Special Dio3-Tuples for Pronic Number -I

S.Vidhya ${ }^{1}$, G.Janaki ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Cauvery College for Women, Trichy-18, Tamilnadu, India.

Abstract

We search for three distinct polynomials with integer coefficients such that the product of any two members of the set added with their sum and increased by a non-zero integer (or polynomial with integer coefficients) is a perfect square. Keywords: NDio 3-tuples, Pronic numbers, Polynomials.

Notation: $\operatorname{PrO}_{n}=$ Pronic number of rank n.

I. INTRODUCTION

Many mathematicians considered the problem of the existence of Diophantine quadruples with the property $D(n)$ for any arbitrary integer $n[1]$ and also for any linear polynomials n. Further, various authors considered the connections of the problem of Diaphanous, Davenport and Fibonacci numbers in [2-14].
In this communication, we present a few special dio 3-tuples for Pronic numbers of different ranks with their corresponding properties.

II. BASIC DEFINITION

A set of three distinct polynomials with integer coefficients $\left(a_{1}, a_{2}, a_{3}\right)$ is said to be a special dio 3-tuple with property $D(n)$ if $a_{i} * a_{j}+\left(a_{i}+a_{j}\right)+n$ is a perfect square for all $1 \leq i<j \leq 3$, where n may be non-zero integer or polynomial with integer coefficients.

A. Method of Analysis

1) Case 1: Construction of Dio 3-tuples for Pronic number of rank $n-1$ and n.

Let $a=\operatorname{Pro}_{n-1}, \quad b=\operatorname{Pro}_{n}$ be Pronic number of rank $n-1$ and n respectively such that $a b+(a+b)+n^{2}+1$ is a perfect square say α^{2}.
Let c be any non-zero integer such that

$$
\begin{align*}
& a c+(a+c)+n^{2}+1=\beta^{2} \tag{1}\\
& b c+(b+c)+n^{2}+1=\gamma^{2} \tag{2}
\end{align*}
$$

On solving equations (1) and (2), we get

$$
\begin{equation*}
(a-b)+\left(n^{2}+1\right)(b-a)=(b+1) \beta^{2}-(a+1) \gamma^{2} \tag{3}
\end{equation*}
$$

Assume $\beta=x+(a+1) y$ and $\gamma=x+(b+1) y$ and it reduces to

$$
\begin{equation*}
x^{2}=(a+1)(b+1) y^{2}+n^{2} \tag{4}
\end{equation*}
$$

The initial solution of the equation (4) is given by

$$
x_{0}=n^{2}+1, \quad y_{0}=1
$$

Therefore,

$$
\beta=2 n^{2}-n+2
$$

On substituting the values of a and β in equation (1), we get

$$
c=4 n^{2}+3=\operatorname{Pro}_{2 \mathrm{n}-2}+6 n+1
$$

Hence, The triple $\left(\operatorname{Pro}_{n-1}, \operatorname{Pro}_{n}, \operatorname{Pro}_{2 n-2}+6 n+1\right)$ is a Dio 3-tuple with property $D\left(n^{2}+1\right)$.
A few numerical examples of the Dio 3-tuples satisfying the above property are mentioned below.

Table 1

n	(a, b, c)	$D(n)$
1	$(0,2,7)$	2
2	$(2,6,19)$	5
3	$(6,12,39)$	10
4	$(12,20,67)$	17
5	$(20,30,103)$	26

We present below the Dio 3-tuple for Pronic number of the rank mentioned above with suitable properties.
Table 2

a	b	c	$D(n)$
$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+6 n+3$	$D\left(3 n^{2}+4\right)$
$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+6 n+5$	$D\left(5 n^{2}+9\right)$
$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+6 n+7$	$D\left(7 n^{2}+16\right)$
$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+6 n+9$	$D\left(9 n^{2}+25\right)$
$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+6 n+11$	$D\left(11 n^{2}+36\right)$

In general, it is noted that the triple $\left(\operatorname{Pro}_{n-1}, \operatorname{Pro}_{\mathrm{n}}, \operatorname{Pro}_{2 \mathrm{n}-2}+6 n+2 k+1\right)$ is a Dio 3-tuple with the property $D\left((2 k+1) n^{2}+t^{2}\right)$, where $k=2,3,4, \ldots$ and $\mathrm{t}=1,2, \ldots$
2) Case 2: Construction of Dio 3-tuples for Pronic number of rank $n-2$ and n.

Let $a=\operatorname{Pro}_{n-2}, \quad b=\operatorname{Pro}_{n}$ be Pronic number of rank $n-2$ and n respectively such that $a b+(a+b)+2 n^{2}-2 n-1$ is a perfect square say α^{2}.

Let c be any non-zero integer such that

$$
\begin{align*}
& a c+(a+c)+2 n^{2}-2 n-1=\beta^{2} \tag{5}\\
& b c+(b+c)+2 n^{2}-2 n-1=\gamma^{2} \tag{6}
\end{align*}
$$

On solving equations (5) and (6), we get

$$
\begin{equation*}
(a-b)+\left(2 n^{2}-2 n-1\right)(b-a)=(b+1) \beta^{2}-(a+1) \gamma^{2} \tag{7}
\end{equation*}
$$

Assume $\beta=x+(a+1) y$ and $\gamma=x+(b+1) y$ and it reduces to

$$
\begin{equation*}
x^{2}=(a+1)(b+1) y^{2}+2 n^{2}-2 n-2 \tag{8}
\end{equation*}
$$

The initial solution of the equation (8) is given by

$$
x_{0}=n^{2}-n+1, \quad y_{0}=1
$$

Therefore,

$$
\beta=2 n^{2}-4 n+4
$$

On substituting the values of a and β in equation (5), we get

$$
c=4 n^{2}-4 n+5=\operatorname{Pro}_{2 n-2}+2 n+3
$$

Hence, The triple $\left(\operatorname{Pro}_{n-2}, \operatorname{Pro}_{\mathrm{n}}, \operatorname{Pro}_{2 \mathrm{n}-2}+2 n+3\right)$ is a Dio 3-tuple with property $D\left(2 n^{2}-2 n-1\right)$.
A few numerical examples of the Dio 3-tuples satisfying the above property are mentioned below.

Table 3

n	(a, b, c)	$D(n)$
1	$(0,2,5)$	-1
2	$(0,6,13)$	3
3	$(2,12,29)$	11
4	$(6,20,53)$	23
5	$(12,30,85)$	39

We present below, a few Dio 3-tuple for Pronic number of rank mentioned above with suitable properties.
Table 4

a	b	c	$D(n)$
$\operatorname{Pro}_{\mathrm{n}-2}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+2 n+5$	$D\left(4 n^{2}-4 n+2\right)$
$\operatorname{Pro}_{\mathrm{n}-2}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+2 n+7$	$D\left(6 n^{2}-6 n+7\right)$
$\operatorname{Pro}_{\mathrm{n}-2}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+2 n+9$	$D\left(8 n^{2}-8 n+14\right)$
$\operatorname{Pro}_{\mathrm{n}-2}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+2 n+11$	$D\left(10 n^{2}-10 n+23\right)$
$\operatorname{Pro}_{\mathrm{n}-2}$	$\operatorname{Pro}_{\mathrm{n}}$	$\operatorname{Pro}_{2 \mathrm{n}-2}+2 n+13$	$D\left(12 n^{2}-12 n+34\right)$

3) Case 3: Construction of Dio 3-tuples for Pronic number of rank $n-2$ and $n-1$.

Let $a=\operatorname{Pro}_{n-2}, \quad b=\operatorname{Pro}_{n-1}$ be Pronic number of rank $n-2$ and $n-1$ respectively such that $a b+(a+b)+\left(-n^{2}+2 n-1\right)$ is a perfect square say α^{2}.
Let c be any non-zero integer such that

$$
\begin{gather*}
a c+(a+c)+\left(-n^{2}+2 n-1\right)=\beta^{2} \tag{9}\\
b c+(b+c)+\left(-n^{2}+2 n-1\right)=\gamma^{2} \tag{10}
\end{gather*}
$$

On solving equations (9) and (10), we get

$$
\begin{equation*}
(a-b)+\left(-n^{2}+2 n-1\right)(b-a)=(b+1) \beta^{2}-(a+1) \gamma^{2} \tag{11}
\end{equation*}
$$

Assume $\beta=x+(a+1) y$ and $\gamma=x+(b+1) y$ and it reduces to

$$
\begin{equation*}
x^{2}=(a+1)(b+1) y^{2}+\left(-n^{2}+2 n-2\right) \tag{12}
\end{equation*}
$$

The initial solution of the equation (12) is given by

$$
x_{0}=n^{2}-2 n+1, \quad y_{0}=1
$$

Therefore,

$$
\beta=2 n^{2}-5 n+4
$$

On substituting the values of a and β in equation (9), we get

$$
c=4 n^{2}-8 n+5=\operatorname{Pro}_{2 n-2}-2 n+3
$$

Hence, The triple $\left(\operatorname{Pro}_{n-2}, \operatorname{Pro}_{n-1}, \operatorname{Pro}_{2 n-2}-2 n+3\right)$ is a Dio 3-tuple with property $D\left(-n^{2}+2 n-1\right)$. A few numerical examples of the Dio 3-tuples satisfying the above property are mentioned below.

Table 5

n	(a, b, c)	$D(n)$
1	$(0,0,1)$	0
2	$(0,2,5)$	-1
3	$(2,6,17)$	-4
4	$(6,12,37)$	-9
5	$(12,20,65)$	-16

We present below, a few Dio 3-tuple for Pronic number of rank mentioned above with suitable properties.
Table 6

a	b	c	$D(n)$
Pro_{n-2}	$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{2 \mathrm{n}-2}-2 n+5$	$D\left(n^{2}-2 n+2\right)$
$\operatorname{Pro}_{\mathrm{n}-2}$	$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{2 \mathrm{n}-2}-2 n+7$	$D\left(3 n^{2}-6 n+7\right)$
$\operatorname{Pro}_{\mathrm{n}-2}$	$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{2 \mathrm{n}-2}-2 n+9$	$D\left(5 n^{2}-10 n+14\right)$
$\operatorname{Pro}_{\mathrm{n}-2}$	$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{2 \mathrm{n}-2}-2 n+11$	$D\left(7 n^{2}-14 n+23\right)$
$\operatorname{Pro}_{\mathrm{n}-2}$	$\operatorname{Pro}_{\mathrm{n}-1}$	$\operatorname{Pro}_{2 \mathrm{n}-2}-2 n+13$	$D\left(9 n^{2}-18 n+34\right)$

III. CONCLUSION

In this paper we have presented a few examples of constructing a special Dio 3-tuples for Pronic number of different ranks with suitable properties. To conclude one may search for Dio 3-tuples for higher order Pronic number with their corresponding suitable properties.

REFERENCES

[1] Balker A, Duvemport H, "The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$,, Quart.J.Math.Oxford Ser, 1969, 20(2), 129-137.
[2] Jones B.E, "A second variation on a problem of Diophantus and Davenport", Fibonacci Quart, 1977, 15, 323-330.
[3] Brown E, "Sets in which $x y+k$ is always a perfect square", Math.Comp, 1985, 45, 613-620.
[4] Beardon A.F, Deshpande M.N, "Diophantine Triples", The Mathematical Gazette, 2002 86, 258-260
[5] Deshpande M.N, "Families of Diophantine triplets", Bulletinn of the Marathwada Mathematical Society, 2003, 4, 19-21.
[6] Fujita Y, "The extendability of Diphantine pairs $\{k-1, k+1\}$ ", Journal of Number Theory, 2008, 128, 322-353.
[7] Gopalan M.A and Pandichelvi V, "On the extendability of the Diophantine triple involving Jacobsthal numbers $\left(J_{2 n-1}, J_{2 n+1}-3,2 J_{2 n}+J_{2 n-1}+J_{2 n+1}-3\right) "$, International Journal of Mathematics \& Applications, 2009, 2(1), 1-3.
[8] Srividhya G, "Diophantine Quadruples for Fibonacci numbers with property D(1)", Indian Journal of Mathematics and Mathematical Science, 2009, 5(2), 5759.
[9] Gopalan M.A, Srividhya G, "Two special Diophantine Triples", Diophantus J.Math, 2012, 1(1), 23-27.
[10] Gopalan M.A, Srividhya G, "Diophantine Quadruple for Fibonacci and Lucas numbers with property D(4)", Diophantus J.Math, 2012, 1(1), 15-18.
[11] Andrej Dujella, Zagreb, Croatia, "The Problem of Diophantus and Davenport for Gaussian Integers", Glas.Mat.Ser.III, 1997, 32, 1-10.
[12] Gopalan M.A, Geetha K, Manju Somanath, "On Special Diophantine Triples", Archimedes Journal of Mathematics, 2014, 4(1), 37-43.
[13] Gopalan M.A, Geetha V, Vidhyalakshmi S, "Dio 3-tuples for Special Numbers-I", The Bulletin of Society for Mathematical Services and Standards, 2014, 10, 1-6.
[14] Gopalan M.A, Geetha K, Manju Somanath, "Special Dio 3-tuples", The Bulletin of Society for Mathematical Services and Standards, 2014, 10, 22-25.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

