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Abstract: We consider the study concerns to flow and heat transfer of viscous fluid over a shrinking sheet with the combined 
effect of viscous dissipation and second order slip. The governing boundary value problem for flow and heat transfer is 
transformed in to a set of nonlinear ordinary differential equations using a suitable similarity transformation and is solved 
analytically using MATHEMATICA software. Effects of various flow and heat transfer charecteristics are analysed with the aid 
of graphs 
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I. INTRODUCTION 
In the present study we have extended the work of Fang [2009] considering heat transfer fluid with second order slip and viscous 
dissipation over a shrinking sheet. The flow induced by a moving boundary is important in the study of extrusion processes  and is a 
subject of considerable interest in the contemporary literature  for both permeable and impermeable stretching sheets.   
The flow and heat transfer over a linearly stretching sheet was first considered by Crane [1], who reported the solution in a closed 
analytical form. Gupta and Gupta [2] extended this problem to a permeable stretching sheet. Grubka and Bobba [3] realized that 
Crane’s solution to the boundary layer equation also happens to be an exact solution to the Navier-Stokes equations. Since then, 
many authors have considered various aspects of this problem such as Chen and Char [4], Chen [5] and Ishak et al. [6]-[8], among 
others. Different from the flow over a stretching sheet, the flow over a shrinking sheet only received the attention quite recently. 
Miklavčič and Wang [9] was the first who studied the properties of a viscous flow due to a shrinking sheet, and found that the 
solutions are non-unique. The flow is unlikely to exist unless adequate suction on the boundary is imposed, since vorticity of the 
shrinking sheet is not confined within a boundary layer. This problem was then extended by Fang and Zhang [10] to magneto hydro 
dynamic flow, and successfully obtained the closed form analytical solution. Moreover, the solution obtained by Fang and Zhang 
[10] is also an exact solution of the governing Navier-Stokes equations for that problem, and they reported greatly different solution 
behavior with multiple solution branches compared to the corresponding stretching sheet problem. 
In the present study we have extended the work of Fang [10] considering heat transfer fluid with second order slip and viscous 
dissipation over a shrinking sheet. 

II. MATHEMATICAL FORMULATION AND DISCUSSION 
Consider a steady, two-dimensional laminar flow over a continuously shrinking sheet in a quiescent fluid. The sheet shrinking 
velocity is Uw = - U0 x , with U0 being a constant and the wall mass transfer velocity is Vw = Vw (x), which will be determined later. 
The x-axis runs along the shrinking surface in the direction opposite to the sheet motion and the y-axis is perpendicular to it. The 
governing boundary layer equation for the proposed problem can be expressed as 

             0u v
x y
 

 
 

                                                                                      (1) 

                             
2

2

u u uu v v
x y y

   
      

                                                                         (2)                                     

                                                                 
With the boundary conditions  U(x, 0) = -U0 x+Uslip,           V(x, 0) = Uw (x), and u(x, ) = 0,                 (3) 
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Where u and v are the velocity components in the x and y directions. v  is the kinematic coefficient of viscosity,    is the fluid 
density, and Uslip   is the velocity slip at the wall. The Wu’s slip velocity model used in this paper is valid for arbitrary Knudsen 
numbers, Kn, and is given as follows [2009] 

   Uslip =  
3 2 2 2

4 2 2
2 2 2

2 3 3 1 1 2 1 ,
3 2 4n n

l l u u u ul l A B
K y K y y y


 


        

              
 (4) 

Where l  = min [
1

nK
, 1], , is the momentum accommodation coefficient with 0        l , and   is the molecular mean free 

path. Based on the definition of l , it is noticed that any given value of Kn,   we have  0    l   l . The molecular mean free path is 
always positive. Thus we know that B<0 and positive. The stream function and similarity variable can be assumed in the following 
form, 

  0,, ( )x y f x U     0Uy


                                                           (5) 

With these transformations, the velocity components are expressed as 

 '
0 ( )u U xf   and 0 ( )v U v f   .                                                                      (6) 

The wall mass transfer velocity becomes 

0( ) (0)wv x U v f  .                                                                                  (7) 

Using equations (5) and (6) in equations (1) and (2) we obtain the transformed form of boundary layer equations of motion, 

 ' ' ' ' 2' ' 0f ff f                                                                                      (8) 
 Similarly, the boundary conditions equations (3) takes the form 

(0) ,f s    ' ' ' ' ' '(0) 1 (0) (0) 0f f f      , and ' ( ) 0f   ,                  (9) 
Where s is the wall mass transfer parameter showing the strength of the mass transfer at the surface,   is the first order velocity 

slip parameter with 00 ,
U

A
v

   and   is the second order velocity slip parameter with 00 .BU
v

   we derive a closed 

form exact solution of Eq.(8) subject to the BCs of Eq. (9). We assume a solution of the form ( )f a be    . The application 
of boundary condition (9) gives the values for a and b as mentioned below. 

 2 3
1b

  


 
,                                                                                   (10) 

2 3
1a S

  
 

 
,                                                                              (11) 

Substituting the assumed solution into Eq.(9) yields a =  . The use of this relationship in Eq. (11) leads to the following fourth 

order algebraic equation for  , 
4 3 2( ) ( 1) 1 0s s s             .                                                 (12) 

  should be least positive value. 
 
Then the solution reads as  

2 3 2 3
1 1( )f s e 

     
  

   
 ,                                         (13) 

and 
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2
1( )

1
f e 

 
 

 
,                                                                       (14) 

Based on the results in Eq.(14), it is easy to show that  

// 2
2(0) ( )

1
f s  

 
  

 
                                                              (15) 

III. HEAT TRANSFER ANALYSIS 
The thermal boundary layer equation, with work done by deformation, and internal heat generation or absorption is given by  

22

2 ( )
p p p

T T k T Q uu v T T
x y c c c yy


  

    
          

                                (16)                                   

Where 
p

k
c

 is the thermal diffusivity and pc is specific heat of a fluid at constant pressure,  

A. CASE (I) Prescribed surface temperature (PST) 
The boundary conditions in case of PST is given by 

                  

2x =A +T  at 0
l

                  at 

wT T y

T T y





      
   

                                          (17) 

  Where WT is the temperature of the sheet and T  is the temperature of the fluid far away from the sheet. 

Defining the non-dimensional temperature     as  

 
W

T T
T T

  







                                                                                         (18) 

Using (18), Eq. (16) can be written in the form  

         2' ' ' 2 4Pr ( ) 2Pr Pr Pra be b e Ecb e                    

(19) 

Where Pr Cp
k


 is the Prandtl number, Eckert number 

2 2
ou l

Ec
Cp A

                                                                                                                                                   

& Heat source /sink
p o

Q
c u




  

Consequently the boundary conditions (17) take the form  

 
 

1 0

0

at

as

  

  

  


 
                                                                               (20) 

Introducing the new independent variable  

2

Pr


   

and substituting in Eq. (19) we obtain 

         
2 6

' ' ' 13
11 12 121 2

Pr
P EcbP P P 

         


               (21)                                                 
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Where 11 12 13 2

Pr Pr, ,&a bP P P 
  

    

The corresponding boundary conditions are  

 
 

 

2

Pr1

0 0

eat

as



  


  

 
  


  

                                         (22)                                                                                          

The solution of Eq. (21) subject to the boundary conditions (22) is given by  

   

22 22

0 122 2 2
11 13

Pr Pr Pr2 ,1 ;
2 Pr 4 2

C D

e e Ecb eC Da M P D
P P

   
 

  


                           

                                                                           

(23) 

Where 
 

22 6

2
11 13

0
2

112 2

Pr1
Pr 4 2

PrPr 2 ,1 ;
2

C D

Ecb
P P

a
C DM P D




 



 
     

               

 

C = 11P &  2
11 134D P P   

B. CASE (ii) Prescribed power law heat flux (PHF case) 
In this heating process we employ the following power law heat flux. Consider boundary conditions given by 

2

0 0w
w

T xk q E at y
y l

T T at y

               
   

                                                (24)                                                                  

Where OE   is constant. WT  is temperature at the wall. T  is temperature away from the sheet. 

We define non-dimensional temperature as 

          
W

T T
T T

  







                                                                             (25) 

So that the equation   (16) reduces to the form 

       ' ' ' 2 4 2Pr 2Pr Pr Pra be be Ec b e                       (26)                                                                  

 the corresponding boundary conditions (24)    reduces  to  

  
 
 

1 1

0

  

  

   


   
                                                                      (27)                                     

Using the new independent variable defined as 

 2

Pr et





  

and substituting in equation (26) we obtain 

          
2 6

' ' ' ' 13
11 12 121 2

Pr
P Ecb tt t P t P t t P t
t


          

 
           (28)                                               
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 Where 11 12 13 2

Pr Pr, ,&a bP P P 
  

    

The corresponding boundary conditions will be 

 
 
 

' 1 Pr

0

t as t e

t as t





     


  
                                                   (29)                                                                   

We obtain the solution of above equation (26) by using power series method and in terms of Kummer’s function is as mentioned 
below,  

    

22 22

0 122 2 2
11 13

Pr Pr Pr2 ,1 ;
2 Pr 4 2

C D

e e Ecb eC Dt a M P D
P P

   


  


                           

                

                                                                                                               (30) 
  Using (29), the non-dimensional wall temperature gradient can be written as  

 

 
 

2
'

0 1 22 2

2
1 2

0 1 22 2

2 3

1 1 1 3

P r 4 P r, 1 ;
2 2

P 4P r P r 2 P r, 2 ;
2 1 2

2 P r
4 2

C D

C D

C D C Dt a M P D

C D C Da M P D
D

E c b
P P

 
 

  







                             

                          


 

                                                                                                 

(31) 

IV. RESULTS AND DISCUSSION 
In this problem, we proposed to investigate the flow and heat transfer viscous fluid with second order slip& viscous dissipation over 
shrinking sheet. The governing equations for momentum and heat transfer are partial differential equations which are converted into 
ordinary differential equations by using suitable similarity transformations. 
An analytical solution [exponential solution] for flow has been assumed, and this assumed solution is used to solve the heat transfer 
equations by power series method and expressed in terms of Kummer’s hyper geometric functions.  
The results are depicted graphically from graph Fig 2 to 12. 
Fig 2. Shows the effect of mass suction parameter s on considered flow. It shows that as there is increase in the parameter value of 

‘s’ velocity 'f  is decreases.  

Fig 3. Shows the effect of first order slip parameter   on velocity profile 'f . It is noticed that as first order slip parameter   

increases velocity profile 'f  decreases. 

 Similarly in Fig 4, we notice that the effect of second order slip parameter is to sustain velocity profile 'f  in the boundary layer.  

Fig 5(a) and 5(b), Shows the temperature distribution ( )  and ( )  versus   for different values‘s’ PST and PHF cases, 
respectively. .By analyzing the graphs that the effect of increasing values of‘s’ in both PST and PHF cases, temperature decreases. 
Fig 6(a) and 6(b), Shows the temperature distribution ( )  and ( )  versus   for different values  PST and PHF cases, 
respectively. .By analyzing the graphs that the effect of increasing values of in both PST and PHF cases, temperature decreases. 

Fig 7(a) and 7(b), Shows the temperature distribution ( )  and ( )  versus   for different values  PST and PHF cases, 

respectively. .By analyzing the graphs that the effect of decrease values of in both PST and PHF cases, temperature decreases 
Fig 8(a) and 8(b), Shows the temperature distribution ( )  and ( )  versus   for different values   PST and PHF cases, 
respectively. .By analyzing the graphs that the effect of increase values of  in both PST and PHF cases, temperature increase. 
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 Fig 9(a) and 9(b), Shows the temperature distribution ( )  and ( )  versus   for different values   in PST and PHF cases, 
respectively. By analyzing the graphs that the effect of increase values of Ec in both PST and PHF cases, temperature increase in 
PST and decrease in PHF. 
Fig 10(a) and 10(b), Shows the temperature distribution ( )  and ( )  versus   for different values Pr in PST and PHF cases, 
respectively. By analyzing the graphs that the effect of increase values of Pr in both PST and PHF cases, temperature decrease. 
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Fig(1) Schematic diagram of boundary layer slip flow past a shrinking sheet 
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