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Abstract:  This paper deals with a two-layered mathematical model for blood flow through stenosed artery in porous medium 
under the effect of an applied magnetic field.  The model consists of a core surrounded by a peripheral layer.  It is assumed that 
fluids of both the region (core and peripheral) are Newtonian having different variable viscosities.  For such models, in 
literature, the peripheral layer thickness and slip are assumed a priori based on experimental observations.  The governing 
equation for laminar incompressible fully developed and Newtonian fluid by assuming  slip boundary conditions is solved by 
using the Frobenius method.  It is assumed that the surface roughness is cosine shaped and the maximum height of roughness is 
very small compared with radius of the unconstructed tube.  The effect of hematocrit and Harmann number these parameters on 
velocity (U), volumetric flow rate (Q)  and wall shear stress (ૌ) are obtained for both core region and peripheral region of the 
stenosed artery are computed graphically.  The analysis developed  here could be used to determine the more accurate values of 
the apparent variable viscosity of blood, agreeability, rigidity and deformability of red cells.  This information of blood could be 
useful in the development of new diagnosis tools for many diseases. 
Key words :  Stenosed artery, Two layer, Variable viscosity, Slip velocity, Blood flow, Magnetic field, Frobenius method. 

I. INTRODUCTION 
Many cardiovascular diseases such as due to the arterial occlusion is one of the leading cause of death world wide.  It is known that 
stenosis is a dangerous disease and is caused due to the abnormal growth in the lumen of the arterial wall.  The partial occlusion of 
the arteries due to stenotic obstruction not only restricts the regular blood flow but also characterizes the hardening and thickening 
of the arterial wall.  However, the main cause of the formation of stenosis is still unknown but it is well established that the fluid 
dynamical factors play an important role as to further development of stenosis.   The presence of a constriction (medically called 
stenosis) in the lumen of an artery disturbs the normal blood flow and causes arterial diseases (myocardial infarction and cerebral 
strokes). It is known that hydrodynamic factors (e.g. wall shear stress) play a pivotal role in the development and progression of 
arterial stenosis. Hematocrit is the most important determinant of whole blood viscosity.  Therefore, blood viscosity and vascular 
resistance affect total peripheral resistance to blood flow, which is abnormally high in the primary stage of hypertension.  Again 
hematocrit is a blood test that measures the percentage of red blood cells present in the whole blood of the body.  The percentage of 
red blood cells blood cells may as in adult human body is approximately 40-45%.  Red blood cells may affect the viscosity of whole 
blood and thus the velocity distribution depends on the hematocrit.  So blood can not be considered as homogeneous fluid.  Due to 
the high shear rate near the arterial wall, the viscosity of blood is low and the concentration of red blood cells is high in the central 
core region. 
There are many evidences that non-Newtonian behavior of fluids and the flow type (laminar and turbulence) are responsible for 
bringing a rapid change in hydrodynamic factors [4,5]. It is further understood that the hydrodynamic factors are influenced by the 
presence of plasma layer near the arterial wall, ratio between viscosities of blood and plasma and slip velocity at the arterial wall 
and hence that the mathematical modeling of blood flow through a stenosed artery is very important in view of developing the 
analytic formulas for computing plasma layer thickness, core viscosity and slip velocity at the arterial wall. In these models, the 
flow of blood is represented by one-layered model. Bugliarello and Sevilla [7] and Bugliarello and Hayden.   Lee  and Fung [6] have 
obtained the numerical results for the streamlines and distribution of velocity, pressure, vorticity and the shear stress for different 
Reynolds number in blood flow through locally constricted tubes.  Many authors [10, 11]have taken two-layered models and 
analyzed the influence of peripheral plasma viscosity on flow characteristics.  Srivastava and Srivastava [1], R. Ponalagusamy, R. 
Tamil Selvi [12]  Srivastava et al. [2]  and Srivastava and Rastogi [3] have considered the flow of blood represented by a two-
layered model. Srivastava and Saxena [9] have considered a two layered model (Casson–Newtonian) and presented the analytic 
expressions for velocity profiles, flow rates, wall shear stress and resistance to flow which are the same derived by Chaturani and 
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Ponalagusamy [6]. In all these models, the peripheral layer thickness is assumed a priori. It is, therefore, of interest to obtain an 
analytic expression for the calculation of peripheral layer thickness.  The study pertains to a situation in which the variable viscosity 
of blood depending upon hematacrit is taken into consideration.  It is assumed that the arterial segment is cylindrical tube and 
governing equations are solved by using Frobenius method.  The focus of this investigation is to obtain analytical expression for 
peripheral layer thickness and core viscosity in terms of measurable flow variables. The effect of Hartmann number, magnetic field 
and maximum Hematocrit at the center of the arterial segment on velocity profile, volumetric flow rate and wall shear stress are 
computed graphically and results are discussed through graphs. 

II. FORMULATION OF THE PROBLEM   
Consider an axially symmetric, steady imcompressible laminar and fully developed flow of blood through an arterial stenosis as 
shown in (Fig. 1). Here the flow of blood is represented by a two-layered model (a core of red blood cell suspension surrounded by 
a peripheral layer of plasma with variable viscosity (Fig. 1)). It is assumed that the rheology of blood in the core region and the 

peripheral layer has been characterized as a Newtonian fluid.   We shall take the cylindrical coordinate system  ( z, ,r  ) whose 
origin is located on the vessel (stenosed artery) axis.  

 

 

 

  

 
 
 

Fig. 1. Flow Geometry of stenosed artery. 

The consistency function ( )r may be written as  

                                          ( ) cr   for 10 (z)r R                                                                 (1) 

                                                     = p for 1(z) (z)R r R                                                             (2) 

Where c and  p are the viscosities of the central core fluid and the plasma respectively and  1(z) (z)R r R   are the radii of 

the central core region and the artery in the stenotic region.   
We assumed that blood is incompressible, suspension of erythrocytes in plasma and has uniform dense throughout but the viscosity 
µ(r) varies in the radial direction.  According to Einstein’s formula for the variable viscosity of blood taken to be   

                           0r   1 h rµ µ         

  (3) 
where µ0 is the coefficient of viscosity of plasma, α is a constant and h(r) stands for the hematocrit.  The analysis will be carried out 
by using the flowing empirical forula for hematocrit. 

                                              
0

( ) 1
m

rh r H
R

  
       

                                          (4)                in which R0 

represents the radius of a normal arterial segment, H is the maximum hematocrit at the center of the artery and (m≥2) a parameter 
that determines the exact shape of the velocity profile for blood.  The shape of the hematocrit profile given by equation (4) is valid 
only for very dilute suspensions of erythrocytes, which are considered to be of spherical shape.         
The non dimensional variables are  
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where u and v are velocity components in the axial z and radial r directions, p the pressure,  is the density, 0R is the radius of 

the normal artery, cz the one-fourth length of the stenosis 0 0L U  the average region and s is the maximum height of the stenosis 

(Fig. 1).  The quantities in the peripheral layer and in the central core are denoted by subscripts p and c, respectively ‘-over a letter 
denotes the corresponding dimensional quantity.  As per discussion made by Young(1968), the appropriate equations describing the 

flow in the case of a mild stnosis  / 1s R  , subject to the additional conditions (a) 0Re ( / ) 1p s L     (b) 

0 02 / ~ (1)R L o ,        

Central core region 10 ( )r R z  ,  

The non-dimentional governing equations of motion in the core region is, 

                                               
2

2
02

10
Re '( )

c c
c c

p

u up B u
z r r r r

 


  
        

   (5) 

                                              0 p
r


 


                                                                              (6) 

Peripheral region 1( ) ( )R z r R z  ,  

The non-dimentional governing equations of motion in the peripheral region is, 
 

2
2
02

1 ( )0
Re '( )

p p
p p p

p

u up rB u u
z r r r r k

 


  
      

    
  (7) 

0 p
r


 


                                                            (8) 

The non-dimentional boundary conditions are  

p su u at ( )r R z  

p cu u at 1( )r R z  

p c  at 1( )r R z           (9) 

0cu
r





 at 0r   

0pu
r





 at 0r   

where 
0

s
s

uu
U

 
 

 
 is the non-dimensional slip velocity (axial) and  is the shear stress.  The geometry of the stenosis (non-

dimensional form) is given by, 

0
0

00 0

2( ) ( )];  1 [1 cos
2
lR z z d when d z d l

lR R
         

       1          ; otherwise       (10) 
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where Where R(z) is the radius of the artery in the stenotic region, R0 is the radius of the normal artery, 0l  the length of stenosis, d 

length of non-stenosis and δ the maximum height of stenosis.  Where R1(z) is the radius of the central core region of constricted 
artery. 

III. METHOD OF SOLUTION  
With the use equations (3) and (4), the governing equation  (5) reduces to ,   

2
20
02 2

0 0

( ) 1c c c
c c

p

z r u up B u
z U R r r r

 


  
      

 

20
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p
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z U R r r r




        
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0 02

1 2
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


        
                    (11) 

With the use equations (3) and (4), the governing equation  (7) reduces to, 
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  (12) 

where 1 21a a   , 2a H . 

where 
0 0 0 02 20 0 0

0 00
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       and  2

0

'kk
R

    The 

Equations (11) and (12) can be solved subjected to the boundary conditions (9) using Frobenius method, Then only admissible 
series solution of the Equations (11) and (12) will exists and can put in the form  

2
0 0 2

1
0 01 0 04

pn n
c n n

n n

R U dpu C A r B r
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


 

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        (13) 

and  
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0 0 2
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pn n
p n n

n n

R U dpu C A r B r
a z dz




 


 

  
      (14) 

where 1 2,C C , nA and nB are arbitrary constants.  

To find the arbitrary constants 1C  and 2C , we use the slip boundary condition (9) and obtained as  
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                                                                     (16) 

Substituting the value of cu and pu from equations (13) and (14) in to equations (10) and (11) we get, 

2 2 2
1 1 2 1 2

0 0 0
( 1)( ) ( ( 1) )m n m n n
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n n n
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  
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Equating the coefficient of 1 2,C C ,
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 in equation (15) and (16) we have  
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Hence the constants nA and nB  are obtained by equating the coefficients of 1nr   and 1nr   from both side of equations (17), (18) 

and (19) respectively, we get 
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with  0 0 1A B                 (24) 

Substituting the expressions of 1C and 2C  in the equations (13) and (14), we have the velocity profile for the arterial segment in the 

radial direction is 
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       (27) 

The flow rate through the core region in the stenosed artery cQ  is defined as  
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which on using Equation (25), gives 
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Similarly, the flow rate through peripheral layer in the stenosed artery pQ  can be written as 
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The total flow rate of the stenosed artery is  c pQ Q Q   
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             (31) 
The wall shear stress on the endothelial surface is given by 
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IV. RESULTS AND DISCUSSION 
The analytical expression for velocity component, Volumetric flow rate and wall shear stress are obtained.  The effect of magnetic 
field , Hartmann number and maximum Hematocrit at the center of the arterial segment on velocity, flow rate and pressure gradiant 
are computed graphically. In this section we are discuss the effect of various parameter on the flow characteristics graphically with 
the use of following numerical data which is applicable to blood.    

d=0.25, H=0.2,  m=2, M=2.5, α=2.5, l=0.5. 

 
Fig. 2 :Velocity distribution length of the stenosis  at z=2.5 with r  for different values Hartmann number M,  when  hemotocirt 

H=0.2, frequency parameter α=2.5. 
 

 
Fig. 3 : Velocity distribution length of the stenosis at z=2.5 with r for different  values hematocrit H, when Hartmann number 

M=2.5, frequency parameter α=2.5 
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Fig. 4: Flow rate Q with varying length of the stenosis Z/L for different Hartmann number M, Hematocrit H=0.2, frequency 

parameter α=2.5. 

 
Fig. 5: Flow rate Q with varying length of the stenosis Z/L for different Hematocrit H, Hartmann number M=2.5, frequency 

parameter α=2.5. 
 

 
6: Wall shear stress ૌ with varying length of the stenosis Z/L for different Hartmann number M,    Hematocrit H=0.2,  frequency 

parameter α=2.5. 
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Fig. 7: Wall shear stress ૌ with varying length of the stenosis Z/L for different Hematocrit H,  Hartmann number M=2.5, frequency 

parameter α=2.5. 

Figure 2 & 3 shows that the axial velocity profile gradually increases with increase of Hartmann number M and Hematocrit H.  This 
fact lies within the hematocrit as the blood viscosity is high in the stenosed artery due to the aggregation of blood cells rather than 
low viscosity in the plasma near the arterial wall.   Figure 4 & 5 shows that  the volume flow rate  increases with the increase of 
Hartmann number and hematocrit H. Figure 6 and 7 gives the distribution of the wall shear stress for different values of the 
hematocrit H and Hartmann number M.  We observe from figure 6  shows that wall shear stress increases as the increase of  
Hartmann number M. Figure 6  shows that wall shear stress decreases as the increase of  Hematocrit H.   One can note from these 
figures that pressure gradiant is low at the throat of the secondary stenosis as well as at downstream of the artery. 

V. CONCLUSION 
A two-layered model of blood flow through a stenosed artery with variable viscosity peripheral layer thickness and variable slip 
velocity at the wall has been considered.  The model consists of a cored surrounded by a peripheral plasma layer.  Both the fluids 
(core and peripheral layer) are assumed to be non-Newtonian having different viscosities.  The analytic expressions for peripheral 
layer thickness and core region with variable viscosities of the slip velosity, flow rate and wall shear stress have been obtained (27, 
31 and 32).  A theoretical study of blood flow through a stenosed artery in the presence magnetic field has been carried out.  In this 
study the variable viscosity of blood depending on hematocrit.  The problem is solved analytically by using the Frobenius method.  
Finally we can conclude that further potential improvement of the model are anticipated.  Since the hematocrit positively affects 
blood pressure, further study should examine the other factors such as diet, tobacco, smoking, overweight etc. from a cardiovascular 
point of view.  Moreover on the basis of the present results, it can be concluded that the flow of blood and pressure can be controlled 
by the application of an external magnetic field.  All the flow characteristics are found to be affected by the influence of applied 
magnetic field with profile velocity stenosis. 
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