

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: XI Month of publication: November 2017 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Construction of special Dio 3-Tuples From $\frac{CC_n}{Gno_n}$ - II

P.Saranya¹, G.Janaki2

^{1,2} Assistant Professor, Department of Mathematics, Cauvery College for Women, Trichy-18.

Abstract: We search for special dio 3-tuples from $\frac{CC_n}{Gno_n}$. We also present 6 sets of dio 3-tuples under 3 cases and some

numerical examples satisfying the tuples. Keywords: Dio 3-Tuples, centered cubic number, Gnomonic number.

I. INTRODUCTION

An n-tuples, sometimes simply called a tuple, when the number n is known implicitly is an ordered set of n-elements. In particular 3-tuples is a set with 3 elements. A set of m distinct positive integers $S = \{a1, a2, ..., a_m\}$ satisfies the diaphanous property D(n) of order n if for all i, j = 1, 2, ..., m with $i \neq j, a_i a_j + n = b_{ij}^2$, the b_{ij} 's are integers. The set S is called Diophantine n-tuple. A longstanding conjecture is that no integer Diophantine quintuple exists. Jones derived in 1975, an infinite sequence of polynomials $S = \{x, x+2, c_1(x), c_2(x), ...\}$ such that the product of any two consecutive polynomials increased by one is a square of a polynomial.

[1-3] has been studied for basic ideologies.[3-15] has been referred for various concepts and findings of Diophantine triples and quadruples. Recently in [16] special dio 3-tuples is constructed from $\frac{CC_n}{C}$

quadruples. Recently in [16] special dio 3-tuples is constructed from $\frac{CC_n}{Gno_n}$.

In this paper we search for special dio 3-tuples constructed from $\frac{CC_n}{Gno_n}$ with different method of analysis, where CC_n is the centered

cubic number of rank n and Gno_n is the gnomonic number of rank n. Here the product of any two members of the triples with the addition of the same members and the addition with a non-zero integer or a polynomial with integral coefficient satisfies the required property.

II. NOTATIONS

$$CG_n = \frac{CC_n}{Gno_n}$$

Where CC_n is the centered cubic number of rank n and Gno_n is the Gnomonic number of rank n.

III. METHOD OF ANALYSIS

A. $Case(i)$	
Let $a = n^2 - 3n + 2$, CG _{n-1} of rank n-1	
$b = n^2 - n + 1$, CG _n of rank n	
We then have $ab + (a+b) + n - 1 = \alpha^2$	(1)
where $\alpha = n^2 - 2n + 2$	
Let c be any non zero integer such that	
$ac + (a+c) + n - 1 = \beta^2$	(2)
$bc + (b+c) + n - 1 = \gamma^2$	(3)
Eliminating c from (2) and (3) we get	
$(b-a) + (a-b)(n-1) = (a+1)\gamma^2 - (b+1)\beta^2$	(4)
Introducing the linear transformation	
$\beta = x + (a+1)y$; $\gamma = x + (b+1)y$;	(5)
Hence (4) reduces to	

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue XI November 2017- Available at www.ijraset.com

 $x^{2} = (ab + a + b + 1)y^{2} + n - 2$

Taking y = 1 we get $x = n^2 - 2n + 2$

Therefore the initial solution is $x_0 = n^2 - 2n + 2$, $y_0 = 1$

Substituting the initial solution in (5) we get $\beta = 2n^2 - 5n + 5$

Using the value of β in (2) we get $c = 4n^2 - 8n + 8 = CG_{2n-3} + 6n - 5$

Therefore the triples $\{n^2 - 3n + 2, n^2 - n + 1, 4n^2 - 8n + 8\}$, i.e., $\{CG_{n-1}, CG_n, CG_{2n-3} + 6n - 5\}$ is a special dio 3-tuple with the property D(n-1)

Some numerical examples satisfying the above mentioned tuples are listed below

TABLE I							
n	a	b	с	a+b	a+c	b+c	D(n)
3	2	7	20	9	22	27	2
4	6	13	40	19	46	53	3
5	12	21	68	33	80	89	4
6	20	31	104	51	124	135	5
7	30	43	148	73	178	191	6

Below we present 5 sets of special dio 3-tuples with their corresponding properties

		I ABLE III		
s.no	А	b	С	D(n)
1	CG_{n-1}	CG_n	$CG_{2n-3}-6n-3$	$D(2n^2 - 3n + 4)$
2	CG_{n-1}	CG_n	$CG_{2n-3} - 2n + 9$	$D(4n^2 - 7n + 11)$
3	CG_{n-1}	CG_n	$CG_{2n-3} + 6n - 13$	$D(-8n^2 + 17n - 1)$
4	CG_{n-1}	CG_n	$CG_{2n-3} + 6n - 15$	$D(-10n^2 + 21n + 4)$
5	CG_{n-1}	CG_n	$CG_{2n-3} + 6n - 17$	$D(-12n^2 + 25n + 11)$

B. Case(ii)

Here we take $a = n^2 - 5n + 7$, CG_{n-2} of rank n-2

 $b = n^2 - n + 1$, CG_n of rank n

Proceeding as in case(i) we have $c = 4n^2 - 12n + 15$

Therefore the triples $\{n^2 - 5n + 7, n^2 - n + 1, 4n^2 - 12n + 15\}$, i.e., $\{CG_{n-2}, CG_n, CG_{2n-3} + 2n + 2\}$ is a special dio 3-tuple with the property D(-6)

Some numerical examples satisfying the above mentioned tuples are listed below

ГАВ	LE	IIIII

n	а	b	с	a+b	a+c	b+c	D(n)
1	3	1	7	4	10	8	-6
2	1	3	7	4	8	10	-6
3	1	7	15	8	16	22	-6
4	3	13	31	16	34	44	-6
5	7	21	55	28	62	76	-6

Below we present 5 sets of special dio 3-tuples with their corresponding properties

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue XI November 2017- Available at www.ijraset.com

s.no	А	b	с	D(n)					
1	CG_{n-2}	CG_n	$CG_{2n-3} + 2n$	$D(-2n^2+6n-11)$					
2	CG_{n-2}	CG_n	$CG_{2n-3} + 2n + 4$	$D(2n^2-6n+1)$					
3	CG_{n-2}	CG_n	$CG_{2n-3} + 2n - 10$	$D(-12n^2+36n-6)$					
4	CG_{n-2}	CG_n	$CG_{2n-3} + 2n - 12$	$D(-14n^2 + 42n + 1)$					
5	CG_{n-2}	CG_n	$CG_{2n-3} + 2n - 2$	$D(-4n^2+12n-14)$					

TABLE IVV

C. Case(iii)

Here we take $a = n^2 - 5n + 7$, CG_{n-2} of rank n-2

 $b = n^2 - 3n + 2$, CG_{n-1}of rank n-1

Proceeding as in case(ii) we have $c = 4n^2 - 16n + 16 = CG_{2n-3} - 2n + 3$

Therefore the triples $\{n^2 - 5n + 7, n^2 - 3n + 2, 4n^2 - 16n + 16\}$, i.e., $\{CG_{n-2}, CG_{n-1}, CG_{2n-3} - 2n + 3\}$ is a special dio 3-tuple with the property $D(-4n^2 + 15n - 14)$

Some numerical examples satisfying the above mentioned tuples are listed below

	TABLE V							
n	а	b	с	a+b	a+c	b+c	D(n)	
4	3	6	16	9	19	22	-18	
5	7	12	36	19	43	48	-39	
6	13	20	64	33	77	84	-68	
7	21	30	100	51	121	130	-105	
8	31	42	144	73	175	186	-150	

Below we present 5 sets of special dio 3-tuples with their corresponding properties

TABLE VI							
s.no	А	b	с	D(n)			
1	CG_{n-2}	CG_{n-1}	$CG_{2n-3} - 2n + 5$	$D(-2n^2+7n-7)$			
2	CG_{n-2}	CG_{n-1}	$CG_{2n-3} - 2n + 7$	D(-n+2)			
3	CG_{n-2}	CG_{n-1}	$CG_{2n-3} - 2n - 13$	$D(-20n^2 + 79n + 2)$			
4	CG_{n-2}	CG_{n-1}	$CG_{2n-3} - 2n - 11$	$D(-18n^2+71n-7)$			
5	CG_{n-2}	CG_{n-1}	$CG_{2n-3} - 2n - 9$	$D(-16n^2+63n-14)$			

IV. CONCLUSION

In this paper, we have presented some special dio 3-tuples under 3 cases from $\frac{CC_n}{Gno_n}$ with their corresponding properties. One may

also search for similar type of special dio 3-tuples with suitable property.

REFERENCES

- [1] Dickson. L.E. "History of Theory of Numbers and Diophantine Analysis", Vol.2, Dove Publications, New York 2005.
- [2] Mordell L.J., "Diophantine Equations" Academic Press, New York, 1970.
- [3] R.D. Carmichael, "The Theory of Numbers and Diophantine Analysis", Dover Publications, NewYork 1959.
- [4] Bo He, A.Togbe, On the family of Diophantine triples $\{k + 1, 4k, 9k + 3\}$, Period Math Hungar, 58, 59–70, 2009

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

Volume 5 Issue XI November 2017- Available at www.ijraset.com

- [5] Bo He, A.Togbe, On a family of Diophantine triples $\{k + 1, A^2k+2A, (A+1)^2k+2(A+1)\}$ with two parameters, Acta Math. Hungar, 124, 99 113, 2009
- [6] M.N.Deshpande and E.Brown, Diophantine triplets and the Pell sequence, Fibanacci Quart, 39, 242 249, 2001 [8]
- [7] M.N.Deshpande, One interesting family of Diophantine triplets, Internat. J. Math. Ed. Sci. Tech., 33,253 256, 2002
- [8] A.Filipin, Bo He, A.Togbe, On a family of two parametric D(4) triples, Glas. Mat. Ser. III, 47, 31 51, 2012
- [9] Filipin A, Fujita Y and Mignotte M (2012). The non extendibility of some parametric families of D(-1)-triples. Quarterly Journal of Mathematics 63, 605-621.
- [10] M.A.Gopalan and G.Srividhya, Two special Diophantine Triples, Diophantus J. Math., 1(1), 23 27,2012
- [11] M.A.Gopalan, V.Sangeetha, Manju Somanath, Construction of the Diophantine Triple involving polygonal numbers, Sch. J. Eng. Tech., 2(1), 19 22, 2014
- [12] M.A.Gopalan, S.Vidhyalakshmi, S.Mallika, Special family of Diophantine Triples, Sch. J. Eng. Tech., 2(2A), 197 199, 2014
- [13] V.Pandichelvi, Construction of the Diophantine Triple involving Polygonal numbers, Impact J. Sci. Tech., Vol.5, No.1, 07 11, 2011
- [14] Gopalan.M.A , G.Srividhya,"Some non extendable P.5 sets ", Diophantus J.Math., 1(1), (2012), 19-22
- [15] Gopalan.M.A, G.Srividhya," Two Special Diophantine Triples ", Diophantus J.Math.,1(1),(2012),23-27
- [16] G.Janaki , P.Saranya, "Construction of Special Dio 3-Tuples from $\frac{CC_n}{Gno_n}$ I", International Journal of Advanced Researcand Devolopment, vol-2, issue 6,151

154, Nov 2017.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)