
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

Construction of special Dio 3-Tuples From $\frac{\mathrm{CC}_{n}}{\mathrm{Gno}_{n}}$ - II

P.Saranya ${ }^{1}$, G.Janaki2
1,2 Assistant Professor, Department of Mathematics, Cauvery College for Women,Trichy-18.

Abstract: We search for special dio 3-tuples from $\frac{C C_{n}}{G n o_{n}}$. We also present 6 sets of dio 3-tuples under 3 cases and some numerical examples satisfying the tuples.
Keywords: Dio 3-Tuples, centered cubic number, Gnomonic number.

I. INTRODUCTION

An n-tuples, sometimes simply called a tuple, when the number n is known implicitly is an ordered set of n-elements. In particular 3 -tuples is a set with 3 elements. A set of m distinct positive integers $S=\left\{a 1, a 2, \ldots a_{m}\right\}$ satisfies the diaphanous property $D(n)$ of order n if for all $\mathrm{i}, \mathrm{j}=1,2, \ldots \mathrm{~m}$ with $i \neq j, a_{i} a_{j}+n=b_{i j}^{2}$, the b_{ij} 's are integers. The set S is called Diophantine n -tuple. A longstanding conjecture is that no integer Diophantine quintuple exists. Jones derived in 1975, an infinite sequence of polynomials $\mathrm{S}=\left\{\mathrm{x}, \mathrm{x}+2, \mathrm{c}_{1}(\mathrm{x}), \mathrm{c}_{2}(\mathrm{x}), \ldots\right\}$ such that the product of any two consecutive polynomials increased by one is a square of a polynomial.
[1-3] has been studied for basic ideologies.[3-15] has been referred for various concepts and findings of Diophantine triples and quadruples. Recently in [16] special dio 3-tuples is constructed from $\frac{C C_{n}}{G n o_{n}}$.
In this paper we search for special dio 3 -tuples constructed from $\frac{C C_{n}}{G n o_{n}}$ with different method of analysis, where CC_{n} is the centered cubic number of rank n and $\mathrm{Gno}_{\mathrm{n}}$ is the gnomonic number of rank n . Here the product of any two members of the triples with the addition of the same members and the addition with a non-zero integer or a polynomial with integral coefficient satisfies the required property.

II. NOTATIONS

$C G_{n}=\frac{C C_{n}}{G n o_{n}}$
Where CC_{n} is the centered cubic number of rank n and $\mathrm{Gno}_{\mathrm{n}}$ is the Gnomonic number of rank n .

III. METHOD OF ANALYSIS

A. Case(i)

Let $a=n^{2}-3 n+2, \mathrm{CG}_{\mathrm{n}-1}$ of rank $\mathrm{n}-1$
$b=n^{2}-n+1, \mathrm{CG}_{\mathrm{n}}$ of rank n
We then have $a b+(a+b)+n-1=\alpha^{2}$
where $\alpha=n^{2}-2 n+2$
Let c be any non zero integer such that
$a c+(a+c)+n-1=\beta^{2}$
$b c+(b+c)+n-1=\gamma^{2}$
Eliminating c from (2) and (3) we get
$(b-a)+(a-b)(n-1)=(a+1) \gamma^{2}-(b+1) \beta^{2}$
Introducing the linear transformation
$\beta=x+(a+1) y ; \quad \gamma=x+(b+1) y$;
Hence (4) reduces to
$x^{2}=(a b+a+b+1) y^{2}+n-2$
Taking $\mathrm{y}=1$ we get $x=n^{2}-2 n+2$
Therefore the initial solution is $x_{0}=n^{2}-2 n+2, \mathrm{y}_{0}=1$
Substituting the initial solution in (5) we get $\beta=2 n^{2}-5 n+5$
Using the value of β in (2) we get $c=4 n^{2}-8 n+8=C G_{2 n-3}+6 n-5$
Therefore the triples $\left\{n^{2}-3 n+2, n^{2}-n+1,4 n^{2}-8 n+8\right\}$, ie., $\left\{C G_{n-1}, C G_{n}, C G_{2 n-3}+6 n-5\right\}$ is a special dio 3-tuple with the property $D(n-1)$
Some numerical examples satisfying the above mentioned tuples are listed below
TABLE I

n	a	b	c	$\mathrm{a}+\mathrm{b}$	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{c}$	$\mathrm{D}(\mathrm{n})$
3	2	7	20	9	22	27	2
4	6	13	40	19	46	53	3
5	12	21	68	33	80	89	4
6	20	31	104	51	124	135	5
7	30	43	148	73	178	191	6

Below we present 5 sets of special dio 3-tuples with their corresponding properties
TABLE III

s.no	A	b	C	$\mathrm{D}(\mathrm{n})$
1	$C G_{n-1}$	$C G_{n}$	$C G_{2 n-3}-6 n-3$	$\mathrm{D}\left(2 \mathrm{n}^{2}-3 n+4\right)$
2	$C G_{n-1}$	$C G_{n}$	$C G_{2 n-3}-2 n+9$	$\mathrm{D}\left(4 \mathrm{n}^{2}-7 n+11\right)$
3	$C G_{n-1}$	$C G_{n}$	$C G_{2 n-3}+6 n-13$	$\mathrm{D}\left(-8 \mathrm{n}^{2}+17 n-1\right)$
4	$C G_{n-1}$	$C G_{n}$	$C G_{2 n-3}+6 n-15$	$\mathrm{D}\left(-10 \mathrm{n}^{2}+21 n+4\right)$
5	$C G_{n-1}$	$C G_{n}$	$C G_{2 n-3}+6 n-17$	$\mathrm{D}\left(-12 \mathrm{n}^{2}+25 n+11\right)$

B. Case(ii)

Here we take $a=n^{2}-5 n+7, \mathrm{CG}_{\mathrm{n}-2}$ of rank n-2
$b=n^{2}-n+1, \mathrm{CG}_{\mathrm{n}}$ of rank n
Proceeding as in case(i) we have $c=4 n^{2}-12 n+15$
Therefore the triples $\left\{n^{2}-5 n+7, n^{2}-n+1,4 n^{2}-12 n+15\right\}$, ie., $\left\{C G_{n-2}, C G_{n}, C G_{2 n-3}+2 n+2\right\}$ is a special dio 3 -tuple with the property $D(-6)$
Some numerical examples satisfying the above mentioned tuples are listed below
TABLE IIIII

n	a	b	c	$\mathrm{a}+\mathrm{b}$	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{c}$	$\mathrm{D}(\mathrm{n})$
1	3	1	7	4	10	8	-6
2	1	3	7	4	8	10	-6
3	1	7	15	8	16	22	-6
4	3	13	31	16	34	44	-6
5	7	21	55	28	62	76	-6

Below we present 5 sets of special dio 3-tuples with their corresponding properties

TABLE IVV

s.no	A	b	c	$\mathrm{D}(\mathrm{n})$
1	$C G_{n-2}$	$C G_{n}$	$C G_{2 n-3}+2 n$	$D\left(-2 n^{2}+6 n-11\right)$
2	$C G_{n-2}$	$C G_{n}$	$C G_{2 n-3}+2 n+4$	$D\left(2 n^{2}-6 n+1\right)$
3	$C G_{n-2}$	$C G_{n}$	$C G_{2 n-3}+2 n-10$	$D\left(-12 n^{2}+36 n-6\right)$
4	$C G_{n-2}$	$C G_{n}$	$C G_{2 n-3}+2 n-12$	$D\left(-14 n^{2}+42 n+1\right)$
5	$C G_{n-2}$	$C G_{n}$	$C G_{2 n-3}+2 n-2$	$D\left(-4 n^{2}+12 n-14\right)$

C. Case(iii)

Here we take $a=n^{2}-5 n+7, \mathrm{CG}_{\mathrm{n}-2}$ of rank n-2
$b=n^{2}-3 n+2, \mathrm{CG}_{\mathrm{n}-1}$ of rank $\mathrm{n}-1$
Proceeding as in case(ii) we have $c=4 n^{2}-16 n+16=C G_{2 n-3}-2 n+3$
Therefore the triples $\left\{n^{2}-5 n+7, n^{2}-3 n+2,4 n^{2}-16 n+16\right\}$, ie., $\left\{C G_{n-2}, C G_{n-1}, C G_{2 n-3}-2 n+3\right\}$ is a special dio 3 -tuple with the property $D\left(-4 n^{2}+15 n-14\right)$

Some numerical examples satisfying the above mentioned tuples are listed below
TABLE V

n	a	b	c	$\mathrm{a}+\mathrm{b}$	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{c}$	$\mathrm{D}(\mathrm{n})$
4	3	6	16	9	19	22	-18
5	7	12	36	19	43	48	-39
6	13	20	64	33	77	84	-68
7	21	30	100	51	121	130	-105
8	31	42	144	73	175	186	-150

Below we present 5 sets of special dio 3-tuples with their corresponding properties
TABLE VI

s.no	A	b	c	$\mathrm{D}(\mathrm{n})$
1	$C G_{n-2}$	$C G_{n-1}$	$C G_{2 n-3}-2 n+5$	$D\left(-2 n^{2}+7 n-7\right)$
2	$C G_{n-2}$	$C G_{n-1}$	$C G_{2 n-3}-2 n+7$	$D(-n+2)$
3	$C G_{n-2}$	$C G_{n-1}$	$C G_{2 n-3}-2 n-13$	$D\left(-20 n^{2}+79 n+2\right)$
4	$C G_{n-2}$	$C G_{n-1}$	$C G_{2 n-3}-2 n-11$	$D\left(-18 n^{2}+71 n-7\right)$
5	$C G_{n-2}$	$C G_{n-1}$	$C G_{2 n-3}-2 n-9$	$D\left(-16 n^{2}+63 n-14\right)$

IV. CONCLUSION

In this paper, we have presented some special dio 3-tuples under 3 cases from $\frac{C C_{n}}{G n o_{n}}$ with their corresponding properties. One may also search for similar type of special dio 3-tuples with suitable property.

REFERENCES

[1] Dickson. L.E. "History of Theory of Numbers and Diophantine Analysis", Vol.2, Dove Publications, New York 2005.
[2] Mordell L.J., "Diophantine Equations" Academic Press, New York, 1970.
[3] R.D. Carmichael, "The Theory of Numbers and Diophantine Analysis", Dover Publications, NewYork 1959.
[4] Bo He, A.Togbe, On the family of Diophantine triples $\{\mathrm{k}+1,4 \mathrm{k}, 9 \mathrm{k}+3\}$, Period Math Hungar, 58, 59-70, 2009
[5] Bo He, A.Togbe, On a family of Diophantine triples $\left\{\mathrm{k}+1, \mathrm{~A}^{2} \mathrm{k}+2 \mathrm{~A},(\mathrm{~A}+1)^{2} \mathrm{k}+2(\mathrm{~A}+1)\right\}$ with two parameters, Acta Math. Hungar, 124, $99-113,2009$
[6] M.N.Deshpande and E.Brown, Diophantine triplets and the Pell sequence, Fibanacci Quart, 39, 242 - 249, 2001 [8]
[7] M.N.Deshpande, One interesting family of Diophantine triplets, Internat. J. Math. Ed. Sci. Tech., 33,253-256, 2002
[8] A.Filipin, Bo He, A.Togbe, On a family of two parametric D(4) - triples, Glas. Mat. Ser. III, 47, 31-51, 2012
[9] Filipin A, Fujita Y and Mignotte M (2012). The non extendibility of some parametric families of D(-1)-triples. Quarterly Journal of Mathematics 63, 605-621.
[10] M.A.Gopalan and G.Srividhya, Two special Diophantine Triples, Diophantus J. Math., 1(1), 23-27,2012
[11] M.A.Gopalan, V.Sangeetha, Manju Somanath, Construction of the Diophantine Triple involving polygonal numbers, Sch. J. Eng. Tech., 2(1), 19-22, 2014
[12] M.A.Gopalan, S.Vidhyalakshmi, S.Mallika, Special family of Diophantine Triples, Sch. J. Eng.Tech., 2(2A), 197-199, 2014
[13] V.Pandichelvi, Construction of the Diophantine Triple involving Polygonal numbers, Impact J. Sci.Tech., Vol.5, No.1, 07 - 11, 2011
[14] Gopalan.M.A, G.Srividhya,"Some non extendable P-5 sets ", Diophantus J.Math.,1(1),(2012),19-22
[15] Gopalan.M.A, G.Srividhya," Two Special Diophantine Triples ", Diophantus J.Math., 1(1),(2012),23-27
[16] G.Janaki , P.Saranya, "Construction of Special Dio 3-Tuples from $\underset{\mathbf{C C}_{\mathbf{n}}}{ }$ - I", International Journal of Advanced Researcand Devolopment,vol-2,issu 6,151 Gno $_{n}$
154, Nov 2017.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

