

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 2017 Issue: onferendelonth of publication: December 2017 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Lower level subsets of an anti-fuzzy HX ideal of a HX ring

R. Muthuraj¹, N. Ramila Gandhi²

¹ PG & Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai – 622 001, Tamilnadu, India. ²Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624 622, Tamilnadu, India. E-mail: ¹

Abstract: In this paper, we introduce the concept of lower level subsets of an anti-fuzzy HX ideal of a HX ring. We also discuss the relation between a given anti-fuzzy HX ideals of a HX ring and its lower level HX ideals and investigate the conditions under which a given HX ring has a properly inclusive chain of HX ideals. We introduce the concept of homomorphism and anti homomorphism of lower level subsets of an anti-fuzzy HX ideal and discuss some of its properties. Keywords: HX ring, anti-fuzzy HX ideal, homomorphism, lower level subset. AMS Subject Classification (2000): 20N25, 03E72, 03F055, 06F35, 03G25.

I. INTRODUCTION

In 1965,Lotfi.A.Zadeh [9] introduced the concept of fuzzy set. Fuzzy sets attracted many mathematicians and grew enormously by finding applications in many areas. We introduce a notion of anti fuzzy HX ideal of a HX ring and some of its properties are discussed. We prove that a fuzzy subset of a HX ring is an anti fuzzy HX ideal if and only if the lower level subsets are HX ideals of a HX ring. In 1982 Wang-jin Liu [6] introduced the concept of fuzzy subring and fuzzy ideal. In 1988, Professor Li Hong Xing [5] proposed the concept of HX ring and derived some of its properties, then Professor Zhong [10] gave the structures of HX ring on a class of ring.

II. PRELIMINARIES

In this section, we site the fundamental definitions that will be used in the sequel. Throughout this paper, $R = (R, +, \cdot)$ is a Ring, e is the additive identity element of R and xy, we mean $x \cdot y$.

III. LOWER LEVEL SUBSETS OF AN ANTI-FUZZY HX IDEAL

A. Definition

Let λ_{μ} be an anti-fuzzy HX ideal of a HX ring \mathfrak{R} . For any $t \in [0,1]$, we define the set $L(\lambda_{\mu}; t) = \{A \in \mathfrak{R} / \lambda_{\mu}(A) \le t\}$ is called a lower level subset of λ_{μ} .

B. Theorem

Let λ_{μ} be an anti-fuzzy HX right ideal of a HX ring \Re and $L(\lambda_{\mu}; t)$ is non-empty, then for $t \in [0,1]$, $L(\lambda_{\mu}; t)$ is a HX right ideal of \Re .

1) Proof: Let λ_{μ} be an anti-fuzzy HX right ideal of a HX ring \Re .

For any A, $B \in L(\lambda_{\mu}; t)$, we have $\lambda_{\mu}(A) \leq t$ and $\lambda_{\mu}(B) \leq t$. Now. λ_{μ} (A – B) \leq max { λ_{μ} (A) , λ_{μ} (B) } \leq max { t, t } = t, for some $t \in [0,1]$. λ_{μ} (A – B) \leq t. For any $A \in L(\lambda_{\mu}; t)$ and $B \in \mathfrak{R}$, we have $\lambda_{\mu}(A) \leq t$. $\lambda_{\mu}(AB)$ $\leq \lambda_{\mu}(A) \leq t.$ Now. $\lambda_{\mu}(AB)$ \leq t. Hence, A - B, $AB \in L(\lambda_{\mu}; t)$. Hence, L(λ_{μ} ; t) is a HX right ideal of a HX ring \Re .

C. Theorem

Let λ_{μ} be an anti-fuzzy HX left ideal of a HX ring \Re and L (λ_{μ} ; t) is non-empty, then for any $t \in [0,1]$, L(λ_{μ} ; t) is a HX left ideal of \Re .

1) Proof: Let λ_{μ} be an anti-fuzzy HX left ideal of a HX ring \Re .

For any A , $B \in L(\lambda_{\mu}; t)$, we have , $\lambda_{\mu}(A) \leq t$ and $\lambda_{\mu}(B) \leq t$. Now. λ_{μ} (A – B) \leq max { $\lambda_{\mu}(A)$, $\lambda_{\mu}(B)$ } \leq max { t, t } = t, for some $t \in [0,1]$. λ_{μ} (A – B) \leq t. For any $A \in L(\lambda_{\mu}; t)$ and $B \in \mathfrak{R}$, we have $\lambda_{\mu}(A) \leq t$. Now. λ_{μ} (BA) $\leq \lambda_{\mu}(A) \leq t.$ λ_{μ} (BA) $\leq t$ Hence, A - B, $BA \in L(\lambda_{\mu}; t)$.

Hence , L($\lambda_{\mu}; t$) is a HX left ideal of a HX ring $\Re.$

D. Theorem

Let λ_{μ} be an anti-fuzzy HX ideal of a HX ring \Re and $L(\lambda_{\mu}; t)$ is non-empty, then for $t \in [0,1]$, $L(\lambda_{\mu}; t)$ is a HX ideal of \Re .

- 1) Proof: It is clear.
- E. Theorem

Let \Re be a HX ring and λ_{μ} be a fuzzy subset of \Re such that L(λ_{μ} ; t) is a HX right ideal of \Re for all t \in [0,1] then λ_{μ} is an antifuzzy HX right ideal of \Re .

- 1) Proof: It is clear.
- F. Theorem

Let \Re be a HX ring and λ_{μ} be a fuzzy subset of \Re such that L(λ_{μ} ; t) is a HX left ideal of \Re for all $t \in [0,1]$ then λ_{μ} is an anti-fuzzy HX left ideal of \Re .

- 1) Proof: It is clear.
- G. Theorem

Let \Re be a HX ring and λ_{μ} be a fuzzy subset of \Re such that L(λ_{μ} ; t) is a HX ideal of \Re for all t \in [0,1] then λ_{μ} is an anti-fuzzy HX ideal of \Re .

1) Proof: It is clear.

H. Theorem

A fuzzy subset λ_{μ} of \Re is a fuzzy HX ideal of a HX ring \Re if and only if the level HX subsets $L(\lambda_{\mu}; t)$, $t \in \text{Image } \lambda_{\mu}$, are HX ideals of \Re .

1) Proof: It is clear.

I. Theorem

Let λ_{μ} be an anti-fuzzy HX ideal of a HX ring \Re . If two lower level HX ideals, $L(\lambda_{\mu}; t_1), L(\lambda_{\mu}; t_2)$ with $t_1 < t_2$ of λ_{μ} are equal if and only if there is no A in \Re such that

 $t_{1}\,\leq\,\lambda_{\mu}\left(A\right)\,<\,t_{2}.$

- 1) Proof: It is clear.
- J. Theorem

Any HX ideal H of a HX ring \Re can be realized as a lower level HX ideal of some anti-fuzzy HX ideal of \Re .

1) Proof: It is clear.

K. Remark

As a consequence of the Theorem 3.9 and 3.10, the lower level HX ideals of an anti-fuzzy HX ideal λ^{μ} of a HX ring \Re form a chain. Since $\lambda^{\mu}(Q) \leq \lambda^{\mu}(A)$ for all A in \Re and therefore $L(\lambda^{\mu}; t_0)$, where $\lambda^{\mu}(Q) = t_0$ is the smallest and we have the chain : $\{Q\} = L(\lambda_{\mu}; t_0) \subset L(\lambda_{\mu}; t_1) \subset L(\lambda_{\mu}; t_2) \subset ... \subset L(\lambda_{\mu}; t_n) = \Re$, where $t_0 < t_1 < t_2 < < t_n$.

III. HOMOMORPHISM AND ANTI HOMOMORPHISM OF A LOWER LEVEL SUBSETS OF AN ANTI-FUZZY HX IDEAL OF A HX RING

In this section, we introduce the concept of homomorphism and anti homomorphism of lower level subsets of an anti-fuzzy HX ideal and discuss some of its properties. Throughout this section, $t \in [0,1]$.

A. Theorem

Let R_1 and R_2 be any two rings, \Re_1 and \Re_2 be HX rings on R_1 and R_2 respectively. Let λ_{μ} be an anti-fuzzy HX right ideal on \Re_1 . If f : $\Re_1 \rightarrow \Re_2$ is a homomorphism and onto, then the anti-image of a lower level HX right ideal $L(\lambda_{\mu}; t)$ of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \Re_1 is a lower level HX right ideal $L(f(\lambda_{\mu}); t)$ of an anti-fuzzy HX right ideal $L(f(\lambda_{\mu}); t)$ of an anti-fuzzy HX right ideal Λ_{μ} of a HX ring \Re_2 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be a homomorphism.

Let λ_{μ} be an anti-fuzzy HX right ideal of a HX ring \Re_1 . Clearly, f (λ_{μ}) is an anti-fuzzy HX right ideal of a HX ring \Re_2 . Let X and Y in \Re_1 , implies f (X) and f (Y) in \Re_2 .

Let $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \Re_1 .

Choose $t \in [0,1]$ in such a way that $X, Y \in L(\lambda_{\mu}; t)$ and hence $X-Y \in L(\lambda_{\mu}; t)$.

 $\label{eq:constraint} \text{Then,} \ \ \lambda_\mu(X) \ \leq t \quad \text{ and } \ \lambda_\mu(Y) \ \leq \ t \ \ \text{and} \quad \lambda_\mu(X-Y) \leq t.$

For this $t \in [0,1]$, let $X \in L(\lambda_{\mu}; t)$ and $Y \in \Re_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \Re_1 .

 $Then, \ \lambda_{\mu}(X) \ \leq t \ \ and \ \lambda_{\mu}(XY) \ \leq t.$

We have to prove that $L(f(\lambda_{\mu}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

Let $X,\,Y\in L(\lambda_{\mu}\,;\,\,t)\,$ and hence $X{-}Y\in L(\lambda_{\mu}\,;\,\,t).$

For f(X), $f(Y) \in L(f(\lambda^{\mu}); t)$,

let $X \in L(\lambda_{\mu}; t)$ and $Y \in \mathfrak{R}_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \mathfrak{R}_1 .

For, $f(X) \in L(f(\lambda_{\mu}); t)$ and $f(Y) \in \Re_2$,

 $\begin{array}{rcl} (f(\lambda_{\mu}))(f(X) \ f(Y)) & \leq & (f(\lambda_{\mu}))f(X) \\ & \leq & t \\ (f(\lambda_{\mu}))(f(X)(f(Y)) \leq & t. \\ & (f(X) \ f(Y)) & \in & L(f(\lambda_{\mu}); \ t). \end{array}$

Hence, $L(f(\lambda_{\mu}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

B. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_{μ} be an anti-fuzzy HX left ideal on \mathfrak{R}_1 . If $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ is a homomorphism and onto, then the anti-image of a lower level HX left ideal $L(\lambda_{\mu}; t)$ of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \mathfrak{R}_1 is a lower level HX left ideal $L(f(\lambda_{\mu}); t)$ of an anti-fuzzy HX left ideal λ_{μ} .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be a homomorphism.

Let λ_{μ} be an anti-fuzzy HX left ideal of a HX ring \Re_1 . Clearly, $f(\lambda_{\mu})$ is an anti-fuzzy HX left ideal of a HX ring \Re_2 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

 $\mbox{Let } L(\lambda_{\mu} \ ; \ t) \mbox{ is a lower level HX left ideal of an anti-fuzzy HX left ideal } \lambda_{\mu} \ \mbox{ of a HX ring } \Re_1. \label{eq:lambda_eq}$

 $Choose \ t \in [0,1] \ in \ such \ a \ way \ that \ \ X, \ Y \in L(\lambda_{\mu} \ ; \ t) \ \ and \ hence \ X-Y \in L(\lambda_{\mu} \ ; \ t).$

Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(Y) \leq t$ and $\lambda_{\mu}(X-Y) \leq t$. For this $t \in [0,1]$, let $X \in L(\lambda_{\mu}; t)$ and $Y \in \mathfrak{R}_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \Re_1 . Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(XY) \leq t$. We have to prove that L(f (λ_{μ}); t) is a lower level HX left ideal of an anti-fuzzy HX left ideal f(λ_{μ}) of a HX ring \Re_2 . Let X, $Y \in L(\lambda_{\mu}; t)$ and hence $X-Y \in L(\lambda_{\mu}; t)$. For f(X), $f(Y) \in L(f(\lambda^{\mu}); t)$, $(f(\lambda_{\mu}))(f(X) - f(Y))$ = $(f(\lambda_{\mu}))(f(X-Y)),$ = λ_{μ} (X–Y) \leq t $(f(\lambda_{\mu}))(f(X) - f(Y))$ \leq t. (f(X) - f(Y))∈ $L(f(\lambda_{\mu}); t).$ let $X \in L(\lambda_{\mu}; t)$ and $Y \in \Re_1$ then $YX \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \Re_1 .

For, $f(X) \in L(f(\lambda_{\mu}); t)$ and $f(Y) \in \mathfrak{R}_2$,

 $\begin{array}{rcl} (f(\lambda_{\mu}))(f(Y) \ f(X)) & \leq & (f(\lambda_{\mu}))(f(X)) \\ & \leq & t \\ (f(\lambda_{\mu}))(f(Y)(f(X)) \leq & t. \\ & (f(Y) \ f(X)) & \in & L(f(\lambda_{\mu}); \ t). \end{array}$

Hence, $L(f(\lambda_{\mu}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

C. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_μ be an anti-fuzzy HX ideal on \mathfrak{R}_1 . If $f : \mathfrak{R}_1 \to \mathfrak{R}_2$ is a homomorphism and onto, then the anti-image of a lower level HX ideal $L(\lambda_\mu; t)$ of an anti-fuzzy HX ideal λ_μ of a HX ring \mathfrak{R}_1 is a lower level HX ideal $L(f(\lambda_\mu); t)$ of an anti-fuzzy HX ideal $f(\lambda_\mu)$ of a HX ring \mathfrak{R}_2 .

1) Prof: It is clear.

D. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX right ideal on \mathfrak{R}_2 . If $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ is a homomorphism on HX rings. Let $L(\eta_\alpha; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha); t)$ is a lower level HX right ideal of an anti-fuzzy HX right \mathfrak{R}_1 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be a homomorphism.

Let η_{α} be an anti-fuzzy HX right ideal of a HX ring \Re_2 . Clearly, $f^{-1}(\eta_{\alpha})$ is an anti-fuzzy HX right ideal of a HX ring \Re_1 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

Let $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_{α} of the HX ring \Re_2 .Let X, $Y \in \Re_1$ then f(X), $f(Y) \in \Re_2$.

 $Choose \ t \in [\ 0 \ , \ 1 \] \ in \ such \ a \ way \ that \ f(X), \ f(Y) \in L(\eta_{\alpha}; \ t) \ and \ hence \ , f(X) - f(Y) \in L(\eta_{\alpha} \ ; \ t).$

 $Then, \ \eta_{\alpha}(f(X)) \leq \ t \ , \eta_{\alpha}(f(Y)) \leq \ t \ and \ \eta_{\alpha}(\ f(X) - f(Y)) \leq \ t \ .$

For this $t \in [0, 1]$, $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an antifuzzy HX right ideal η_{α} of the HX ring \Re_2 .

Then, $\eta_{\alpha}(f(X)) \leq t$, $\eta_{\alpha}(f(X)f(Y)) \leq t$.

We have to prove that $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f^{-1}(\eta_{\alpha})$ of a HX ring \Re_1 . Now, Let X, $Y \in L(f^{-1}(\eta_{\alpha}); t)$.

$(f^{-1}(\eta_{\alpha})) (X - Y)$	=	$\eta_{\alpha}(f(X{-}Y))$
	=	$\eta_{\alpha}(f(X)-f(Y))$
	\leq	t
$(f^{-1}(\eta_{\alpha}))(X-Y)$	\leq	t
X-Y	∈	$L(f^{-1}(\eta_{\alpha}); t).$

Let $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_{α} of the HX ring \Re_2 .

Hence, $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal of a HX ring \Re_1 .

E. Theorem

Let R_1 and R_2 be any two rings , \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX left ideal on \mathfrak{R}_2 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is a homomorphism on HX rings. Let $L(\eta_\alpha; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal \mathfrak{R}_1 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be a homomorphism.

Let η_{α} be an anti-fuzzy HX left ideal of a HX ring \Re_2 . Clearly, $f^{-1}(\eta_{\alpha})$ is an anti-fuzzy HX left ideal of a HX ring \Re_1 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

Let $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_{α} of the HX ring \Re_2 . Let X, $Y \in \Re_1$ then f(X), $f(Y) \in \Re_2$.

Choose $t \in [0, 1]$ in such a way that $f(X), f(Y) \in L(\eta_{\alpha}; t)$ and hence $f(X) - f(Y) \in L(\eta_{\alpha}; t)$.

 $\label{eq:then_states} Then, \ \eta_\alpha(f(X)) \leq \ t \ , \eta_\alpha(f(Y)) \leq \ t \ and \ \ \eta_\alpha(\ f(X) - f(Y)) \leq \ t \ .$

For this $t \in [0, 1]$, $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an antifuzzy HX left ideal η_{α} of the HX ring \Re_2 .

Then, $\eta_{\alpha}(f(X)) \leq t$, $\eta_{\alpha}(f(X)f(Y)) \leq t$.

We have to prove that $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f^{-1}(\eta_{\alpha})$ of a HX ring \mathfrak{R}_{1} . Now, Let $X, Y \in L(f^{-1}(\eta_{\alpha}); t)$.

$(f^{-1}(\eta_{\alpha})) (X - Y)$	=	$\eta_{\alpha}(f(X{-}Y))$
	=	$\eta_{\alpha}(f(X)-f(Y))$
	\leq	t
$(f^{-1}(\eta_{\alpha}))(X-Y)$	\leq	t
X–Y	∈	$L(f^{-1}(\eta_{\alpha}); t).$

Let $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \mathfrak{R}_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_{α} of the HX ring \mathfrak{R}_2 .

$(f^{-1}(\eta_{\alpha}))(XY)$		\leq	$(f^{-1}(\eta_{\alpha}))(Y)$
		=	$\eta_{\alpha}(f(Y))$
		\leq	t
$(f^{-l}(\eta_\alpha))(XY)$		\leq	t
	XY	∈	$L(f^{-1}(\eta_{\alpha}); t).$

Hence, L(f⁻¹(η_{α}); t) is a lower level HX left ideal of an anti-fuzzy HX left ideal of a HX ring \Re_1 .

F. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX ideal on \mathfrak{R}_2 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is a homomorphism on HX rings. Let $L(\eta_\alpha; t)$ be a lower level HX ideal of an anti-fuzzy HX ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha); t)$ is a lower level HX ideal of an anti-fuzzy HX ideal $f^{-1}(\eta_\alpha)$ of a HX ring \mathfrak{R}_1 . *1) Proof:* It is clear.

G. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_{μ} be an anti-fuzzy HX right ideal on \mathfrak{R}_1 . If f : $\mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ is an anti-homomorphism and onto, then the anti-image of a lower level HX right ideal $L(\lambda_{\mu}; t)$ of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \mathfrak{R}_1 is a lower level HX left ideal $L(f(\lambda_{\mu}); t)$ of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \mathfrak{R}_2 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be an anti homomorphism.

Let λ_{μ} be an anti-fuzzy HX right ideal of a HX ring \Re_1 . Clearly, $f(\lambda_{\mu})$ is an anti-fuzzy HX left ideal of a HX ring \Re_2 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

Let $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \Re_1 .

Choose $t \in [0,1]$ in such a way that $X, Y \in L(\lambda_{\mu}; t)$ and hence $Y-X \in L(\lambda_{\mu}; t)$.

 $\label{eq:constraint} \text{Then,} \ \lambda_{\mu}(X) \leq t \quad \text{and} \quad \lambda_{\mu}(Y) \leq t \ \text{and} \quad \lambda_{\mu}(Y-X) \leq t.$

For this $t \in [0,1]$, let $X \in L(\lambda_{\mu}; t)$ and $Y \in \Re_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \Re_1 .

Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(XY) \leq t$.

We have to prove that $L(f(\lambda_{\mu}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

Let $X,\,Y\in L(\lambda_{\mu}\,;\,\,t)\,$ and hence $Y{-}X\in L(\lambda_{\mu}\,;\,\,t).$

For f(X), $f(Y) \in L(f(\lambda^{\mu}); t)$,

$(f(\lambda_{\mu}))(f(X){-}f(Y))$	=	$(f(\lambda_{\mu}))(f(Y{-}X)),$
	=	λ_{μ} (Y–X)
	\leq	t
$(f(\lambda_{\mu}))\left(f(X){-}f(Y)\right) \;\; \leq \;\;$	t.	
(f(X) - f(Y))	e	$L(f(\lambda_{\mu}); t).$

let $X \in L(\lambda_{\mu}; t)$ and $Y \in \mathfrak{R}_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \mathfrak{R}_1 .

For, $f(X) \in L(f(\lambda_{\mu}); t)$ and $f(Y) \in \Re_2$,

 $\begin{array}{lll} (f(\lambda_{\mu}))(f(Y)\;f(X)) &\leq & (f(\lambda_{\mu}))(f(X)) \\ & \leq & t \\ (f(\lambda_{\mu}))(f(Y)(f(X)) \leq & t. \\ & (f(Y)\;f(X)) & \in & L(f(\lambda_{\mu});\;t). \end{array}$

Hence, $L(f(\lambda_{\mu}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

H. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_{μ} be an anti-fuzzy HX left ideal on \mathfrak{R}_1 . If f: $\mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ is an anti-homomorphism and onto, then the anti-image of a lower level HX left ideal $L(\lambda_{\mu}; t)$ of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \mathfrak{R}_1 is a lower level HX right ideal $L(f(\lambda_{\mu}); t)$ of an anti-fuzzy HX right ideal f (λ_{μ}) of a HX ring \mathfrak{R}_2 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be an anti homomorphism.

Let λ_{μ} be an anti-fuzzy HX left ideal of a HX ring \mathfrak{R}_1 . Clearly, $f(\lambda_{\mu})$ is an anti-fuzzy HX right ideal of a HX ring \mathfrak{R}_2 . Let X and Y in \mathfrak{R}_1 , implies f(X) and f(Y) in \mathfrak{R}_2 .

Let $L(\lambda_{\mu}; t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \Re_1 .

Choose $t \in [0,1]$ in such a way that $X, Y \in L(\lambda_{\mu}; t)$ and hence $Y-X \in L(\lambda_{\mu}; t)$.

 $\label{eq:constraint} \text{Then,} \ \ \lambda_{\mu}(X) \ \leq t \quad \text{ and } \quad \lambda_{\mu}(Y) \ \leq \ t \ \text{ and } \quad \lambda_{\mu}(Y-X) \leq t.$

For this $t \in [0,1]$, let $X \in L(\lambda_{\mu}; t)$ and $Y \in \mathfrak{R}_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \mathfrak{R}_1 .

Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(XY) \leq t$.

We have to prove that $L(f(\lambda_{\mu}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \mathfrak{R}_2 . Let X, Y $\in L(\lambda_{\mu}; t)$ and hence Y-X $\in L(\lambda_{\mu}; t)$.

 $\label{eq:formula} \text{For } f(X)\,,\,f(Y)\in L(f(\lambda^{\mu})\,;\,\,t),$

$(f(\lambda_{\mu}))(f(X)-f(Y))$	=	$(f(\lambda_{\mu}))(f(Y{-}X)),$
	=	λ_{μ} (Y–X)
	\leq	t
$\left(f(\lambda_{\mu})\right)\left(f(X)-f(Y)\right)$	\leq	t .
(f(X) - f(Y))	E	$L(f(\lambda_{\mu}); t).$

let $X \in L(\lambda_{\mu}; t)$ and $Y \in \mathfrak{R}_1$ then $YX \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \mathfrak{R}_1 .

 $\begin{array}{rll} \mbox{For,} \ f(X) \in L(f(\lambda_{\mu} \) \ ; \ t) \ and \ f(Y) \in \mathfrak{R}_2 \ , \\ (f(\lambda_{\mu}))(f(X) \ f(Y)) & \leq & (f(\lambda_{\mu}))f(X) \\ & \leq & t \\ (f(\lambda_{\mu}))(f(X)(f(Y)) \leq & t \ , \\ (f(X) \ f(Y)) & \in & L(f(\lambda_{\mu}); \ t). \end{array}$

Hence, $L(f(\lambda_{\mu}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

I. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_{μ} be an anti-fuzzy HX ideal on \mathfrak{R}_1 . If $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ is an anti-homomorphism and onto, then the anti-image of a lower level HX ideal $L(\lambda_{\mu}; t)$ of an anti-fuzzy HX ideal λ_{μ} of a HX ring \mathfrak{R}_1 is a lower level HX ideal $L(f(\lambda_{\mu}); t)$ of an anti-fuzzy HX ideal $f(\lambda_{\mu})$ of a HX ring \mathfrak{R}_2 .

1) Proof: It is clear.

J. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_{α} be an anti-fuzzy HX right ideal on \mathfrak{R}_2 . If f: $\mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ is an anti-homomorphism on HX rings. Let $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_{α} of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f^{-1}(\eta_{\alpha})$ of a HX ring \mathfrak{R}_1 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be an anti homomorphism.

Let η_{α} be an anti-fuzzy HX right ideal of a HX ring \Re_2 . Clearly, $f^{-1}(\eta_{\alpha})$ is an anti-fuzzy HX left ideal of a HX ring \Re_1 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

Let $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_{α} of the HX ring \Re_2 .Let X, Y $\in \Re_1$ then f(X), $f(Y) \in \Re_2$.

 $Choose \ t \in [\ 0 \ , \ 1 \] \ in \ such \ a \ way \ that \ f(X), \ f(Y) \in L(\eta_{\alpha}; \ t) \ and \ hence \ , f(Y) - f(X) \in L(\eta_{\alpha} \ ; \ t).$

 $Then, \ \eta_{\alpha}(f(X)) \leq \ t \ , \eta_{\alpha}(f(Y)) \leq \ t \ and \ \eta_{\alpha}(\ f(Y) - f(X)) \leq \ t \ .$

For this $t \in [0, 1]$, $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an antifuzzy HX right ideal η_{α} of the HX ring \Re_2 .

Then, $\eta_{\alpha}(f(X)) \leq t$, $\eta_{\alpha}(f(X)f(Y)) \leq t$.

We have to prove that $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f^{-1}(\eta_{\alpha})$ of a HX ring \mathfrak{R}_{1} . Now, Let $X, Y \in L(f^{-1}(\eta_{\alpha}); t)$.

$(f^{\!-\!1}(\eta_\alpha)) \; (X - Y)$	=	$\eta_{\alpha}(f(X{-}Y))$
	=	$\eta_{\alpha}(f(Y)-f(X))$
	\leq	t
$(f^{-1}(\eta_{\alpha}))(X-Y)$	\leq	t
X–Y	E	$L(f^{-1}(\eta_{\alpha}); t).$

Let $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \mathfrak{R}_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_{α} of the HX ring \mathfrak{R}_2 .

$(f^{-1}(\eta_{\alpha}))$ (YX)		\leq	$f^{-1}(\eta_\alpha)(X)$
		=	$\eta_{\alpha}(f(X))$
		\leq	t
$(f^{-l}(\eta_\alpha))(YX)$		\leq	t
	YX	E	$L(f^{-1}(\eta_{\alpha}); t)$

Hence, $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal of a HX ring \Re_1 .

K. Theorem

Let R_1 and R_2 be any two rings , \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX left ideal on \mathfrak{R}_2 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is a homomorphism on HX rings. Let $L(\eta_\alpha; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f^{-1}(\eta_\alpha)$ of a HX ring \mathfrak{R}_1 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ be an anti homomorphism.

Let η_{α} be an anti-fuzzy HX left ideal of a HX ring \mathfrak{R}_2 . Clearly, $f^{-1}(\eta_{\alpha})$ is an anti-fuzzy HX right ideal of a HX ring \mathfrak{R}_1 . Let X and Y in \mathfrak{R}_1 , implies f(X) and f(Y) in \mathfrak{R}_2 .

Let $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_{α} of the HX ring \Re_2 . Let X, $Y \in \Re_1$ then f(X), $f(Y) \in \Re_2$.

 $Choose \ t \in [\ 0 \ , \ 1 \] \ in \ such \ a \ way \ that \ f(X), \ f(Y) \in L(\eta_{\alpha}; \ t) \ and \ hence \ , f(Y) - f(X) \in L(\eta_{\alpha} \ ; \ t).$

 $\text{Then, } \eta_\alpha(f(X)) \leq \ t \ , \eta_\alpha(f(Y)) \leq \ t \ \text{and} \ \ \eta_\alpha(\ f(Y) - f(X)) \leq \ t \ .$

For this $t \in [0, 1]$, $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an antifuzzy HX left ideal η_{α} of the HX ring \Re_2 .

 $Then, \ \eta_{\alpha}(f(X)) \leq \ t \ , \eta_{\alpha}(f(X)f(Y)) \leq \ t \ .$

We have to prove that $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f^{-1}(\eta_{\alpha})$ of a HX ring \Re_1 . Now, Let X, $Y \in L(f^{-1}(\eta_{\alpha}); t)$.

$(f^{-1}(\eta_\alpha))(X-Y)$	=	$\eta_{\alpha}(f(X{-}Y))$
	=	$\eta_{\alpha}(f(Y) - f(X))$
	\leq	t
$(f^{-1}(\eta_{\alpha}))(X-Y)$	\leq	t
X–Y	E	$L(f^{-1}(n_{\alpha}); t)$.

Let $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_{α} of the HX ring \Re_2 .

$(f^{-1}(\eta_{\alpha}))(XY)$		\leq	$(f^{-1}(\eta_\alpha))(X)$
		=	$\eta_{\alpha}(f(X))$
		\leq	t
$(f^{-1}(\eta_{\alpha}))(XY)$		\leq	t
	ΧY	E	$L(f^{-1}(\eta_{\alpha}); t).$

Hence, L(f⁻¹(η_{α}); t) is a lower level HX right ideal of an anti-fuzzy HX right ideal of a HX ring \Re_1 .

L. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX ideal on \mathfrak{R}_2 . If $f: \mathfrak{R}_1 \rightarrow \mathfrak{R}_2$ is an anti-homomorphism on HX rings. Let $L(\eta_\alpha; t)$ be a lower level HX ideal of an anti-fuzzy HX ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha); t)$ is a lower level HX ideal of an anti-fuzzy HX ideal $f^{-1}(\eta_\alpha)$ of a HX ring \mathfrak{R}_1 . *1) Proof:* It is clear.

REFERENCES

- [1] Azam.F. A., Mamun.A.A., Nasrin. F., Anti fuzzy ideal of a ring, Annals of fuzzy Mathematics and informatics, volume 5, No.2, 349-360, (2013).
- [2] Bing-xueYao and Yubin-Zhong, The construction of power ring, Fuzzy information and Engineering (ICFIE), ASC 40, 181-187, (2007).
- [3] Chandrasekara Rao.K and Swaminathan.V, Anti-homomorphism in fuzzy ideals, World Academy of Science, Engineering and Technology, Vol:44, 08-29, (2010).
- [4] Chang Bum, Kim, A note on some fuzzy ideals of a ring, Journal of Science Institute, Kookmin University, Volume 9, 29-37, (1991).
- [5] Li Hong Xing, HX ring, BUSEFAL, 34(1), 3-8, (1988).
- [6] Liu, W.J., Operations on fuzzy ideals, Fuzzy Sets and Systems, 11,31-41, (1983).
- [7] Malik, Davender S. and Mordeson, John N., Fuzzy homomorphism of rings, Fuzzy Sets and Systems, 46, 139-146, (1992).
- [8] Rajesh Kumar, Certain fuzzy ideals of rings redefined, Fuzzy sets and systems, 46, 251-260 ,(1992).
- [9] Zadeh.L.A., Fuzzy sets, Information and control, 8, 338-353, (1965).
- [10] Zhong YB, The structure of HX-ring on a class of ring. Fuzzy Systems and Mathematics, 9(4) 73-77,(1995).

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)