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Abstract: Cognition in radio networks has led to architectural changes of wireless sensor networks. Software layer along with 
digital radio has made cognitive radio a reality. Primary Users working in licensed band face interference by opportunistic 
Secondary Users in CR-WSNs. The cognitive engine of a cognitive radio (CR) is assigned with some objective function, be it to 
maximize data rate, minimize interference, or some other optimization goal. The CR has a set of inputs: coding rate, channel 
access protocol, transmission power, center frequency, encryption algorithm, type of modulation, frame size etc. By changing 
these inputs, the cognitive engine tries to achieve some output of its objective function.  The spectrum is a resource that all nodes 
in the cognitive radio network fight over. Malicious nodes make use of this to jam users that are trying to share the spectrum. 
This paper focuses on learning methods that help secondary users minimize the effect of jamming. 
Keywords: Cognitive Radio; Dynamic Spectrum Access; Security Issues in CR-WSN;  

I. INTRODUCTION 
Wireless networks have grown as a natural extension of phenomenon that computer networks are growing at an exponential rate. 
And as the number of devices connected to each other and the Internet have grown exponentially [1], spectrum has been divided and 
sub divided to satisfy needs. These divisions did not transcend geographical spaces because it was sufficient that transmissions did 
not interfere with each other. During the time of the conception of the idea of spectrum division, this was the most important goal. 
Recent communication systems such as Long-Term Evolution (LTE), LTE-Advanced (LTE-A), and WiMAX have been designed to 
support high data rates and many users. Devices located at the edge of a cell are still prone to experience degraded service levels 
because of limited possibilities of reconfiguring terminals and networks depending on spectrum availability, inefficient spectrum 
usage, and non-optimal use of radio resources as well as insufficient flexible deployment of base stations (BSs). These limitations of 
femtocell technology have caused mobile operators to promote the use of Wi-Fi networks to offload traffic from their networks. 
KDDI Japan has offloaded 50% of its wireless traffic public hotspots and AT&T has moved in the same direction with hotspot 
connections [2]. 
A cognitive radio (CR) is an intelligent radio that can be programmed and configured dynamically. Its 
transceiver is designed to use the best wireless channels in its vicinity. Such a radio automatically detects available channels in 
wireless spectrum, then accordingly changes its transmission or reception parameters to allow more concurrent wireless 
communications in each spectrum band at one location. 
This process is a form of dynamic spectrum management. In response to the operator's commands, the cognitive engine can 
configure radio-system parameters. These parameters include waveform, protocol, operating frequency, and networking. This 
functions as an autonomous unit in the communications environment, exchanging information about the environment with the 
networks it accesses and other cognitive radios (CRs). A CR monitors its own performance continuously, in addition to reading the 
radio's outputs; it then uses this information to determine the RF environment, channel conditions, link performance, etc., and 
adjusts the radio's settings to deliver the required quality of service subject toan appropriate combination of user requirements, 
operational limitations, and regulatory constraints. 
Some smart radio proposals combine wireless mesh network—dynamically changing the path messages take between two given 
nodes using cooperative diversity; cognitive radio—dynamically changing the frequency band used by messages between two 
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consecutive nodes on the path; and software-defined radio—dynamically changing the protocol used by message between two 
consecutive nodes. Depending on transmission and reception parameters, there are two main types of cognitive radio[3]: 
Full Cognitive Radio also called as Mitola radio, where every possible parameter observable by a wireless node (or network) is 
considered. 
A. Spectrum-Sensing Cognitive Radio, in which only the radio-frequency spectrum is considered. 
B. Other types are dependent on parts of the spectrum available for cognitive radio: 
C. Licensed-Band Cognitive Radio[4], capable of using bands assigned to licensed users (except for 

unlicensed bands, such as the U-NII band or the ISM band. The IEEE 802.22working group is developing a standard for 
wireless regional area network (WRAN), which will operate on unused television channels. 

D. Unlicensed-Band Cognitive Radio [4], which can only utilize unlicensed parts of the radio frequency 
(RF) spectrum One such system is described in the IEEE 802.15Task Group 2 specifications, which focus on the coexistence of 
IEEE 802.11 and Bluetooth. Spectrum mobility: Process by which a cognitive-radio user changes its frequency of operation. 
Cognitive-radio networks aim to use the spectrum in a dynamic manner by allowing radio terminals to operate in the best 
available frequency band, maintaining seamless communication requirements during transitions to better spectrum. 

E. Spectrum sharing [5]: Spectrum sharing cognitive radio networks allow cognitive radio users to 
share the spectrum bands of the licensed-band users. However, the cognitive radio users must restrict 
them transmit power so that the interference caused to the licensed-band users is kept below a certain 
threshold. 

F. Sensing-based Spectrum sharing [6]: In sensing-based spectrum sharing cognitive radio networks, 
cognitive radio users first listen to the spectrum allocated to the licensed users to detect the state of the licensed users. Based on 
the detection results, cognitive radio users decide their transmission strategies. If the licensed users are not using the bands, 
cognitive radio users will transmit over those bands. If the licensed users are using the bands, cognitive radio users share the 
spectrum bands with the licensed users by restricting the transmission power. 

 
II. MODUS OPERANDI OF THE  

COGNITIVE RADIO 
Cognitive Radio is used is many wireless networks apart from just the wireless sensor network. For example, in MANET many CR 
is used to overcome the drawback of routing protocols. Cognitive Radio works with the digital radio controlled by the software, 
also called as Software Defined Radio. CR along with SDR has brought in a new dimension in wireless communication. The 
flexibility offered by the CR-SDR is opening new avenues in wireless transmission. A separate set of protocols are designed to 
dynamically manage the new network, which along with it brings some serious security drawbacks. Few of the security issues 
which needs to be mitigated are discussed in this paper. 
The CR works in a closed-cycle having only four functions shown in the figure 2.1 

 
Figure 2.1 Cognitive Radio Closed Cycle 

SDR were developed to support varying bandwidth for larger spectrum making use of white spaces or unused bandwidth in the 
precious natural resource the radio spectrum. In licensed band, often the users will not be used the frequency all the time, giving an 
opportunity for secondary users to use it temporarily. SDR with cognitive capabilities can change the operating variables both in 
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hardware level and software level. This changing in environment variables for a radio requires a processing capability called as the 
engine of cognition – Cognitive Engine. 
The self-learning part of this cognitive engine is what makes the CR the most promising communication device for the future 
responsible for dynamically changing radio environment. 

III. SECURITY ISSUES IN CRN 
A. Primary User Emulation Attack 
 In a cognitive network, the secondary users are required to vacate the band every time that they detect a primary user (owner of the 
frequency) attempting to transmit. Malicious users use this basic property to disrupt secondary user communication in an attack 
known as primary user emulation attack. 
The only way a secondary user can overcome this form of attack is if it can differentiate an emulation of the primary user from the 
actual primary user transmission [7]. Generally, in networking, authentication problems such as these are solved by requiring the 
transmitter of data to cryptographically sign all data. But this becomes tricky in case of cognitive networks, because the condition 
upon which unlicensed users can use licensed spectrum (as per the FCC) is that there be ―no modification to the incumbent system 
(i.e., primary user). Alternatively, location oriented and communication oriented methods of authentications can also be employed to 
overcome this PUE attacks in cognitive networks. 

B. Spectrum Sensing Data Falsification 
Also known as Byzantine attack where the intruder tries to modify the sensing data in the network [8]. This type of attack is difficult 
to identify and this ruin the integrity of data in the CRN. The fundamentals of cooperative spectrum sharing are under threat in 
byzantine attacks. Signal detections techniques employed are too expensive for the CRN and takes up a lot of energy cycles. Rather 
than communications of the network, the motes will be busy in managing the network which defeats the purpose of the cognitive 
radios. 

C. Sniffing / Eavesdropping 
A simple network layer attack is capturing the packets and reading the sensitive data [9]. In cognitive radio networks, the attributes 
and other antenna values are being transmitted and exchanged between the CRs at a high frequency. Capturing control channel is the 
endgame of the radios involved. A 25% success in sniffing will lead to entire network being taken over by the compromised node.  
This passive attack must be mitigated using the means of encryption, which again is a costly affair for wireless nodes running on a 
limited battery. Considering the ever-changing attributes of CRN encryption and decryptions needs to be changed very often. 

D. Intelligent Jamming Attack 
Illegal transmission of RF signals intending to disrupt the communications of PUs is not an easy one to counter in wireless networks 
[10]. Few of the methods employed are channel hopping and power allocation varying and sometimes a mix of both. The work 
proposed in this paper revolves around using the concept of zero-sum games from artificial intelligence in evading the intelligent 
jamming attack. The learning strategy used is Q-Learning [12]; to learn the policy of the jammer. 

 
IV. SYSTEM MODEL 

The spectrum environment has been modeled roughly similarly in most game formulations. We consider a model based on them all. 
We use pt = 0 to denote the channel is not being used by a PU at time t, and pt = 1, to denote that it is. Because a secondary user 
(SU) needs to be constantly aware of the presence of the license owner on the spectrum, we keep track of two probabilities pt01, the 
probability of the channel changing from an idle state to one of being occupied, in terms of primary user access, and pt10, the 
probability of changing from an occupied state to an idle one. 
The action set A, the set of available actions an SU can take, are decided based on the amount of information that it keeps track of 
for each state. If users keep track of the state history in terms of if the channel has been jammed in the previous state or not, we have 
a simpler action set wherein the user either decides to transmit on a previously jammed band, or decides not to. A more complicated 
action set would be to keep track of histories separately for control and data channels. The SU then has a more complex action set of 
choosing to retain the channel as a data (or control) channel, or switching to control (or data), or leaving the band idle. 
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An SU is only aware of jamming attempts on channels that it uses for signal transmission (by for e.g., absence of acknowledgments 
from the receiver). Channels the SU left idle will not reflect jamming attempts in their state histories. 
The reward a user gets depends on the success of transmission. If the transmission is a success, the payoff assigned is positive (the 
utility of the channel), if it is a failure the payoff negative (the cost of transmission), and if the channel is left idle the payoff zero. 
The user tries to maximize the expected payoff by choosing an appropriate policy. 
The game can now be modeled as a Markov Decision Process (MDP). Most literature considers channel hopping as the primary 
defense against jammers, but another defense strategy, manipulating power of transmission has been recently explored [11]. The 
focus is mostly on channel hopping. 
 
A. Formalizing reward and strategy 
A more complicated way of quantifying payoff would be to include other measures of QoS such as packet 
loss, jitter, or data throughput. But as mentioned we only consider the success of signal transmission. Formally, 

 
Where R (s, a) is the total reward at state ‘s’ on action ‘a’; 

represents successful transmission on channel l; 

represents jammed transmission; U and C respectively denote utility transmission and cost of transmission. 
Representing the value of being in a state as sum of expected rewards 

 
Where  is the value of the ithpolicy. 
Using the bellman equation, the above equation can be split into an expected reward at the current state, andthe value of the 
successive state, if followed policy π from the following state onwards. 

 
 
where s’ is every subsequent state reached 
policy πi, P(s’, a’ | s, a) is the probability of transitioning to state s’ and choosing action a’ (according to the policy) on taking action 
‘a’ from the current state ‘s’. 
The value function of the deterministic optimal policy must satisfy the Bellman optimality equation. 

 
The optimal policy is then the policy followed for the maximum value function. This policy is learned 
from Q-learning algorithm described in next section. Because the SU’s gain is the jammer’s 
loss, the same is modelled as a zero-sum game. 

V. LEARNING ALGORITHM USED IN MODELING 
A. Policy Iteration  
requires complete knowledge of the model. It is also highly computationally intensive because it requires the computation of value 
functions of all potential immediate next states. 
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ϒ denotes the discount factor, by which more value is assigned to immediate rewards than to rewards far away in the future. 
Q-learning is a temporal-difference learning method i.e., the value of a state is only used to back up to the previous state’s value. 

 
 
Here, α is the learning rate, set between 0 and 1. 
Value iteration requires a complete knowledge of analysis model, and thus it is computationally expensive. Also, this policy 
iteration is not used frequently in anti-jamming policy learning. For the same reason, the value iterations is not considered in the 
hypothesis presented in the following paper. 

VI. CONCLUSION 
In scenario of a single secondary user and a jammer learning method using Q-learning function, ϵ-greedy approach can be used. ϵ 
here, denotes the tradeoff between exploration and exploitation. With a small probability ϵ, the agent seeks to randomly choose one 
of the possible actions. With probability (1 - ϵ) the agent chooses to exploit already learned optimal behavior. 
The three agents used in the model are the environment, the secondary user and the jammer. Both secondary user and the jammer 
keeps track of the states that have been jammed. They both choose from the pool of previously jammed or non-jammed channel, 
depending on their learning methods. 
The environment agent is introduced with the sole purpose of consolidating the stats among all the three, which keeps the record of 
successful jams. 
Using these preconditions and running the model, we get the following graph for 10 channels and 2 preoccupied by primary users. 
 

 
Fig 6.1 Spectrum Activity Monitor graphs as speculated by the environment agent using artificial intelligence analysis. 

With just 20% of the channels being occupied by the primary user 1/3rd of the time, with an initial rate of being jammed 40% of the 
time, the rate should fall to around 12.1% by its 1000th run. Beyond the 6000th run of the game, the agents would have learnt how to 
best avoid each other’s policies and stagnate to around 10.5% jamming rate. 
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Whereas when as much as half the available channels are occupied by a primary user simultaneously, 1/3rd of the time, the jamming 
rate must fall from around 35%, and stagnates to around 12.3% in 600,000 runs of the game. 
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