



IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 2017 Issue: onferendelonth of publication: December 2017 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

# **Vertex Polynomial of Path related graphs**

A. M. Anto<sup>1</sup>

<sup>1</sup>Assistant Professor in Mathematics, MalanKara Catholic College, Kaliyakavilai, Tamil Nadu, India.

Abstract: The vertex polynomial of the graph G = (V, E) is defined as  $V(G, x) = \sum_{k=0}^{\Delta(G)} v_k x^k$ , where  $\Delta(G) = \max\{d(v)/v \in V\}$ and  $v_k$  is the number of vertices of degree k. In this paper I find the Vertex Polynomial of some Path related graphs. Keywords: Vertex Polynomial, Splitting graph, Degree splitting graph, Path, corona.

I.

#### INTRODUCTION

Here I consider simple undirected graphs only. The terms not defined here we can refer Frank Harary [2]. The vertex set is denoted by V and the edge set by E. For v $\in$ V, d(v) is the number of edges incident with v, the maximum degree of the graph G is defined as  $\Delta(G) = \max\{d(v)/v \in V\}$ . Let  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  be two graphs, the union  $G_1 \cup G_2$  is defined to be G = (V, E) where  $V = V_1 \cup V_2$  and  $E = E_1 \cup E_2$ , the sum  $G_1 + G_2$  is defined as  $G_1 \cup G_2$  together with all the lines joining points of  $V_1$  to  $V_2$ . The Cartesian product of two graphs  $G_1$  and  $G_2$  denoted by  $G = G_1 \times G_2$  is the graph G such that  $V(G) = V(G_1) \times V(G_2)$ , that is every vertex of  $G_1 \times G_2$  is an ordered pair (u, v), where  $u \in V(G_1)$  and  $v \in V(G_2)$  and two distinct vertices (u, v) and (x, y) are adjacent in  $G_1 \times G_2$  if either u = x and  $vy \in E(G_2)$  or v = y and  $ux \in E(G_1)$ . If G is of order n, the corona of G with H, G  $\bigcirc$  H is the graph obtained by taking one copy of G and n copies of H and joining the i<sup>th</sup> vertex of G with an every vertex in the i<sup>th</sup> copy of H. The graph G with  $V = S_1 \cup S_2 \cup ... \cup S_i \cup T$ , where each  $S_i$  is a set of vertices having at least two vertices and having the same degree and  $T = V \setminus \bigcup S_i$ . The degree splitting graph of G denoted by DS(G) and is obtained from G by adding the vertices  $W_1, W_2, ..., W_t$  and joining  $W_i$  to each vertex of  $S_i$ ,  $1 \le i \le t$  [5]. For each vertex v of a graph G, take a new vertex v', join v' to all the vertices of G which are adjacent to v. The graph S(G) thus obtained is called splitting graph of G [1]. The Path consisting of length n is denoted by  $P_n$ . The graph G = (V, E) is simply denoted by G.

#### II. MAIN RESULTS

#### A. Theorem: 2.1

The graph  $P_m \cup P_n$  has the vertex polynomial  $V(P_m \cup P_n, x) = (m + n - 4)x^2 + 4x$ .

1) Proof: The graphs  $P_m$  and  $P_n$  have degree m and n respectively. Then  $P_m \cup P_n$  has order m + n. Among this m + n vertices, m - 2, n - 2 vertices have degree 2 and 4 vertices have degree 1. Therefore,  $V(P_m \cup P_n, x) = (m + n - 4)x^2 + 4x$ .

# B. Theorem: 2.2

The graph  $S(P_m \cup P_n)$  has the vertex polynomial  $V(S(P_m \cup P_n), x) = (m + n - 4)x^4 + (m + n - 4)x^2 + 4x^2 + 4x$ .

1) Proof: The graphs  $P_m$  and  $P_n$  have degree m and n respectively. Then,  $S(P_m \cup P_n)$  has order 2(m + n). Among this 2(m + n) vertices, m + n - 4 vertices have degree 4, m + n - 4 vertices have degree 2, 4 vertices have degree 2 and 4 vertices have degree 1. Hence,  $V(S(P_m \cup P_n), x) = (m + n - 4)x^4 + (m + n - 4)x^2 + 4x^2 + 4x$ .

# C. Theorem: 2.3

The graph  $DS(P_m \cup P_n)$  has the vertex polynomial  $V(DS(P_m \cup P_n), x) = x^{m+n-4} + x^4 + (m+n-4)x^3 + 4x^2$ .

1) Proof: The graphs  $P_m$  and  $P_n$  have degree m and n respectively. Then the graph  $DS(P_m \cup P_n)$  has order m + n + 2. Among this m + n + 2 vertices, one vertex has degree m + n - 4, one vertex has degree 4, m + n - 4 vertices have degree 3 and 4 vertices have degree 2. Hence,  $V(DS(P_m \cup P_n), x) = x^{m+n-4} + x^4 + (m + n - 4)x^3 + 4x^2$ .

#### D. Theorem: 2.4

The graph  $P_m + P_n$  has the vertex polynomial  $V(P_m + P_n, x) = (m-2)x^{n+2} + (n-2)x^{m+2} + 2x^{n+1} + 2x^{m+1}$ .

- 1) Proof: The graph  $P_m + P_n$  has order m + n. Among this m + n vertices, m 2 vertices have degree n + 2, n 2 vertices have degree m + 2, 2 vertices have degree n + 1 and 2 vertices have degree n + 1. Therefore,  $V(P_m + P_n, x) = (m 2)x^{n+2} + (n 2)x^{m+2} + 2x^{n+1} + 2x^{m+1}$ .
- E. Theorem: 2.5

The graph  $S(P_m + P_n)$  has the vertex polynomial  $V(S(P_m + P_n), x) = (m - 2)x^{2(n+2)} + (n - 2)x^{2(m+2)} + 2x^{2(n+1)} + 2x^{2(m+1)} + (m - 2)x^{n+2} + (n - 2)x^{m+2} + 2x^{n+1} + 2x^{m+1}$ .

1) Proof: The graph  $S(P_m + P_n)$  has order 2(m + n). Among this 2(m + n) vertices, m - 2 vertices have degree 2(n + 2), n - 2 vertices have degree 2(m + 2), 2 vertices have degree 2(n + 1), 2 vertices have degree 2(m + 1), m - 2 vertices have degree n + 2, n - 2 vertices have degree m + 2, 2 vertices have degree n + 1 and 2 vertices have degree m + 1. Hence,  $V(S(P_m + P_n), x) = (m - 2)x^{2(n+2)} + (n - 2)x^{2(m+2)} + 2x^{2(n+1)} + 2x^{2(m+1)} + (m - 2)x^{n+2} + (n - 2)x^{m+2} + 2x^{n+1} + 2x^{m+1}$ .

#### *F. Theorem:* 2.6

The graph  $DS(P_m + P_n)$  has the vertex polynomial  $V(DS(P_m + P_n), x) = x^{n-2} + x^{m-2} + (n-2)x^{m+3} + (m-2)x^{n+3} + 2x^{m+2} + 2x^{n+2} + 2x^{2}$ .

1) Proof: The graph  $DS(P_m + P_n)$  has order m + n + 4. Among this m + n + 4 vertices, one vertex has degree n - 2, one vertex has degree m - 2, n - 2 vertices have degree m + 3, m - 2 vertices have degree n + 3, 2 vertices have degree m + 2, 2 vertices have degree n + 2 and 2 vertices have degree 2. Therefore,  $V(DS(P_m + P_n), x) = x^{n-2} + x^{m-2} + (n-2)x^{m+3} + (m-2)x^{n+3} + 2x^{m+2} + 2x^{n+2} + 2x^2$ .

### G. Theorem: 2.7

The graph  $P_m \odot P_n$  has the vertex polynomial  $V(P_m \odot P_n, x) = (m-2)x^{n+2} + 2x^{n+1} + (mn-2m)x^3 + 2mx^2$ .

1) Proof: The graph  $P_m \odot P_n$  has order m(n + 1). Among this m(n + 1) vertices, m - 2 vertices have degree n + 2, 2 vertices have degree n + 1, mn - 2m vertices have degree 3 and 2m vertices have degree 2. Therefore,  $V(P_m \odot P_n, x) = (m - 2)x^{n+2} + 2x^{n+1} + (mn - 2m)x^3 + 2mx^2$ .

#### H. Theorem: 2.8

The graph  $S(P_m \odot P_n)$  has the vertex polynomial  $V(S(P_m \odot P_n), x) = (m-2)x^{2(n+2)} + (m-2)x^{n+2} + 2x^{2(n+1)} + 2x^{n+1} + (mn-2m)x^6 + (mn-2m)x^3 + 2mx^4 + 2mx^2$ .

Proof: The graph S(P<sub>m</sub> ⊙ P<sub>n</sub>) has order 2m(n + 1). Among this 2m(n + 1) vertices, m - 2 vertices have degree 2(n + 2), m - 2 vertices have degree n + 2, 2 vertices have degree 2(n + 1), 2 vertices have degree n + 1, mn - 2m vertices have degree 6, mn - 2m vertices have degree 3, 2m vertices have degree 4 and 2m vertices have degree 2. Hence, V(P<sub>m</sub> ⊙ P<sub>n</sub>, x) = (m - 2)x<sup>2(n+2)</sup> + (m - 2)x<sup>n+2</sup> + 2x<sup>2(n+1)</sup> + 2x<sup>n+1</sup> + (mn - 2m)x<sup>6</sup> + (mn - 2m)x<sup>3</sup> + 2mx<sup>4</sup> + 2mx<sup>2</sup>.

#### I. Theorem: 2.9

The graph  $DS(P_m \odot P_n)$  has the vertex polynomial  $V(DS(P_m \odot P_n), x) = (m-2)x^{n+3} + 2x^{n+2} + x^{mn-2m} + x^{2m} + x^{m-2} + (mn-2m)x^4 + 2mx^3 + x^2$ .

1) Proof: The graph  $S(P_m \odot P_n)$  has order 2m(n + 1). Among this 2m(n + 1) vertices, m - 2 vertices have degree n + 3, 2 vertices have degree n + 2, one vertex has degree mn - 2m, one vertex has degree 2m, one vertex has degree m - 2, mn - 2m vertices have degree 4, 2m vertices have degree 3 and one vertex have degree 2. Therefore,  $V(DS(P_m \odot P_n), x) = (m - 2)x^{n+3} + 2x^{n+2} + x^{mn-2m} + x^{2m} + x^{m-2} + (mn - 2m)x^4 + 2mx^3 + x^2$ .

#### REFERENCES

- [1] E.Sampathkumar and H.B.Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci., (25-26) (1980-81), 13-16.
- [2] Frank Harary, 1872,"Graph Theory", Addition Wesley Publishing Company.
- [3] Gary Chartrant and Ping Znank, "Introduction to Graph Theory", Tata McGraw-Hill Edition.
- [4] J.Devaraj, E.Sukumaran "On Vertex Polynomial", International J. of Math.sci & Engg Appls(IJMESA) Vol. 6 No. 1 (January, 2012), pp. 371-380.
- [5] S. S. Sandhya, C. Jeyasekaran, C. D. Raj (2013), "Harmonic Mean Labelling Of Degree Splitting Graphs" Bulletin of Pure and Applied Sciences, 32E, 99-112.











45.98



IMPACT FACTOR: 7.129







# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24\*7 Support on Whatsapp)