(1)2 σμμσ           

  as
    
  1

1sms,B
xf1xF sm1s




 

 

   
The variance of Xs:m may also represented as 

   
     
    


 



du.u1u
1sms,B
sFuFσ s-m1s

211

m;s
(1)2 

 

For symmetrical f (x), 
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     
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 



du.u1u
1sms,B
sFuFσ s-m1s
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m;s
(1)2 
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


 



du.u1u
s1,smB

s-1Fu-1F 1-ssm
211 

 

    m;1sm
(1)2σ          

B. Corollary -2 

Let  m;s
(2)X be the sth smallest value of a random sample of size m. The sample was selected from a population having probability 

density function f(1)
s,m(x) and cdf F(1)

s,m(x) with mean and variance )1(
,ms and 2)1(

,ms respectively. After ranking a size of m sample 

was selected and let x (2)
s,m be the sth smallest  rank of the sample, where s=1,2,...,m. Then mean ofX(2)

s,mwill be F-1[α.α(s)]and 
variance will be 2)2(

,ms . 

Proof: 
  
Let X(2)

ijbe a random variable from population having mean µ and variance σ2 respectively     
When a random sample from population of size m was selected and ranked. 
Let, X(2)

s : m =Sth smallest value of the sample where S = 1, ......m, 

Then pdf  of population is  

             xfxF1xF
1sm;sB

1xf ms,
sm1s

ms,m;s
(1)

ms,

 


   

  where, the mean and variance of )1(
ijx are µ(1) and σ(1)2 respectively. 

and also let m;1s-m
(2)x   be the (m – s + 1)th smallest value 

  Then

 
 
 
  
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
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μxE
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Then, 
     sαFμ m;s

1
m:s

(2)   

       s
*

,
1 Psα.αF  

ms        

  again,   sα1Fμ m;s
1

m;1sm
(2)  

  

    =  )(.11
, sF ms   

    s
*q            

For symmetric distribution for  0 ≤α ≤ 1  
    

   
*

ss
* Pμμq    

        sα.αFμμsα.α1F 11    

         μ2sα.αFsα.α1F 11    

   μ2μμ m;s
(2)

m;1sm
(2)           
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The variance of X (2)
s:m will be 

        dxxfμxσ m;s
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     m;s
(1)22

m;s
(1)

m;s
(2)

m;s
(2) σμμσ

2

       

    as      m;s
(2)

m;s
2

m;s
(1) 2

σdxxfμx  

    2)1(

,

2)2(

, msms
         

Again 
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C. Corollary-3 

1. DPRSS

)2(

 is an unbiased estimator of the population mean, for givenassumption that population is symmetric about its mean. 
Proof : 
 For kth cycle and ith sample, 
D. If m is even,  
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m  is the sample of size DPRSSE. 
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 Hence, DPRSS
(2)μ̂  is an unbiased estimator of the population mean. 

F. Corollary-4 

 Var  DPRSSX  is less than each of Var  SRSX  and Var  RSSX . 

  
 
Proof : 
 For m is even, 
 Then Variance will be 
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For m is odd, 
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 Then Variance can be defined as 
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