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Abstract: Advance grid stiffening is the most structural efficient and lightweight method employed extensively in the composite 
structures. The phenomenon of Eigen buckling of iso-grid composite lattice cylindrical structures plays the vital role which 
undergoes critical bonding between the shell and the iso-grid stiffeners. An iso-grid lattice 3D finite element models have been 
studied up to optimal design configurations with different parameters of the shell and the iso-grid stiffeners. The investigation is 
performed using finite element analysis under uni-axial compressive loads and catastrophic effects are detected. Various failure 
modes are observed such as global buckling, local buckling & stiffener crippling. Vibrational behavior i.e., natural frequencies 
and harmonic response of the iso-grid lattice structures are investigated. The effect of geometrical parameters and materials 
properties of iso-grid stiffeners is studied on the various vibration characteristics. Obtained numerical results with respect to the 
parameters are plotted using graphs. 
Keywords: Advance grid stiffening, Iso-grid Lattice Cylinder, Eigen Buckling, Finite Element Analysis & Vibrational behavior. 

I. INTRODUCTION 
The major concern in today’s automotive, aerospace and aircraft industries is structural efficiency and the vibrational behavior of 
structures is also great significance in structural dynamics. Therefore, this need for structural efficiency can be overcome by the use 
of robust and lightweight materials. To this extent, an advanced grid-stiffened structure with their high specific strengths discovers 
wide application. Cylindrical structures made up of composite material are used in the aerospace and aircraft industries especially in 
the form of the aircraft fuselage and launch vehicle fuel tanks.Hence, the practice of composite materials in various engineering 
fields like aerospace manufacturing extended significantly in current years. Usage of material in the manufacturing of aerospace 
structures as a replacement for metallic materials, that tends to the reduction of mass by up to 30%. Remarkable use of filament 
winding device for producing composite shells in the aerospace field[1]. 

 
A. The History of Grid-Stiffened structures 
The early precursor of current advanced grid-stiffened structure which is principal aluminum is o-grid is improved by McDonnell-
Douglas Corporation as it holds the patent rights. A single piece of aluminum stock is used to machine the structure and it consists 
of a skin made of stiffeners, which form equilateral triangles. The Prefix “iso” is derived from the stiffness activities of an is o-grid 
is isotropic within the plane of the structure. These structures are still used as the source for the Titan, Atlas, Delta launch vehicle 
shrouds and interstates, despite being recognized several decades ago[2]. Preliminary design and analysis are founded on a 
continuum model where stiffening ribs are smeared, based on rib spacing, to reach an equivalent shell and also used rib spacing in 
relative to rib cross-sectional width as the standard to smear the ribs [3].A new technique was offered to investigate the Advance 
grid structure in which the components of equations stress-strain was advanced by the several grid patterns [4]. On various grid 
structures, the behavior was predicted by deformation and failures of the lattice structures [5].An investigation on Eigen buckling of 
the composite lattice cylindrical structure along with independent grid cell and forces acted on ribs of skin are computed normally 
cylindrical skin stiffness matrices (A, B & D)and there are verified with experimental and analytical results concluded [6].Adoption 
of smearing the stiffener with diverse conditions that are the equivalence of strain energy, stiffness contribution (through force 
&moment study), rib spacing, etc. Where ass hear and transverse strains remain ignored in few authors, a smeared stiffeners model 
that interpretations for transverse shear flexibility [7], [8], [9].The degree of precision anticipated and bound of computational cost, 
three kinds of buckling analysis are been investigated. Linear bifurcation analysis is the elementary analysis sort that is not 
considered the stresses and prebucklingdeformation [10]. In the second method of bifurcation analysis takes into consideration the 
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stresses and nonlinear prebuckling outcomes in far more exact buckling load. Where as in the third kind of analysis, the nonlinear 
buckling analysis, permits for large nonlinear geometric deflections. An investigation on vibrations of stiffened cylindrical shells 
with grid structure under full free boundary conditions are analyzed on the approximation of love theory and After simplification of 
equilibrium equations, the shell frequency equation is obtained by using Galerkin method [11].The research was done on the free 
vibration problem for the isotropic cylindrical shells with varying ring-stiffener distribution using the extended Ritz method 
[12].Exploration of different boundary conditions; have analyzed the influence of stiffeners on natural frequencies of stiffened 
cylindrical shells. Here the investigations of stiffeners are considered as discrete elements, energy method and Hamilt on principle 
are used to obtain equations of motion [13]. 

II. ANALYTICAL MODEL 
To define the equal extensional, coupling and bending of the complete stiffened structures in demand to calculate the global 
buckling load of the grid stiffened. It includes defining the stiffness impact of the stiffener. The smeared technique is a procedure of 
decreasing the stiffened cylinder into an equal laminate. A thorough framework of the phases trailed to progress the analytical 
model and the expectations through stand accessible underneath. In evolving the analytical model, a unit cell of the stiffener 
structure takes to be defined ahead. The unit cell is designated such that the entire iso-grid cell can be duplicated by replication of 
this unit cell [6]. 

 
Fig.1 Unit cell and coordinate system     Fig.2 Force diagram 

Primarily a unit cell is well-defined and the corresponding parameters are given for that unit cell and that specific unit cell is 
duplicated into a cylinder panel. It is the way to produce the effective complete panel through a unit cell as shown in Fig.1. In 
essential the stiffness effect of the stiffeners toward the entire structure, at this point the analysis is to be complete according to force 
and moment collaboration of the stiffeners. The thorough stiffness of the panel remains at that point supposed by smears toward the 
stiffener and the shell stiffness parameters permitting to the volume fraction of each individual.Now direction to perform the 
superposition of the A, B and D matrix (equivalent extensional, coupling and bending matrices) of the shell and stiffeners, the 
constitutive equation enlightened for the stiffeners necessities towards the position of the shell a purpose of the midplane strains and 
curvatures. In evolving this analytical model, the consequent outlooks are arranged. 
1) Unidirectional stiffeners consisting transverse modulus is significantly lesser than the longitudinal modulus, and the cross-

sectional dimensions stand likewise similar minor related to the length measurement; consequently, the stiffeners remain 
anticipated toward provision axial load merely. 

2) The strain is constant crosswise the cross-sectional area of the stiffeners. Therefore constant stress dispersal is recognized. 
3) The load is conveyed over shear forces among the shell and the stiffeners. 

 
A. Force Distribution[6] 
Heremid planecurvatures and strains of the skin stand specified by푘 ,푘 , 푘 and 휀 , 휀 , 휀 correspondingly. The equivalent strains 
on the innermost surface of the shell are detailed in expressions of the mid plane strains and curvatures through equation (1) [14]. 
Meanwhile the stiffeners remain complex toward the skin on this boundary; the strains by this boundary stand used as the matching 
state on behalf of the stiffener and the shell. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                                ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887 

            Volume 5 Issue XII December 2017- Available at www.ijraset.com 
     

870 ©IJRASET (UGC Approved Journal): All Rights are Reserved 
 

      휀 = 휀 +  푘  (푡/2) 
휀 = 휀 +  푘  (푡/2) 

      휀 = 휀 + 푘  (푡/2)     (1) 
 
Here‘t’ is the thickness of the shell. The strains achieved by Equation (1) essential to be resolute along the stiffeners directions 
meanwhile these remain the related strains. It is ended by premultiplying the border strains through the conversion matrix Equation 
(2) [15]. These outcomes in strains throughout the stiffener direction ɛl, normal to the stiffener directions ɛt and agreeing shear strain 
ɛltFig.1. 

휀
휀
휀

=  
푐 푠 푠푐
푠 푐 −푠푐

−2푠푐 2푠푐 푐 − 푠

휀
휀
휀

    (2) 

Where c = cos ( ), s = sin ( ) and stands the stiffener orientation angle. 
 
Accordance with theassumption (1), the changes of the transverse strain ɛt, and the shear strain ɛltare ignored. The longitudinal strain 
ɛl expression specified underneath by Equation (3) is achieved after the transformation relation shown by Equation (2). 

ɛl c2ɛx s2ɛθ scɛxθ     (3) 

The appropriate angle is replaced in Equation (3) to achieve the strains throughout all the stiffener orientation. Whereas in the 
circumstance of an iso-grid stiffener procedure such angles relate to 0o, 60o, & -60o.When the axial strains happening the stiffeners 
are originated, the consistent axial forces specifically F1, F2, F3 remain computed since the longitudinal strains, cross-sectional area 
and longitudinal modulus (El) of the stiffeners. Bring up to Fig.2 aimed at the force-free body figure of the unit cell. Equation (4) 
appended expressions the resulting three forces. 

F1 AElɛl AEl(c2ɛx s2ɛθ scɛxθ) 
F2 AEl ɛl2 AEl(c2ɛx s2ɛθ scɛxθ) 
F3 AEl ɛl3 AEl(ɛθ)      (4) 

The resultant forces on every edge of the unit cell are computed through the vectorial addition of the forces of the stiffeners. 
Summing up the x-direction forces on whichever the top or bottom side of the unit cell effects in Equation (5). 

Fx = F1cos ( ) + F2cos ( )     (5) 
 

Likewise summing up hoop path forces on either the left or right side of the unit cell effect in Equation (6). 
F = F1 sin ( ) + F2 sin ( ) + 2F3 (6) 
 

The expression of the shear force (Fx ), is done by addition of the force constituents throughout whichever of the rims of the unit 
cell. Execution of this on one of the vertical sides yields Equation (7). 
     Fx = F2cos ( ) – F1 cos ( )                 (7) 
 
The similar shear force equation will outcome level if the horizontal face is employed in its place of the vertical face meanwhile of 
the geometrical relationships among ‘a’, ‘b’, cos ( ), and sin ( ). 
Replacing Equation (4) by Equations (5), (6), (7): 

Fx   = AElc(c2ɛx s2ɛθ scɛxθ) + AElc(c2ɛx s2ɛθ scɛxθ) 
       = AEl(2c2ɛx s2cɛθ) 
F = AEls(c2ɛx s2ɛθ scɛxθ)  + AEls(c2ɛx s2ɛθ scɛxθ) + AEl(ɛθ) 
       =AEls(sc2ɛx  s 3 +2)ɛθ)       (8) 
Fx = AElc(c2ɛx s2ɛθ scɛxθ) - AElc(c2ɛx s2ɛθ scɛxθ) 

  =AEl( sc2ɛxθ) 
 

Here resultant forces, i.e. the force per unit length Nx, Nq, and Nθx, are reached through dividing the overhead force equations 
through the resultant edge width of the unit cell. Later executions of this and replacing the strain relations as of Equation (1), 
equations used for the resultant forces preceding the unit cell remain reached. 

Nx = 2푐 휀 + 2푐 푘 + 2푠 푐휀 + 2푐 푐푘  
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Nθ = 2푠푐 휀 + 2푠푐 푘 + (2푠 + 2)휀 + (2푠 + 2)푘    (9) 

Nθx= 2푠푐 휀 + 2푠푐 푘  
B. Moment Analysis[6] 
The moments because to the stiffeners are originated through the shear forces on the crossing point of the shell and the stiffeners. 
Since stability, these shear forces equivalent to the forces on the stiffeners computed in the earlier segment. The moment 
exaggerated by such forces on the midplane of the shell the same the forces multiplied throughone-half the shell thicknesses. 
Moment free body schematic in Fig.3 shows the dissimilar moments created through this force F. First Msh is of foremost attention 
Mean while it is the moment consequence of the shear forces on the shell. It can be detected later the free body diagram a net 
moment M effects on the shell/stiffener assembly. This moment indicates the coupling of moment and force resulting from the non-
symmetric structure of the shell/stiffener preparation.  

Fig.4 illustrations moment free body diagram of a unit cell. M1, M2, and M3 remain the moments causing from forces F1, F2, and F3 
correspondingly. 

 
Fig.3 Skin Moments Diagram     Fig.4 Rib Moments Diagram 

Subsequent the similar procedure as the force analysis on a unit cell, the resultant moments on the horizontal and vertical sides of 
the unit cell are computed. 

Mx = M1cos ( ) + M2cos( )       (10a) 
M = M1 sin ( ) +M2 sin ( ) + 2M3       (10b) 
Mx = M2cos ( ) – M1 sin ( )       (10c) 

The moments M1, M2, and M3 are computed through multiplying the consistent shear forces (F1, F2, and F3) through the lever arm, 
which is half the thickness of the shell. Creating such substitutes meant for the moments and dividing through the consistent edge 
lengths drive result in the resultant moments. Expression (11) illustrates the final effect later interpretation. 

Mx =  2푐 휀 + 2푐 푘 + 2푠 푐휀 + 2푐 푐푘  

Mθ =  2푠푐 휀 + 2푠푐 푘 + (2푠 + 2)휀 + (2푠 + 2)푘    (11) 

Mθx=
 2푠푐 휀 + 2푠푐 푘  

C. The Stiffness Matrix[6] 
Here both the equations (9) and (11) stand correspondingly the force and moment offerings of the stiffener, hereafter forth specified 
through the superscripts. These expressions stand précised in a matrix arrangement in Expression (12). The resultant matrix 
elements remain purposes of the midplane strains and curvatures of the shell. These remained resultant through investigating the 
force and moments in line for stiffeners. We specify such stiffness parameters as 퐴 ,퐵 ,퐶 .  
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⎢
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푁
푁
푀
푀
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⎥
⎥
⎥
⎤
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⎢
⎢
⎢
⎢
⎢
⎢
⎡
휀
휀
휀
푘
푘
푘 ⎥

⎥
⎥
⎥
⎥
⎥
⎤

  (12) 

 
By principal glimpse the stiffness matrix specified through Expression (12) influencing seem unsymmetrical(i.e. Aij≠Aji and 
Dij≠Dji), on the other hand because of the geometric relative among the parameters ‘a’, ‘b’, cos (ɸ) and sin (ɸ) these stiffness 
quantities are been revealed to be equal. It can moreover remain detected the identical Bij elements end since the autonomous force 
and moment analysis on the unit cell. It is in decent procedure with laminate theory, hereafter further authorizing the early 
expectations ended. 
Total force and moment of the panel remain the superposition of the force and moment because of the stiffener also the shell. These 
extents can stay straight covered, as the stiffener force and moment offerings must remain advanced relay on the midplane strains 
and curvatures. The rule of combinations is applied and the moments and forces remain covered allowing toward the volume 
fractions of the stiffeners and the shell of Expression 13. Vs and Vsh view for the volume fraction of stiffener and shell 
correspondingly. 

푁
푀 =  푉푁 +푉 푁

푉푀 +푉 푁
    (13 

In matrix expression 13 Nsh and Msh are the force and moment influence of the shell correspondingly. These extents are simply 
computed through smearing the laminate theory on the shell. Replacing force and moment terminologies for the stiffener network 
from Equation (12) and the resultant terminologies for the shell after the laminate theory results in the panel constitutive expression 
specified through Expressions 14. In this expression A, B and D signify the extensional, coupling, and bending stiffness quantities 
correspondingly. 

푁
푀 =  |  

 |  
휀
푘   (14) 

Resultant stiffness parameters achieved from Expression 14 endure therefore the equivalent stiffness parameters of the total panel. 

D. Buckling Load Calculation[6] 
Ritz method is implemented to compute the buckling load of the cylinder [14]. The entire potential energy of the cylinder π remains 
the totaling of the strain energy U and the effort finished through the external force V. 
The strain energy on behalf of an orthotropic cylinder is certain through Expression (15) underneath [14]. 

U = ∫ ∫ {퐴 + 2퐴 + + 퐴 + +  

+2 퐴 + 퐴 + + +  퐴 + −  퐵 +   

−2퐵
휕푣
휕휃 +

푤
푟

휕 푤
휕푥 +

휕푢
휕푥 +

휕 푤
휕푥 − 퐵

휕푣
휕휃 +

푤
푟

휕 푤
휕휃 − 2퐵

휕 푤
휕푥

휕푢
휕휃 +

휕푣
휕푥 + 2

휕푢
휕푥

휕 푤
휕푥휕휃  

−2퐵    + + 2 + – 4퐵 + +퐷    

+ 2퐷 +퐷  + 4 퐷   +  퐷  + 4퐷  ( ) }푑푥푑휃 (15) 
 

This strain energy is there a purpose of the equivalent stiffness parameters of the cylinder panel, the radius of the cylinder ‘r’ and the 
unidentified movement fields in the radial, axial and hoop direction ‘w’, ‘u’ and ‘v’ correspondingly. Meanwhile, the stiffened 
cylinder panel has remained reduced to an equivalent orthotropic laminate; Expression (15) is been adapted straight.The potential 
energy because of in-plane load remains in chance specified by Expression (16) below. In Expression (16) N remains the load per 
unit length smeared on the rim of the cylinder. 
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푣 =  ∫ ∫ 푁 ( )  푑푥푑휃    (16) 
The total energy of the cylinder is obtained by the strain energy ‘U’ and the potential energy term ‘V’ stand combined beside the 
circumference and the height ‘H’ of the cylinder.  
The displacement field u, v and w, are stand definite through kinematically acceptable functions, i.e., displacement fields satisfying 
the necessary boundary conditions. Hereafter they are projected through a double Fourier series that gratify the boundary condition 
necessities. On behalf of a simply supported end condition the displacement fields are specified through Expression (17) below [16], 

푢 =  퐴 cos(푚푥)sin (푛푠) 

푣 =  퐵 sin(푚푥)cos (푛푠) 

푤 =  ∑ ∑ 퐶 sin(푚푥)sin (푛푠)    (17) 
푚= mπ/L, 푛 = n/r, s = rθ, L=height of cylinder and m, n = 1,2,3…. 

Although on behalf of a clamped boundary condition the expression for u, v and w are specified through Eqn. (18) 

푢 =  퐴 푐표푠(푚푥)푠푖푛 (푛푠) 

푣 =  퐵 푠푖푛(푚푥)푐표푠 (푛푠) 

푤 =  ∑ ∑ 퐶 (1− 푐표푠(푚푥))푠푖푛 (푛푠)   (18) 
푚= mπ/L, 푛 = n/r, s= rθ, and m, n = 1, 2, 3… 

When the displacement fields remain definite, they are replaced by Expression (15) and (16) Combined between the limits of 
integration. We add the following expressions of the strain energy and the work done through the in-plane load and discover an 
overall expression on behalf of the total energy of the system. The total energy expression is a purpose of the stiffness matrix 
elements of the equivalent laminate and the unidentified displacement field constants Amn, Bmn and Cmn. Used for the equilibrium to 
stand stable, the total potential energy of the system essential are smallest. It can be satisfied by means of theoutcome of the first 
derivative of the total potential energy by reference to the unidentified coefficients Amn, Bmn and Cmn and equate to zero. It fallouts 
in an eigen value problem. 

E. Vibrational analysis and Structural response[11] 
Considering the cylindrical shell with constant thickness t, radius R, and length L. Middle surface of the skin is taken as areference 
surface of the where an orthogonal coordinate system (x, θ, z) is fixed. As shown in Fig.5, the x-axis is taken in the axial direction of 
the shell, where the θ and z-axes are in the circumferential and radial directions of the shell, respectively. The displacements of the 
shell are taken as u, ν, w in the x, θ, z directions respectively. The equations of motion for a cylindrical shell can be written by the 
Love theory in the matrix expression 19: 

퐿 퐿 퐿
퐿 퐿 퐿
퐿 퐿 퐿

푢
푣
푤

=   
0
0
0

                (19) 

Where: Lij(i, j = 1, 2, 3) – the differential operators with respect to x and θ. 

 
Fig.5 Co-ordinate system and circumferential modal shape [17] 
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Due to the satisfaction of the boundary conditions, the displacement u, v and w can be explained as double Fourier series [11] 

푢(푥,휃, 푡) =  퐴
휕휑 (푥)
휕푥 푐표푠(푛휃) 푐표푠(휔푡) 

푣(푥,휃, 푡) =  퐵 휑(푥)푠푖푛(푛휃) 푐표푠(휔푡) 

푢(푥, 휃, 푡) =  ∑ ∑ 퐶  휑(푥)푐표푠 (푛휃)푐표푠 (휔푡)               (20) 
In recent equations, Amn, Bmn and Cmn are coefficients of natural modes shape, which obtained from solving free vibration. For 
solving free vibrations, Tmn(t) =푒  is considered as a function of time, m is the number of axial half-wavelength, n is the number 
of circumferential half-wavelength and ωmn is the natural frequency in the mode of mn. To satisfy boundary conditions, axial and 
circumferential functions are explained as below. 

φ (x) =  훼 푐표푠ℎ
휆 푥
퐿 + 훼 푐표푠

휆 푥
퐿 − 휎 훼 푠푖푛ℎ

휆 푥
퐿 − 훼 푠푖푛ℎ

휆 푥
퐿

휙 (휃) = sin(푛휃)휙 (휃) = 휙 (휃) = 푐표푛푠(푛휃)
(푖 = 푢,푣,푤) 

In above equations, αi are constant coefficients which determined according to boundary conditions. λm is the root of non-linear 
equations and σm is the dependent parameter on λm which obtained according to boundary conditions. Free-Free supported 
conditions can be defined as below. 

휕 휙(푥)
휕푥 =  

휕 휙(푥)
휕푥 = 0 

1) Free Vibration Analysis[11]: Using Galerkin method and substituting Equation 20 into Equation 19, it can be written as: 
푐 푐 푐
푐 푐 푐
푐 푐 푐

퐴
퐵
퐷

=   0               (21) 

Where Cij(i, j = 1, 2, 3) – the parameters from the Lij after they are operated with the x and θ. 
For non-trivial solutions, one sets the determinant of the characteristic matrix in Equation 21 to zero: 

퐶  = 0 (i, j = 1, 2, 3)                (22) 
So the frequency equation can be obtained as:  

β1ω6 + β2ω4 + β3ω2 + β4 = 0               (23) 
where βi(i, j = 1, 2, 3) – the coefficients of Equation. 22. 
Solving Equation 23, one obtains three positive roots and three negative roots. The three positive roots are the angular natural 
frequencies of the cylindrical shell in the axial, circumferential and radial directions. The lowest of the three positive roots 
represents the flexural vibration, and the other two are in-plane vibrations. 

III. PARAMETRIC DESIGN 
Various parameters in Fig.6 associated with a cylindrical grid-stiffened structure can be listed as length L, radius R, kind of grid 
arrangement, height of stiffening ribs h, width of stiffening rib b, orientation of helical ribs a , number of stiffening ribs, distance 
among stiffening ribs a besides thickness t and ply arrangement of skin, etc[1]. Particular the length and radius of the structure, an 
optimal design implementation is fundamentally that of influential the design parameters that withstand the design loads with the 
desired factor of safety and least mass. For a cylinder of radius R subjected to axial compression F and bending moment M, the 
design load P is in use [18]: 

 푃 = 퐹 +               (24) 
Fig.6Design parameters panel of a grid-stiffened cylinder 



 


