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L. INTRODUCTION AND PRELIMINARIES

For the last three decades, the numerous articles are being published regarding Fixed point theory by the great impact on the most
powerful theorem “Banach Contraction Mapping Principle”. In 1969, S.B. Nadler [1] introduced the notion of Libschitz inequality
for multivalued mappings and generalized the classical Banach contraction theorem. Recently, Azam et al. [2] established a
remarkable result on generalizing the Banach Contraction Mapping Principle. They defined a metric space, called complex valued
metric space where the set of complex numbers is used instead of the set of real numbers. They also obtained some generalizations
of Banach's result in the newly generalized space. Furthermore they overcome the rational expressions in cone metric spaces with
the complex valued metric spaces. The Fixed point theory in complex valued metric spaces is very useful not only in Mathematical
Analysis but also in Physics, Chemistry, Engineering, etc,. Many generalizations of Theorem 4 of [2] were established in directions
including replacing the constants with functions or generalizing the contractive condition, etc,. See [3] - [10].
Ahmed et al. [11] introduced the notion of multivalued mapping in complex valued metric space and established some
common fixed point theorems for multivalued mappings under new contractive condition which is in form ‘element-set
relation’. In the sequel, research articles have been published on generalizing the results of [11]. See [12] - [13].In this paper,
we introduce some new notions on complex valued metric spaces. Also, we generalize the results of Azam et al. [2] and obtain
some new fixed point theorems in complex valued metric spaces. An example is given to illustrate our result.
The following are the prerequisite for the sake of understanding.
Let C be the set of complex numbers and z;,z, € C. Define a partial order < on C as follows:

z, 3 z, ifand only if Re(z,) < Re(z,) and Im(z,) < Im(z,).

It follows that z, < z, if one of the following condition is satisfied:
e(z;) = Re(z,), Im(zy) <Im(z,),
()< Re(zz), Im(z1) = Im(zz),

e(z,) < Re(zy), Im(z)) < Im(z,),

(Z1) = Re(zz), Im(z1) = Im(zz),

In particular, we will write z, < z, if z; # z, and one of (i), (ii) and (iii) is satisfied and we will write z; < z, if only (iii) is
satisfied. Note that
032z 32z, =|z1] <z,

2y 329,29 <Z3 = 71 <Z3.
A. Definition
Let X be a nonempty set. Then (X, d) is called a complex valued metric space with metric d if the mapping d: X < X — C, satisfies
the following conditions:
1) 0=3d(x,y) forallx,y € Xandd(x,y) =0ifandonlyif x = y.

©IJRASET (UGC Approved Journal): All Rights are Reserved




International Conference on Mathematical Impacts in Science and Technology(MIST-17), November 2017

2) d(x,y)=d(y,x), forallx,y €X.
3) d(x,y) 2d(x,z)+d(zvy), forall x,y,z €X.

B. Definition

Let (X, d) be a complex valued metric space. Then

a sequence (x,,) in X is a Cauchy sequence if for every 0 < ¢ € C, there exists an integer N such that d(x,,, x,,,) < c for all

n,m = N.a sequence (x,,) in X converges to an element x € X if for every 0 < ¢ € C,

there exists an interger N such that d(x,,,x) < cforalln > N.

1) Lemma 1.1: Let (X, d) be a complex valued metric space and let (x,,) be a sequence in X. Then (x,,) converges to x if and only
if |d(x,,x)] > 0as n - oo.

2) Lemma1.2:: Let (X,d) complex valued metric space and let (x,,) be a sequence in X. Then (x,,) is a Cauchy sequence if and
only if |d(x,, x,)| = 0as m = n — oo. Let (X, d) be a complex valued metric space. Denote the family of nonempty, closed
and bounded subsets of complex valued metric space (X,d) by CB(X).

3) Definition 1.3: [11] Let (X, d) be a complex valued metric space. Let T: X — CB(X) be a multivalued map. For x € X and
A € CB(X), define

W, (A) = {d(x,a).a € A}.
Thus, for x,y € X, Ty € CB(X)
W, (Ty) = {d(x,u):u € Ty}.Here we give the corrected version of Definition 5 of [11].

4) Definition 1.4: [11] Let (X, d) be a complex valued metric space. A subset A of X is called bounded from below if there exists
somez € Csuchthatz < d(a,b)foralla,b € A.

5) Definition 1.5: [11] Let (X, d) be a complex valued metric space. A multivalued map F: X — 2 is called bounded from below
if for each x € X, there exists z, € Csuchthatz, <uforallu € Fx.
6) Definition 1.6: [11] Let (X, d) be a complex valued metric space. A multivalued map T: X — CB(X) is said to have the lower
bound property (I.b property) on X, if for any x € X, the multivalued map F: X — 2¢ defined by
Fx =W, (Ty)

is bounded from below. That is, for x,y € X, there exists an element I,(Ty) € C such that I, (Ty) < u, for all u € W, (Ty), where
I.(Ty) is called a lower bound of T associated with (x, y).

7) Definition 1.7: [11] Let (X, d) be a complex valued metric space. A multivalued valued map T: X — CB(X) is said to have the
greatest lower bound property (g.1.b property) on X, if a greatest lower bound of W, (Ty) exists in C for all x,y € X. Denote
d(x,Ty) by the g.l.b of W, (Ty). That is,

d(x,Ty) = inf{d(x,u):u € Ty}.

Now let us introduce some notions on the set of complex numbers as follows. Denote
u(zy) ={z € C:z; 3z} and
u(a,B) = Npepu(d(a b)) =Npes(z € C:0=3 d(a,b) S 2)
u(4,B) = (Ugeau(a, B)) N(Upepu(b, 4)) A, B € CB(X).
8) Definition 1.8: Let (X, d) be a complex valued metric space. A nonempty subset A of X is called bounded from above if there
exists some z* € Csuch that d(a,b) < z* foralla,b € A.
9) Definition 1.9: Let (X, d) be a complex valued metric space. A nonempty subset A of X is called bounded if there exist z and
z* inC suchthatz < d(a,b) S z* foralla,b € A.
10) Lemma 1.3: Let C be the set of complex numbers with the partial order < defined on C. A nonempty subset A in C is bounded
with an upper bound z* = x* + iy* and a lower bound z = x + iy iff A can be covered by the rectangle with vertices
(), (x7 ), (x,y") and (x*, y").
11) Definition 1.10: Let (X, d) be a complex valued metric space. A multivalued map F: X — 2% is called bounded from above if
for each x € X, there exists z; € Csuchthatu < z; forallu € Fx.
12) Definition 1.11: [13] Let (X, d) be a complex valued metric space. Let S: X — CB(X) be a multivalued mapping and a: X —
[0,1) such that a(u) < a(x) forallu € Sx andV x € X.
Let Q be a family of functions
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Q ={a:a:X - [0,1) such that a(u) < a(x) forallu € Sx andV x € X}.

1. MAIN RESULTS
In this section, we establish some fixed point theorems which generalize recent results including Theorem 4 of [2].
Let ¢ be a family of non-decreasing functions ¢p: C — C such that ¢(0) =0 and ¢(t) S t whent # 0.

A. Theorem 2.1
Let (X, d) be a complete complex valued metric space and let the functions «, 8,y,6,n,1, € beinQ suchthata+ g+ y+2§ +

2n+yu<land ¢ €. If §,T:X — CB(X) be multivalued mappings with g.l.b property such that
(x,5x)d (x,Ty)
u(@(@()d(x,y) + Bx)d(x, Sx) +y()d(y, Ty) + 8() o2
d(ysx)d(y,Ty) d(x,sx)d(y,Ty) d(ysx)d(x,Ty)
+ T](X) 1+d(x,y) + 'u(x) 1+d(x,y) + E(X) 1+d(x,y) ))

CUSK TY) e e e Q)
forall x,y € X. Then S and T have a common fixed point.

1) Proof: Let x, be an arbitrary point in X and x; € Sx,. For x = x, and y = x, our hypothesis (1) implies that

u(p(alxo)d(xg, x1) + B (xo)d(xg,Sx) + ¥ (xp)d(xy, Tx;) + 5(x,) Ao, $%)d(xo Tx1)

1+ d(x,%;)
+1(x) 1+d(xg.x1) + u(axo) 1+d(xg,x1) *+§(xo) 1+d(xox1) 2

S u(Sxq,Txy)
Since d(x,,Sx,) = 0, we get
B (alxo)d(xo,x1) + B(x0)d(xg, Sxo) + ¥(xo)d(xy, Tx;) + 6(x,) dxo, $%0)d(xo, Tx1)

1+d(xy,x,)

d(xg Sx0)d(xq,Tx1)
+,u(x0) 1+d(xg.x1)

Then there exists x, € Tx, such that z € u(Sx,, Tx,) implies z € u(x,,Sx,) and for all s € Sx,, z € u(x,,Sx,) =z €
u(d(x,,5)),x, € Tx;. S0z € u(Sx,, Tx,) implies z € u(d(x,, x,)), some x, € Tx; and x; € Sx,. It follows that

P (a(xo)d(xg,x;) + B(x0)d(xg, Sx0) + ¥ (x0)d (xy, Tx;) + 6(x0) dxo, $%0)d(xo, Tx1)

1+ d(xg,x,)
d(x9,Sxg)d(x1,Tx1)
+u(x,) T irdGroxs) ) € u(d(xy x1))

By the definition of u, we have that
d(xz, 1) 3 @(alxg)d(xg, x1) + B(x0)d(xg, Sx) + ¥(x0)d(xy, Tx,)

d(x9,5x0)d(x9,Tx1) d(x9,Sxg)d(x1,Tx1)
+6(X0) 1+d(xp,x1) +,u(x0) 1+d(x9,x1) )

= d(xy,x) 3 alxg)d(xg,xq) + B (xg)d(xg, Sxo) + y(xe)d(x1, Txy)

d(x9,Sxg)d(x9,Tx1) d(x9,Sxg)d(x1,Tx1)
+6(X0) 1+d(xp,x1) +,u(x0) 1+d(xp,x1)

Since d(xy, Sx;) S d(xg,x;) and d(xy, Tx;) = d(xg,x,), We have
d(xy,x1) 3 alxg)d(xg, x1) + B(xo)d(xg, x1) + ¥ (xo)d(xq,x7)

d(xg.x1)d(x9.x2) d(xg.x1)d(x1.x7)
+6(X0) 1+d(x9,x1) +,u(x0) 1+d(xg,x1)

) € u(Sxy, Tx;)

Now, we get that
|d (xy, x| < laCxeo)l|d (g, x| + 18 el d (e, x| + Ny (o)l [d (xy, x5)]

+|6(X0)|| 1+d (xg.x1) | +1uCeo)ll 1+d(x9.x1) |

< la(xo)lld (o, x1)] + 18 (e l1d (xo, x1)] + 1y (o) l1d (xy, x5) |
+[8 (o)l (g, )| + lu(xo)1d (x1, ;)]
= ( a(xy) + B(x,) + 6(x0))|d(x01x1)| + (y(xo) + 6(x0) + +u(xy))
ldCxy, %)
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a(xp)+B(xg)+8(xp)
= 1Al < o G satoy 1400 X1

e, [d(, )] S A d(g, X))y e, 2
_ a(xg)+B(xg)+6(xg)
Where 41 = T o) oo - +aCro))
Put x = x, and y = x; in (1), we have
u(p(a(xy)d(xy, x;) + B(x,)d(x,, Sx,) + y(x,)d(xy, Txy)

d(x2,5x7)d(x2,Tx1)
1+d(xz,x1)

d(x1,5x7)d(x1,Tx1)
1+d(xz,01)

+6(x,) + n(xz)

d(x2,5x7)d(x1,Tx1)
1+d(xz,01)

d(xq,5x2)d(x7,Tx1)
1+d(x2,x1)

+ulxz) +$(x2) )

< u(Sx,, Tx;)

Now x, € Tx; implies d(x,,Tx,;) =0, so

u(P(alxx)d(xy, x1) + Bxx)d(xy, Sx;) + y(x)d(xy, Txy)

d(x1,5x3)d(x1,Tx1) d(x; Sx2)d(x1,Tx1)
+ n(xz) 1+d(x2,%x1) + ,u(xz) 1+d(x2,%1)

S u(Sx,, Txy)
Since there exists x5 in Sx, such that z € u(Sx,, Tx;) = z € u(x3,Tx,). It follows that z € u(Sx,,Tx,) = z €
u(d(x;,t)) for all t € Tx,. Therefore z € u(Sx,,Tx;) = z € u(d(x3,x,)). Now we have

P (alxy)d(xy,x,) + B(xy)d(xz, Sx,) + y(x,)d (xy, Txy)

d(x1,5x3)d(x1,Tx1) d(x2,5x7)d(x1,Tx1)
+ n(xz) 1+d(x2,%x1) + ,u(xz) 1+d(x2,%x1)

€ u(d(x3,x,))

)

By the definition of u and g.l.b property, we have
d(x3,x3) 3 d(alxr)d(xz,x1) + B (x2)d(x, x3) + ¥ (x2)d(xy, x5)

d(xq1,x3)d(x1,x2) d(xz.x3)d(xq1.x7)
+ n(xz) 1+d(x2,%x1) + ,u(xz) 1+d(x2,x1)

S a(xy)d(xy, xp) + B(xx)d(xy, x3) + y(x)d(xq, x5)

d(x1,x3)d(x1,x2) d(x2,x3)d(xq.x7)
+ n(xz) 1+d(x2,%1) + ,u(xz) 1+d(xy,xq)

Because d(x,,x;) S 1+ d(x,,x,), We obtain

d(x3,x;) S axy)d(xy, x1) + B(x)d(x,, x3) + v (x,)d(xy, x7)

+1(xy)d (xq, x3) + p(x,)d (x5, x3,)
By the property of functions in €,
d(x3,x;) S alxg)d(xy, x1) + B(x)d(x,, x3) + v (xp)d(xy, x7)

+1(xo)d (xq, x3) + pu(xe)d(x3, x,)
Now , by taking absolute value of complex numbers, we get

|d (3, x,)] < la(ep)l[d(xy, x| + 18 (o)l [d(xz, x3) | + |y (xo)1d (xy, x2)]

+ |7 (o)l ey, 23)| + [ (o)l d (xs, x,)]
g < (a’(xo) +y(xy) + n(xo))ld(xz,xl)l
+(B(x) +1(x) + ulxo))d(x3, x;)|
Therefore
a(xo) +y(xo) +n(x,)

|d (3, x2)] < 1— (B(x,) +1n(x,) + u(xy))

|d (2, x|

_ alxg)+y(xe)+n(xo)
Where A2 = T sty rGror e

Let 2 = max{4,,4,}.
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Thus from (2) and (3), there exists a sequence (x,,) in X such that x,,,,, € Sx,, and x,,,,5 € Tx5,41, 1 =0,1,23, -
satisfying the criteria
|d(%pt1, X)) < AMd(xq, x,)], for all n.
Now for m= n, we have
ld (2] < 1d Qe X )] + 1d Qe X)L+ -0+ [d (g, X30)|
< P+ A+ 7 d (%)

An
< E511dGe, xo))
As m>=n - oo = |d(x,, x,)| = 0. Therefore the sequence (x,,) is a Cauchy sequence. Since X is a complete complex

valued metric space, there exists an element p in X such that (x,,) converges to p.
Now we claim that p € Tp. For that, let x = x,,,, ¥y = p in (1), we have

u(¢(a(x2n)d(x2nv P) + ﬁ(xZn)d(xvastn) + y(xZn)d(pv TP)

) d(x2n.Sx2n)d(x2n.TP)

) d(p,Sx2n)d(p,Tp)
14+d(x2n.0)

+8(xzn 1+d (2 p)

+ n(xZn

d(x2n,Sx2n)d(p.Tp)
1+d(x2n.p)
S u(Sxy,, Tp)
Now there exists p,, € Tp such that z € u(Sx,,,,Tp) = u(d(p,,s)), for all s € Sx,,,. It follows that z € u(Sx,,,,Tp) =
z € u(d(py, X2n41))- Therefore,

u(¢(a(x2n)d(x2nv P) + ﬁ(xZn)d(xvastn) + y(xZn)d(pv TP)

d(p.Sxan)d(x2n Tp)
+ &(xp,) #m;;l))

+u(x)

) d(x2n,Sx2n)d(x2n.TP)

) d(p,Sx2n)d(p,Tp)
1+d(x2n.p)

+8(xzn 1+d (2 p)

+ n(xZn

Ad(X21,Sx2n)d(p. Tp)
NS e vvroamen

c u(d(x2n+11 pn))

d(p,Sx2n)d(x2n.Tp)
+ &(xyp) #»

This implies that

A(X2n41,P0) S P(a(x2)d (x5, 0) + B(x2)d (x50, SX50) + ¥ (x20,)d(p, Tp)
d(x2n.Sx2n)d (x2n.TP) d(p.Sxzn)d(p,Tp)
+6(X2n) 1+d(x2n.p) * Tl(xzn) 1+d(x2n.0)
d(x2n,Sx2n)d(p.Tp) d(p,Sxan)d(xz2n,Tp)
+H(x2n) 1+d(xan.p) + f(xzn) 1+d (xz0.0) ))

5 a(xZn)d(xva P) + ﬁ(xZn)d(xvastn) + y(xZn)d(pv TP)
d(x2n,Sx2n)d(x2n,TP) d(p,Sx2n)d(p,Tp)
+6(X2n) 1+d(x2n.,p) * Tl(xzn) 1+d(x2n,p)
d(x2n,Sx2n)d(p,Tp) d(p.Sx2n)d(x2n Tp)
) 1+d(x20,0) + f(xzn) 1+d(x2n,p) )

5 a(xZn)d(xva P) + ﬁ(xZn)d(x2n1x2n+1) + y(xZn)d(pv pn)
d(xan, )d(x2n.0n) a(p, )d(p.pn)
) xznijZ;Zn Zjf)zn Pn + n(xZn) Pszz-;n :)Pn
d(x2n,xz2n+1)d(®.pn) d(px2n+1)d(xX2n.pn)
1+d(x2n,p) + f(xzn) 1+d(x2n,p) )

+:u(x2n

+6(x2n

+:u(x2n)
Therefore,

|d(x2n+1,pn)| = la(xZn)”d(xvaPN + |ﬁ(x2n)”d(x2nvx2n+1)| + |V(x2n)||d(P,Pn)|
+18 (x| L2280 mP0) |y | (|| L2 X2ne)ADPR)

1+d(x2n.p) 1+d(x2n.p)
d(xop.x: )d(p.rn) d(px )d(x2n.Pn)
MG v el | rverommesmmnl

< a(xo) 1d(xyn, p)| + B(xo) ld(xXap, xon1)| + ¥ (x0) [d(p, po)I

d(xznX2n+1)d(X2n.pn) d(px2n+1)d®.pn)

+6(X0) 1+d(x2n.0) * Tl(xo) 1+d(x2n,p)
d(x2nxz2n+1)d(®.pn) |d(p,x2n+1)d(x2n,pn)
+,u(x0) | 1+d(x2n.0) * f(x()) 1+d(x2n,p)

Since d(x,,,p) — 0 as n tends to co, we have that lim |d(p, p,,)| <y (xo)ld(p, p,)I.
n—-oo

Because y(x,) < 1, we get tht |d(p, p,)| — 0 asn — 0. Hence lim p, = p.
n—oo
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Since p,, € Tp for all n and Tp contains all its limit points, p € Tp.
Similarly we can prove that p € Sp.
Thus p is a common fixed point of Sand T, i.e., p € Sp N Tp.

B. Corollary 2.1
Let (X, d) be a complete complex valued metric space and leta, 8,y,8,n, 14, § € Q suchthata+f +y + 25§ +2n+u <1land
k €[0,1]). If S,T: X - CB(X) be the multivalued mappings with g.l.b property such that

d(x,Sx)d(x,Ty)

u(k(@()d(x,y) + B, 5x) + Y (), Ty) + 6(x) L2204

d(y,sx)d(y Ty) d(x,Sx)d(y,Ty) d(y,sx)d(x,Ty)
+ T](X) 1+d(x,y) + 'u(x) 1+d(x,y) + E(X) 1+d(x,y) ))
< u(Sx, Ty)

for all x,y € X. Then there exists a fixed point p of S and T such thatp € Sp N Tp.
1) Proof: Consider the function ¢(z) = kz, for k € [0, 1]. Now by Theorem 2.1, we can easily be proved.

C. Corollary 2.2
Let (X, d) be a complete complex valued metric space and let a, 8,y,6,n,u,§ € Q suchthata+ g +y +25§ +2n+u<1l.Ifa
multivalued mapping T: X — CB(X) with g.l.b property such that

u(a(x)d(x,y) + F(x)d(x, Tx) + y(x)d(y, Ty) + 6(x) L4

1+d(x,y)
d(y.Tx)d(y.Ty) d(x,Tx)d(y Ty) d(y,Tx)d(x Ty)
+ T](X) 1+d(x,y) + 'u(x) 1+d(x,y) + E(X) 1+d(x,y) )
< u(Tx,Ty)

for all x,y € X. Then T has a fixed point p in X.

1) Proof: If we take S =T in Theorem 2.1, we can obtain thatp € Tp, p € X.
Let (X, d) be a complete complex valued metric space and let a, 8,v,6,n,u,§ € Q suchthata+ B +y +26 +2n+u < 1. If
S,T:X —» CB(X) be the multivalued mappings with g.l.b property such that
(x,Sx)d (x,Ty)
u(k(@(@)d(x,y) + BE)d(x, Sx) +y(0)d(y, Ty) + 8() T

d(y.sx)d(y Ty) d(x,Sx)d(y,Ty) d(y,sx)d(x,Ty)
+ T](X) 1+d(x,y) + 'u(x) 1+d(x,y) + E(X) 1+d(x,y) ))

c u(Sx, Ty)
(x) =&suchthata + B +y + 26 + 2n + u < 1. Now by the Theorem 2.1, there exists a point p in X such thatp € Sp n
Tp.

D. Corollary 2.4
Let (X, d) be a complete complex valued metric space and let the self-mappings S, T: X — CB(X) satisfy
d(x,Sx)d(y, Ty)

u(ad(x,y) +u T+d(ry) ) S

u(Sx, Ty)
for all x,y € X, where a and u are non-negative real numbers provided @ + u < 1. Then S and T have a unique common fixed
point.

1) Proof: Take g =y =8 =n =& = 0in Corollary 2.3, we obtain a fixed point p of S and T. Let q be an another common fixed
point of S and T. Now by our hypothesis, we have that
d(p,Sp)d(q.Tq)

T(Pﬂ)) < u(Sp,Tq)

u(ad(p,q) +u

ie., u(ad(p,q)) c u(d(p,q))
= d(pq) 3 ad(p,q)
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= (1-a)d(p.q) 30
= P =q.
Hence S and T have a unique common fixed point.

a) Remark 2.1: Let (X, d) be a complete metric space and C = R. If S = T is a self-mapping on X to itself, then u(ad(x,y)) c
u(d(Tx, Ty)) is a set version of contractive condition.

b) Example 2.1: Let X = [—1,0] be a complete complex valued metric space with the metric defined by d(x,y) = |x — y| eig.
Define

sx=[0%], xe[01] andTy=[02], ye[-10]

=0, x € [-1,0] = y €[0,1]
Now we have that

1 ,:E
u(Sx, Ty) = {u (Z |x - |y||e 6), x €[0,1] andy €[-1,0]
0 otherwise

lx + yle's, x €[0,1]

d(x,y) = { andy € [-1,0]

LT
|x —yle's otherwise
Leta = % and u be positive real numbers with ¢ + u < 1.

.1 P P Z iZ d(x.$x)d(y.Ty)
- —_ < < NI N YT

Since lx — |y|le's 3 |x + yle's and |x + yle's < |x + yle's + u T

d(x,Sx)d(y,Ty)

raGey) ) < u(Sx, Ty) is satisfied. Hence by Corollary 2.4, S and T have a

Thus, for x,y € X, u (alx + yleiE +u

unique common fixed point, 0 € SO N TO.

E. Corollary 2.5
Let (X, d) be a complete complex valued metric space and let the mappings S, T: X — X satisfy

d(x,5x)d(y,Ty)
d(Sx,Ty) S ad(x,y) +p L2000

for all x,y € X, where a and u are non-negative real numbers provided @ + u < 1. Then S and T have a unique common fixed
point.
1) Proof: For any two complex numbers z; and z; such that z; < z, implies u(z,) S u(z;). Since for x,y € X, the hypothesis

() is satisfied,
w(ad(x, y) + u S5, ¢ y(sx, Ty) holds
Now by Corollary 2.4, we can obtain a unique common fixed point.
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