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Abstract: We search for three distinct polynomials with integer coefficients such that the product of any two members of the set 
added with their sum and increased by a non-zero integer (or polynomial with integer coefficients) is a perfect square. 
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Notation: nPro  = Pronic number of rank n . 

I. INTRODUCTION 
Many mathematicians considered the problem of the existence of Diophantine quadruples with the property )(nD for any arbitrary 
integer n [1] and also for any linear polynomials n . Further, various authors considered the connections of the problem of 
Diaphanous, Davenport and Fibonacci numbers in [2-14]. 
In this communication, we present a few special dio 3-tuples for Pronic numbers of different ranks with their corresponding 
properties. 

II. BASIC DEFINITION 
A set of three distinct polynomials with integer coefficients  321 ,, aaa is said to be a special dio 3-tuple with property )(nD  if 

  naaaa jiji  is a perfect square for all 31  ji , where n may be non-zero integer or polynomial with integer 

coefficients. 

A. Method of Analysis 
1) Case 1: Construction of Dio 3-tuples for Pronic number of rank 1n and n . 

Let nn ba Pro,Pro 1    be Pronic number of rank 1n and n respectively such that 1)( 2  nbaab  is a perfect 

square say 2 . 
Let c be any non-zero integer such that  

    22 1  ncaac       (1) 

  22 1  ncbbc       (2) 
On solving equations (1) and (2), we get 

         222 111   ababnba    (3) 

Assume  yax 1 and  ybx 1 and it reduces to  

   222 11 nybax        (4) 
The initial solution of the equation (4) is given by 

1,1 0
2

0  ynx  

 Therefore,  22 2  nn  

On substituting the values of a and  in equation (1), we get 

16Pro34 2-2n
2  nnc  

Hence, The triple  16Pro ,Pro ,Pro 2-2nn1-n  n  is a Dio 3-tuple with property )1( 2 nD . 
 A few numerical examples of the Dio 3-tuples satisfying the above property are mentioned below. 
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Table 1 
n   cba ,,  )(nD  

1 (0,2,7) 2 
2 (2,6,19) 5 
3 (6,12,39) 10 
4 (12,20,67) 17 
5 (20,30,103) 26 

We present below the Dio 3-tuple for Pronic number of the rank mentioned above with suitable properties. 

Table 2 
a  b  c  )(nD  

1-nPro  nPro  36Pro 2-2n  n   43 2 nD  

1-nPro  nPro  56Pro 2-2n  n   95 2 nD  

1-nPro  nPro  76Pro 2-2n  n   167 2 nD  

1-nPro  nPro  96Pro 2-2n  n   259 2 nD  

1-nPro  nPro  116Pro 2-2n  n   3611 2 nD  
   

In general, it is noted that the triple  126Pro ,Pro ,Pro 2-2nn1-n  kn  is a Dio 3-tuple with the 

property   2212 tnkD   , where   2, 1, tand ,4,3,2 k  

2) Case 2: Construction of Dio 3-tuples for Pronic number of rank 2n and n . 

Let nn ba Pro,Pro 2    be Pronic number of rank 2n and n respectively such that 122)( 2  nnbaab  is a 

perfect square say 2 . 
 Let c be any non-zero integer such that  

    22 122  nncaac       (5) 

  22 122  nncbbc       (6) 
On solving equations (5) and (6), we get 

         222 11122   ababnnba    (7) 

Assume  yax 1 and  ybx 1 and it reduces to  

   22211 222  nnybax       (8) 
The initial solution of the equation (8) is given by 

1,1 0
2

0  ynnx  

 Therefore,  442 2  nn  

On substituting the values of a and  in equation (5), we get 

32Pro544 2-2n
2  nnnc  

Hence, The triple  32Pro ,Pro ,Pro 2-2nn2-n  n  is a Dio 3-tuple with property )122( 2  nnD . 
A few numerical examples of the Dio 3-tuples satisfying the above property are mentioned below. 
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Table 3 

n   cba ,,  )(nD  

1 (0,2,5) -1 
2 (0,6,13) 3 
3 (2,12,29) 11 
4 (6,20,53) 23 
5 (12,30,85) 39 

We present below, a few Dio 3-tuple for Pronic number of rank mentioned above with suitable properties. 

Table 4 

a  b  c  )(nD  

2-nPro  nPro  52Pro 2-2n  n   244 2  nnD  

2-nPro  nPro  72Pro 2-2n  n   766 2  nnD  

2-nPro  nPro  92Pro 2-2n  n   1488 2  nnD  

2-nPro  nPro  112Pro 2-2n  n   231010 2  nnD  

2-nPro  nPro  132Pro 2-2n  n   341212 2  nnD  

  

3) Case 3: Construction of Dio 3-tuples for Pronic number of rank 2n and 1n . 

Let 12 Pro,Pro   nn ba  be Pronic number of rank 2n and 1n respectively such that 

)12()( 2  nnbaab  is a perfect square say 2 . 
Let c be any non-zero integer such that  

    22 )12(  nncaac       (9) 

  22 )12(  nncbbc       (10) 
On solving equations (9) and (10), we get 

         222 1112   ababnnba    (11) 

Assume  yax 1 and  ybx 1 and it reduces to  

   )22(11 222  nnybax       (12) 
The initial solution of the equation (12) is given by 

1,12 0
2

0  ynnx  

 Therefore,  452 2  nn  

On substituting the values of a and  in equation (9), we get 

32Pro584 2-2n
2  nnnc  

Hence, The triple  32Pro ,Pro ,Pro 2-2n1-n2-n  n  is a Dio 3-tuple with property )12( 2  nnD . 
A few numerical examples of the Dio 3-tuples satisfying the above property are mentioned below. 
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Table 5 
n   cba ,,  )(nD  

1 (0,0,1) 0 
2 (0,2,5) -1 
3 (2,6,17) -4 
4 (6,12,37) -9 
5 (12,20,65) -16 

 We present below, a few Dio 3-tuple for Pronic number of rank mentioned above with suitable properties. 

Table 6 
a  b  c  )(nD  

2-nPro  1-nPro  52Pro 2-2n  n   222  nnD  

2-nPro  1-nPro  72Pro 2-2n  n   763 2  nnD  

2-nPro  1-nPro  92Pro 2-2n  n   14105 2  nnD  

2-nPro  1-nPro  112Pro 2-2n  n   23147 2  nnD  

2-nPro  1-nPro  132Pro 2-2n  n   34189 2  nnD  

III. CONCLUSION 
In this paper we have presented a few examples of constructing a special Dio 3-tuples for Pronic number of different ranks with 
suitable properties. To conclude one may search for Dio 3-tuples for higher order Pronic number with their corresponding suitable 
properties. 
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