

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 2 Issue: X Month of publication: October 2014
DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology(IJRASET) CFD Analysis of Air Cooled Condenser by Using

Copper Tubes and Aluminum Fins

Mallikarjun¹, Anandkumar S Malipatil²

Abstract--In systems involving heat transfer, a condenser is a device or unit used to condense a substance from its gaseous to its liquid state, typically by cooling it. In so doing, the latent heat is given up by the substance, and will transfer to the condenser coolant. Condensers are typically heat exchangers which have various designs and come in many sizes ranging from rather small to very large industrial-scale units used in plant processes. Air cooled condensers are used in small units like household refrigerators, deep freezers, water coolers, window air-conditioners, split air-conditioners, small packaged air-conditioners etc. These are used in plants where the cooling load is small and the total quantity of the refrigerant in the refrigeration cycle is small. Air cooled condensers are also called coil condensers as they are usually made of copper or aluminum coil. Air cooled condensers occupy a comparatively larger space than water cooled condensers.

In this work heat transfer by convection in air cooled condensers is studied and improved. The assessment has been carried out on an air-cooled finned-tube condenser of a vapour compression cycle for air conditioning system. Heat transfer analysis and CFD analysis is done on the condenser to evaluate the better design and material. The materials considered for tube is copper and for fins are Aluminum alloys 1100, 6063 and Magnesium alloy for different refrigerants HCFC and 404R. CFD analysis is done at different velocities. Theoretical calculations are done to determine heat transfer rate. Keywords: Air cooled condenser, Heat Flux, Mesh generation, Refrigerants HCFC & 404R, Static pressure

I. INTRODUCTION

A condenser or evaporator is a heat exchanger, allowing condensation, by means of giving off, or taking in heat respectively Refrigerant and air will be physically separated, at air conditioner condenser, and evaporator. Therefore, heat transfer occurs by means of conduction. Air-cooled condensers are increasing in popularity because of the absence of water piping, the consequent simplicity of operation and the freedom from any health risk associated with the use of spray water. One objection to their use is that the capacity of the refrigeration plant does not gradually reduce as the ambient dry-bulb rises but ceases suddenly when the high pressure cut-out operates. A partial solution is to arrange for some of the compressor to be unloaded when the condensing pressure rises, before it reaches the cut-out point. It is a good plan to select air-cooled condensers to operate in an ambient temperature two or three degree higher than the design value chosen for the rest of the air conditioning system. M. M. Awad *et.al* studied heat transfer by convection in air cooled condensers. **E.F. Gorzelnik**, indulged in the recovery of energy in the heat of compression from air conditioning, refrigeration, or heat-pump equipment in 1977 itself . **PSS. Srinivasan** *et.al.* discussed in studies on Waste Heat Recovery from an Air Conditioning Unit that the energy can be recovered and utilized without sacrificing comfort level in 2011. **P.Suresh Mohan Kumar** Confabulated that he used intercooler which increases the efficiency of Air Conditioning system in 2012. **Kaushik and Singh** Confabulated about 40 percent of heat is recovered using Canopus heat exchanger in 1995.

II. PROBLEM DEFINITION

The assessment has been carried out on an air-cooled finned-tube condenser of a vapor compression cycle for air conditioning system.

- The materials used for tube is copper and for fins are Aluminum Alloy 1100, Aluminum alloy 6063 and Magnesium. The refrigerants are HCFC, 404R.
- Cooling load calculations are done to determine the capacity of air conditioner required to cool the required room.
- Thermal flux calculations are done theoretically to compare the results with analytical results.
- 3D modeling is done in Pro/Engineer. The dimensions of the condenser are taken from the component itself using reverse engineering process.
- Heat transfer analysis is done on the condenser to evaluate the better design and material. Analysis is done in Ansys. The analysis is done to verify the heat transfer rate, temperature distribution.
- The better material for fin and better refrigerant are analyzed using heat transfer analysis.

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

• CFD analysis is also done on the fin for two refrigerants HCFC and 404R at different fluid velocities 2.5m/s, 5m/s and 7.5m/s.

III. METHODOLOGY

In all of the approaches the procedure followed is.

During preprocessing the geometry (physical bounds) of the problem is defined.

The volume occupied by the fluid is divided into discrete cells (the mesh). The mesh may be uniform or non-uniform. The physical modeling is defined – for example, the equations of motion + enthalpy + radiation + species conservation.

Boundary conditions are defined. This involves specifying the fluid behavior and properties at the boundaries of the problem. For transient problems, the initial conditions are also defined.

The simulation is started and the equations are solved iteratively as a steady-state or transient.

Finally a postprocessor is used for the analysis and visualization of the resulting solution.

IV. RESULT AND DISCUSSIONS

A. Thermal Analysis Of Condenser File >import>IGES>ok>browse>select file>ok Preferences>select thermal>ok Postprocessor>materialproperties>material models Used materials for condenser Aluminum1100,Aluminum6063,Magnesium, Copper Thermal analysis of condenser for HCFC refrigerant Al 1100 for fins Thermal conductivity=230w/mk, Specific heat=900J/Kg.k, Density=2705Kg/m³ Copper for tubes Thermal conductivity=390w/mk, Specific heat=390J/Kg.k, Density=8900Kg/m³

B. Boundary conditions

Loads>apply>thermal>temperature>select temperature area>ok>enter-temperature value>313k>ok

The temperature is applied inside the tube of the condenser

Convection>onareas>selectconvection area>enter film coefficient value=0.0024w/m²Loads>define Bulk temperature value=303k

The convection is applied on the fins

Solution>solve>current Ls>ok

General post processor>plot results>counter plot>nodal solution>dof solution>nodal temperature>ok

Figure 4.1: Heat flux

Thermal analysis of condenser for HCFC refrigerant Al6063 for fins Thermal conductivity=193w/mk, Specific heat=900J/Kg.k, Density=27000Kg/m³

Page 215

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

Copper for tubes

Thermal conductivity=390w/mk, Specific heat=390J/Kg.k, Density=8900Kg/m³

Loads>define loads>apply>thermal>temperature>select temperature area>ok>enter temperature value>313k>ok

Convection>on areas>select convection area>enter film coefficient value=0.0024w/m²

Bulk temperature value=303k

Solution>solve>current Ls>ok

General post processor>plot results>counter plot>nodal solution>DOF solution>nodal temperature>ok

Figure 4.2: Heat flux

According to the contour plot, at fins the maximum rate of heat transfer (heat flux) area is 1.12424and at outer surface the minimum is 0.293e-14

Thermal analysis of condenser for HCFC refrigerant

Magnesium for fins

Thermal conductivity=160w/mk, Specific heat=1000J/Kg.k, Density=1700Kg/m³

Copper for tubes

Thermal conductivity=390w/mk, Specific heat=390J/Kg.k, Density=8900Kg/m³

Loads>define loads>apply>thermal>temperature>select temperature area>ok>enter temperature value>313k>ok

Convection>on areas>select convection area>enter film coefficient value=0.0024w/m²

Bulk temperature value=303k

Solution>solve>current Ls>ok

General post processor>plot results>counter plot>nodal solution>dof solution>nodal temperature>ok

Figure 4.3: Heat flux

According to the contour plot, at fins the maximum rate of heat transfer (heat flux) area is 0.986754and at outer surface the minimum is 0.111e-13

Thermal analysis of condenser for 404R refrigerant

Al 1100 for fins

Thermal conductivity=230w/mk, Specific heat=900J/Kg.k, Density=2705Kg/m³

Copper for tubes

Thermal conductivity=390w/mk, Specific heat=390J/Kg.k, Density=8900Kg/m³

Loads>define loads>apply>thermal>temperature>select temperature area>ok>enter temperature value>313k>ok

Convection>on areas>select convection area>enter film coefficient value=900w/m²

Bulk temperature value=303k

Solution>solve>current Ls>ok

General post processor>plot results>counter plot>nodal solution>dof solution>nodal temperature>ok

Page 216

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

Figure 4.4: Heat flux

According to the contour plot, at fins the maximum rate of heat transfer (heat flux) area is 1.4805and at outer surface the minimum is 0.830e-14

C. Results Table For Thermal Analysis

		RESULTS		
		Nodal	Thermal	Heat
REFRIGERANTS	MATERIALS	Temperature	Gradient	flux
		(K)	(K/mm)	(W/mm^2)
	Aluminum1100	313	5.52101	1.26983
HCFC	Aluminum6063	313	5.82506	1.12424
	Magnesium	313	6.16722	0.986754
	Aluminum1100	313	6.43696	1.4805
404D	Aluminum6063	313	6.07077	1.28162
404K	Magnesium	313	6.94673	1.11148

In the above table, the nodal temperature, thermal gradient and thermal flux values are presented from thermal analysis results. From the results, thermal flux is more when Aluminum alloy 1100 is used for fin and refrigerant used is 404R. That is the heat transfer rate is more. Thermal gradient is also more that is the change in temperature over a distance is more.

D. Theoretical Thermal Flux Results

	Al ALLOY 1100	Al ALLOY 6063	MAGNESIUM
HCFC	2.64	2.44	2.21
R404	2.69	2.488	2.24

In the above table, thermal flux values are presented from theoretical calculations. From the results, thermal flux is more when Aluminum alloy 1100 is used for fin and refrigerant used is 404. That is the heat transfer rate is more.

CFD ANALYSIS OF FIN REFRIGERANT - HCFC VELOCITY - 2.5 m/s

Ansys \rightarrow workbench \rightarrow select analysis system \rightarrow fluid flow fluent \rightarrow double click \rightarrow Select geometry \rightarrow right click \rightarrow import geometry \rightarrow select browse \rightarrow open part \rightarrow ok

Figure 4.5: Import model

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

 \rightarrow select mesh on work bench \rightarrow right click \rightarrow edit \rightarrow select mesh on left side part tree \rightarrow right click \rightarrow generate mesh \rightarrow

Figure 4.6: Meshed model

Figure 4.9: Velocity magnitude

According to the contour plot, the maximum velocity at inlet and outlet holes is 2.51e+00 m/s and the minimum at in between inlet and outlet holes is 1.25e-01 m/s

International Journal for Research in Applied Science & Engineering Technology(LIRASET)

ANSYS		1.06e+01
R14.		1.01e+01
	0	9.56e+00
		9.03e+00
	0	8.50e+00
		7.97e+00
	0	7.44e+00
	1115111	6.90e+00
	•	6.37e+00
		5.84e+00
		5.31e+00
	0	4.78e+00
	Sec. 15	4.25e+00
	0	3.72e+00
	19 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.19e+00
	0	2.66e+00
		2.12e+00
	0	1.59e+00
		1.06e+00
	0	5.31e-01
	1772	0.00e+00

Figure 4.10: Static Pressure

According to the contour plot, the maximum static pressure at outlet hole beside corners is 1.06e+01pa and the minimum at inlet hole 5.31e-01pa

	3.00e+02 3.00e+		ANSYS R14.5
	Contours of Static Temperature ((K) ANSYS Fluent 14	Sep 15, 2014 4.5 (2d. dp. pbns. ske)
		Figure4.11: Temperature	
According to the conto	ur plot, the maximum tempe	erature at fin body is 3.00e+02 k	
Mass flow report	-	X AN	
"Flux Report"			
Mass Flow Rate	(kg/s)		
inlet	0.09587553		
interior- trm srf	-1.0707636		
outlet	-0.095938734		
walltrm_srf	0		
Nat	6 220/251a 05 ka/aaa		
The net mass flow rate	of fin body is 6.3204351e-0)5 kg/sec	
"Elux Deport"	·	C .	
Total Heat Transfer Ra	te (w)		
inlet	178.51022		
outlet	-178.6279		
walltrm_srf	3.5367242e-13		
Net	-0.1176799 w		
The net Total heat tran	sfer rate of fin body is -0.11	7679 w.	
VELOCITY 5m/s	······································		
Boundary conditions -	\rightarrow Inlet \rightarrow Edit		
Velocity magnitude \rightarrow .	5 m/s		
Solution \rightarrow Solution In	itialization \rightarrow Hybrid Initial	ization \rightarrow done	

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

Figure 4.12: Velocity Magnitude

According to the contour plot, the maximum velocity at inlet and outlet holes is 6.20e+00 m/s and the minimum at in between inlet and outlet holes is 3.10e-01m/s

	Sep 16, 201 ANSYS Fluent 14.5 (2d, pbns, sko
0 0	
100 C 100	
0 0	
0 0	
Party Hilling St.	
ER CALLER AND	
0 0	
0 0	
	111-112

Figure 4.13: Static pressure

According to the contour plot, the maximum static pressure at outlet hole beside corners is 3.48e+01pa and the minimum at inlet hole 1.74e+00pa

Contours of Static Temperature (k)		Sep 16, 201 ANSYS Eluent 14 5 (2d phps ske
3.008402		
3.000+02		
3.000+02	A CONTRACT	
3.00e+02	the second second	
3.000002		
3.000+02		
3.000+02		
3.00e+02	0 0	
3.000+02	17 194	
3.00e+02		
3.00e+02	「「「「「」」の「「」」	
3.00e+02	o o	
3,00e+02		
3.00e+02		R14.5
5.006-02		A11313

Figure 4.14: Temperature

According to the contour plot, the maximum temperature at fin body is 3.00e+02 k

Mass flow rate "Flux Report"

	Mass Flow Rate	(kg/s)	
inlet			0.191751
interior	trm_srf	-1.5378	53
outlet			-0.1914832
walltrm	n_srf	0	

www. ijraset.com

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

0.00026780367 kg/sec Net The net mass flow rate of fin body is 0.000267803kg/sec "Flux Report" Total Heat Transfer Rate (w) ----- ----inlet 357.02032 outlet -356.51999 wall-_trm_srf -0.0013494033 Net 0.49898629 w The net Total heat transfer rate of fin body is 0.49898629w VELOCITY 7.5m/s Boundary conditions \rightarrow Inlet \rightarrow Edit *Velocity magnitude* \rightarrow 7.5*m/s* Solution \rightarrow Solution Initialization \rightarrow Hybrid Initialization \rightarrow done Run calculations \rightarrow No of iterations = $10 \rightarrow$ calculate \rightarrow calculation complete $\rightarrow \rightarrow Results \rightarrow graphics and animations \rightarrow contours \rightarrow setup$ ANS Contours of Velocity Magnitude (m/s) Sep 15, 2014 ANSYS Fluent 14.5 (2d, dp. pbns, ske)

Figure 4.15: Velocity Magnitude

According to the contour plot, the maximum velocity at inlet and outlet holes is 9.02e+00 m/s and the minimum at in between inlet and outlet holes is 4.51e-01 m/s

7.210+01		ANSYS
6.85e+01	Else source and the	R14.5
6.490+01		
6.13e+01		
5.77e+01	0 0	
5.41e+01	11111111111111111111111111111111111111	
5.05e+01	0 0	
4.69e+01		
4.33e+01	0 0 1	
3.97e+01	THE PARTY OF A PARTY O	
3.60e+01		
3.24e+01		
2.88e+01	1000000000000000000000000000000000000	
2.52e+01	0 0	
2.16e+01		
1.80e+01		
1.44e+01	I STATE STATE	
1.08e+01	0 0	
7.21e+00		
3.50e+00		
0.00e+00		
intours of Static Pressure (pascal)		Sep 15, 2014

Figure 4.16: Static pressure

According to the contour plot, the maximum static pressure at outlet hole beside corners is 7.21e+01pa and the minimum at inlet hole 3.60e+00pa

ontours of Static Temperature (k)		Sep 15, 2014 ANSYS Fluent 14.5 (2d, dp, pbns, ske)
3.00e+02		
3.00e+02	tot all seat	
3.00e+02	torn the faith	
3.00e+02	Mart Carlor	
3.00e+02	1 1 1 1 1 1 1 1	
3.00e+02	the Contraction	
3.00e+02	the state of the state	
3.00e+02	P Same Bark	
3.00e+02	A A A A A A A A A A A A A A A A A A A	
3.00e+02	State State	
3.00e+02	L'AN SOL	
3.00e±02	The test and	
3.00e+02	The second second	
3.00e+02	L & L & BANK	
3.00e+02	THE PARTY AND	
3.008+02	HE SHE SHE	
3.00e+02	The states	
3.000+02	E Start	
3.00e+02	+ total the test that	N19.5
	A A A A A A A A A A A A A A A A A A A	P14.5

Figure 4.17: Temperature

According to the contour plot, the maximum temperature at fin body is 3.00e+02 k

Page 221 -

www. ijraset.com

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

Contours of Static Pressure (pascal)		Sep 17, 2014 ANSYS Fluent 14.5 (2d, dp, pbns, ske)
0.000+00		
2.620+00	Second States and	
5.23e+00		
7.85e+00		
1.05e+01		
1.31e+01	 <td></td>	
1.57e+01		
1.83e+01		
2.09e+01	110000000000000000000000000000000000000	
2.35e+01	No. of The Second	
2.62e+01	0 0	
2.990+01	Care and Care Sta	
3.140+01	0 0	
3.40=+01	1776120100000000000000000000000000000000	
3.926+01		
4.190+01		
4.45e+01		
4.710+01		
4.97e+01	111-222 1222	R14.5
5.23e+01		ANSTS

According to the contour plot, the maximum static pressure at outlet hole beside corners is 5.23+01pa and the minimum at inlet hole 2.62e+00pa

According to the contour plot, the maximum velocity at inlet and outlet holes is 5.40e+00 m/s and the minimum at in between inlet and outlet holes is 2.70e-01m/s

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

Figure 4.22: Static pressure

According to the contour plot, the maximum static pressure at outlet hole beside corners is 2.96e+01pa and the minimum at inlet hole 1.48e+00pa

According to the contour plot, the maximum temperature at fin body is 3.00e+02 k

Mass flow rate

"Flux Report"

Mass Flow Rate		late	(kg/s)
inlet			0.09587553
interior_trm_srf		-0.732	12272
outlet		0	-0.10115606
walltrm_srl		0	
	Net	-0.000	52805282 kg/s

The net mass flow rate of fin body is -0.0052805282 kg/sec

"Flux Report Total Heat Transfer Rate	(w)
	357 02043
outlet	-356.87954
walltrm_srf	1.5402225e-14

Net 0.14088776w The net Total heat transfer rate of fin body is 0.14088776w

VELOCITY - 7.5m/s

Boundary conditions \rightarrow Inlet \rightarrow Edit Velocity magnitude \rightarrow 7.5m/s Solution \rightarrow Solution Initialization \rightarrow Hybrid Initialization \rightarrow done

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

Run calculations \rightarrow *No of iterations* = 10 \rightarrow *calculate* \rightarrow *calculation complete* $\rightarrow \rightarrow$ *Results* \rightarrow *graphics and animations* \rightarrow *contours* \rightarrow *setup*

Figure 4.24: Velocity Magnitude

According to the contour plot, the maximum velocity at inlet and outlet holes is 7.51e+00 m/s and the minimum at in between inlet and outlet holes is 3.76e-01pa

1.07e+02		ANSYS
1.01e+02		R14.5
9.60e+01		
9.070+01	A CONTRACTOR OF A CONTRACTOR O	
8.54e+01	0 0	
8.00e+01	The second s	
7.47e+01		
6.93e+01	日本(12) (12) (12)	
6.40e+01		
5.87e+01	111(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
5.330+01		
4.80e+01		
4.270+01	The second second	
3.73e+01	0 0	
3.20e+01	1000000000000000000000000000000000000	
2.67e+01	0 0	
2.130+01	A STATE OF A	
1.600+01		
1.07e+01		
5.330+00	A CONTRACTOR OF	
0.000+00		
ontours of Static Pressure (pascal)		Sep 17, 201

Figure 4.25: Static pressure

According to the contour plot, the maximum static pressure at outlet hole beside corners is 1.07e+02pa and the minimum at inlet hole 5.33e+00pa

tours of Static Temperature (k)		Sep 15, 201 ANSYS Fluent 14.5 (2d. do. phgs. ski
3.00e+02		
3.000+02	HAT SHE AND	
3.00e+02	and the state of the second	
3.00e+02	1995年195	
3.00e+02	the second to	
3.00e+02	The State of State	
3.00e+02	- A CARLER AND A CARLER	
3.00e+02	Carl Star	
3.00e+02	· · · · · · · · · · · · · · · · · · ·	
3.00e+02	Case Little Contraction	
3.00e+02	+2	
3.00e+02	and the second	
3.00e+02	the man and the state	
3.00e+02	the second water of	
3.00e+02	HER CHARTER TO A SH	
3.00e+02	北天王公卿的此	
3.00e+02	ATT CLASSIC STATE	
3.00e+02	A STATE OF A STATE OF	
3.000+02	the second second second	
3.00e+02	The states of the	R14.5
3.00e+02	and the total and	ANSYS

Figure 4.26: Temperature

According to the contour plot, the maximum temperature at fin body is 3.00e+02 k **Mass flow report**

"Elux Deport"

"Flux Report"

Mass Flow Rate	(kg/s)		
inlet	0.28762659		
interiortrm_srf	-3.0067173		
outlet	-0.28706232		
walltrm_srf	0		
NL (0.000564266021		

Net 0.00056426693 kg/s

The net mass flow rate of fin body is 0.00056426693 kg/sec

"Flux Report"

www. ijraset.com

Volume 2 Issue X, October 2014 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology(IJRASET)

Total Heat Transfer Rate(w)inlet535.53065outlet-534.48004

wall-_trm_srf 1.0814626e-12

Net 1.0506061 w

The net Total heat transfer rate of fin body is 1.0506061 w.

RESULTS TABLE FOR CFD ANALYSIS

		Velocity	Static	Temperature	Mass Flow	Heat
		Magnitude	pressure	(K)	Rate (Kg/s)	Transfer
		(m/s)	(Pascal)			Rate (W)
	2.5m/s	2.51e+00	1.06e+01	3.00e+02	6.3204351e-05	0.1176799
Hcfc	5 m/s	6.20e+00	3.48e+01	3.00e+02	0.00026780367	0.49898629
	7.5	9.02e+00	7.21e+01	3.00e+02	0.00015335049	0.28552244
	m/s					

Results Table for CFD Analysis with HCFC Refrigerant

		X7.1 5	0		M TI D	XX .
		Velocity	Static	Temperature	Mass Flow Rate	Heat
		Magnitude	pressure	(K)	(Kg/s)	Transfer
		(m/s)	(Pascal)			Rate (W)
	2.5	3.58e+00	5.23e+01	3.00e+02	7.5668995e-05	0.98317916
404R	m/s					
	5	5.40e+00	2.96e+01	3.00e+02	0.00052805282	0.14088776
	m/s					
	7.5	7.51e+00	1.70e+02	3.00e+02	0.000562426693	1.0506061
	m/s					

Results Table for CFD Analysis with 404R Refrigerant

V. CONCLUSIONS

In this work, an ac condenser is designed and optimized for better material, refrigerant and to improve the heat transfer rate.

- By observing the thermal analysis results, using fin material Aluminum alloy 1100, thermal flux is more than other two materials. So by using Aluminum alloy 1100, the heat transfer rate increases. And also by taking refrigerant R404 is better.
- Thermal flux is also calculated theoretically, by observing the results, using fin material Aluminum alloy 1100 and refrigerant R404 has more heat transfer rate.
- CFD analysis is also done on the fin for two refrigerants HCFC and 404R at different fluid velocities 2.5m/s, 5m/s and 7.5m/s. By observing the analysis results, the velocity magnitude, mass flow rate and heat transfer rate is more when 404R is used, so using 404R increases the efficiency of the condenser but the pressure is less.
- Increasing inlet velocity from 2.5m/s to 5m/s, yields no advantage but by increasing to 7.5m/s yields better results.

REFERENCES

- S.H. Noie-Baghban, G.R. Majideian, "Waste heat recovery using heat pipe heat Exchanger (HPHE) for surgery rooms in hospitals", Applied Thermal Engineering, Vol. 20, (2000) 1271-1282.
- [2]. E.F. Gorzelnik, Heat water with your air-conditioner, Electrical World 188 (11) (1977) 54–55.
- [3]. P. Sathiamurthi, PSS.Srinivasan, design and development of waste heat recovery system for air conditioner, European Journal of Scientific Research ISSN 1450-216X Vol.54 No.1 (2011), Pp.102- 110.
- P.Suresh Mohan Kumar, Eco friendly Energy Conservative Single window Air Conditioning System by Liquid Cooling with helical inter cooler ISSN 1450-216X Vol.76 No.3 (2012), pp.455-462
- [5] S.C.Kaushik, M.Singh. "Feasibility and Refrigeration system with a Canopus heat exchanger", Heat Recovery Systems & CHP, Vol.15 (1995)665 -673.
- [6] R.TugrulOgulata, "Utilization of waste-heat recovery in textile drying", Applied Energy.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)