
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

Vertex Polynomial of Path related graphs

A. M. Anto ${ }^{1}$
${ }^{1}$ Assistant Professor in Mathematics, MalanKara Catholic College, Kaliyakavilai, Tamil Nadu, India.

Abstract

The vertex polynomial of the graph $G=(V, E)$ is defined as $V(G, x)=\sum_{k=0}^{\Delta(G)} v_{k} x^{k}$, where $\Delta(G)=\max \{d(v) / v \in V\}$ and v_{k} is the number of vertices of degree k. In this paper I find the Vertex Polynomial of some Path related graphs. Keywords: Vertex Polynomial, Splitting graph, Degree splitting graph, Path, corona.

I. INTRODUCTION

Here I consider simple undirected graphs only. The terms not defined here we can refer Frank Harary [2]. The vertex set is denoted by V and the edge set by E . For $\mathrm{v} \in \mathrm{V}, \mathrm{d}(\mathrm{v})$ is the number of edges incident with v , the maximum degree of the graph G is defined as $\Delta(G)=\max \{d(v) / v \in V\}$. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs, the union $G_{1} \cup G_{2}$ is defined to be $G=(V, E)$ where $V=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $E=\mathrm{E}_{1} \cup \mathrm{E}_{2}$, the sum $\mathrm{G}_{1}+\mathrm{G}_{2}$ is defined as $\mathrm{G}_{1} \cup \mathrm{G}_{2}$ together with all the lines joining points of V_{1} to V_{2}. The Cartesian product of two graphs G_{1} and G_{2} denoted by $G=G_{1} \times G_{2}$ is the graph G such that $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$, that is every vertex of $G_{1} \times G_{2}$ is an ordered pair (u, v), where $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$ and two distinct vertices ($\left.u, v\right)$ and (x, y) are adjacent in $G_{1} \times G_{2}$ if either $u=x$ and $v y \in E\left(G_{2}\right)$ or $v=y$ and $u x \in E\left(G_{1}\right)$. If G is of order n, the corona of G with $H, G \odot H$ is the graph obtained by taking one copy of G and n copies of H and joining the $i^{\text {th }}$ vertex of G with an every vertex in the $i^{\text {th }}$ copy of H. The graph G with $V=S_{1} \cup S_{2} \cup \ldots \cup S_{i} \cup T$, where each S_{i} is a set of vertices having at least two vertices and having the same degree and $\mathrm{T}=\mathrm{V} \cup \mathrm{S}_{\mathrm{i}}$. The degree splitting graph of G denoted by $\mathrm{DS}(\mathrm{G})$ and is obtained from G by adding the vertices $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{t}}$ and joining w_{i} to each vertex of $S_{i}, 1 \leq i \leq t[5]$. For each vertex v of a graph G, take a new vertex v^{\prime}, join v^{\prime} to all the vertices of G which are adjacent to v . The graph $\mathrm{S}(\mathrm{G})$ thus obtained is called splitting graph of $\mathrm{G}[1]$. The Path consisting of length n is denoted by P_{n}. The graph $G=(V, E)$ is simply denoted by G.

II. MAIN RESULTS

A. Theorem: 2.1

The graph $P_{m} \cup P_{n}$ has the vertex polynomial $V\left(P_{m} \cup P_{n}, x\right)=(m+n-4) x^{2}+4 x$.

1) Proof: The graphs P_{m} and P_{n} have degree m and n respectively. Then $P_{m} \cup P_{n}$ has order $m+n$. Among this $m+n$ vertices, $m-2, n-2$ vertices have degree 2 and 4 vertices have degree 1 . Therefore, $V\left(P_{m} \cup P_{n}, x\right)=(m+n-4) x^{2}+4 x$.
B. Theorem: 2.2

The graph $S\left(P_{m} \cup P_{n}\right)$ has the vertex polynomial $V\left(S\left(P_{m} \cup P_{n}\right), x\right)=(m+n-4) x^{4}+(m+n-4) x^{2}+4 x^{2}+4 x$.

1) Proof: The graphs P_{m} and P_{n} have degree m and n respectively. Then, $S\left(P_{m} \cup P_{n}\right)$ has order $2(m+n)$. Among this $2(m+n)$ vertices, $m+n-4$ vertices have degree $4, m+n-4$ vertices have degree 2,4 vertices have degree 2 and 4 vertices have degree 1 . Hence, $V\left(\mathrm{~S}\left(P_{m} \cup P_{n}\right), x\right)=(m+n-4) x^{4}+(m+n-4) x^{2}+4 x^{2}+4 x$.
C. Theorem: 2.3

The graph $D S\left(P_{m} \cup P_{n}\right)$ has the vertex polynomial $V\left(\mathrm{DS}\left(P_{m} \cup P_{n}\right), x\right)=x^{m+n-4}+x^{4}+(m+n-4) x^{3}+4 x^{2}$.

1) Proof: The graphs P_{m} and P_{n} have degree m and n respectively. Then the graph $D S\left(P_{m} \cup P_{n}\right)$ has order $m+n+2$. Among this $m+n+2$ vertices, one vertex has degree $m+n-4$, one vertex has degree $4, m+n-4$ vertices have degree 3 and 4 vertices have degree 2 . Hence, $V\left(\mathrm{DS}\left(P_{m} \cup P_{n}\right), x\right)=x^{m+n-4}+x^{4}+(m+n-4) x^{3}+4 x^{2}$.
D. Theorem: 2.4

The graph $P_{m}+P_{n}$ has the vertex polynomial $V\left(P_{m}+P_{n}, x\right)=(m-2) x^{n+2}+(n-2) x^{m+2}+2 x^{n+1}+2 x^{m+1}$.

1) Proof: The graph $P_{m}+P_{n}$ has order $m+n$. Among this $m+n$ vertices, $m-2$ vertices have degree $n+2, n-2$ vertices have degree $m+2,2$ vertices have degree $n+1$ and 2 vertices have degree $n+1$. Therefore, $V\left(P_{m}+P_{n}, x\right)=(m-2) x^{n+2}+$ $(n-2) x^{m+2}+2 x^{n+1}+2 x^{m+1}$.

E. Theorem: 2.5

The graph $S\left(P_{m}+P_{n}\right)$ has the vertex polynomial $V\left(S\left(P_{m}+P_{n}\right), x\right)=(m-2) x^{2(n+2)}+(n-2) x^{2(m+2)}+2 x^{2(n+1)}+2 x^{2(m+1)}+$ $(m-2) x^{n+2}+(n-2) x^{m+2}+2 x^{n+1}+2 x^{m+1}$.

1) Proof: The graph $S\left(P_{m}+P_{n}\right)$ has order $2(m+n)$. Among this $2(m+n)$ vertices, $m-2$ vertices have degree $2(n+2)$, $n-$ 2 vertices have degree $2(m+2), 2$ vertices have degree $2(n+1), 2$ vertices have degree $2(m+1), m-2$ vertices have degree $n+2, n-2$ vertices have degree $m+2,2$ vertices have degree $n+1$ and 2 vertices have degree $m+1$. Hence, $V\left(\mathrm{~S}\left(P_{m}+P_{n}\right), x\right)=(m-2) x^{2(n+2)}+(n-2) x^{2(m+2)}+2 x^{2(n+1)}+2 x^{2(m+1)}+(m-2) x^{n+2}+(n-2) x^{m+2}+2 x^{n+1}+$ $2 x^{m+1}$.

F. Theorem: 2.6

The graph $D S\left(P_{m}+P_{n}\right)$ has the vertex polynomial $V\left(\mathrm{DS}\left(P_{m}+P_{n}\right), x\right)=x^{n-2}+x^{m-2}+(n-2) x^{m+3}+(m-2) x^{n+3}+$ $2 x^{m+2}+2 x^{n+2}+2 x^{2}$.

1) Proof: The graph $D S\left(P_{m}+P_{n}\right)$ has order $m+n+4$. Among this $m+n+4$ vertices, one vertex has degree $n-2$, one vertex has degree $m-2, n-2$ vertices have degree $m+3, m-2$ vertices have degree $n+3,2$ vertices have degree $m+2,2$ vertices have degree $n+2$ and 2 vertices have degree 2 . Therefore, $V\left(\operatorname{DS}\left(P_{m}+P_{n}\right), x\right)=x^{n-2}+x^{m-2}+(n-2) x^{m+3}+$ $(m-2) x^{n+3}+2 x^{m+2}+2 x^{n+2}+2 x^{2}$.

G. Theorem: 2.7

The graph $P_{m} \odot P_{n}$ has the vertex polynomial $V\left(P_{m} \odot P_{n}, x\right)=(m-2) x^{n+2}+2 x^{n+1}+(m n-2 m) x^{3}+2 m x^{2}$.

1) Proof: The graph $P_{m} \odot P_{n}$ has order $m(n+1)$. Among this $m(n+1)$ vertices, $m-2$ vertices have degree $n+2$, 2 vertices have degree $n+1, m n-2 m$ vertices have degree 3 and $2 m$ vertices have degree 2 . Therefore, $V\left(P_{m} \odot P_{n}, x\right)=$ $(m-2) x^{n+2}+2 x^{n+1}+(m n-2 m) x^{3}+2 m x^{2}$.

H. Theorem: 2.8

The graph $S\left(P_{m} \odot P_{n}\right)$ has the vertex polynomial $V\left(S\left(P_{m} \odot P_{n}\right), x\right)=(m-2) x^{2(n+2)}+(m-2) x^{n+2}+2 x^{2(n+1)}+2 x^{n+1}+$ $(m n-2 m) x^{6}+(m n-2 m) x^{3}+2 m x^{4}+2 m x^{2}$.

1) Proof:The graph $S\left(P_{m} \odot P_{n}\right)$ has order $2 m(n+1)$. Among this $2 m(n+1)$ vertices, $m-2$ vertices have degree $2(n+2)$, $m-2$ vertices have degree $n+2,2$ vertices have degree $2(n+1), 2$ vertices have degree $n+1, m n-2 m$ vertices have degree $6, m n-2 m$ vertices have degree $3,2 m$ vertices have degree 4 and $2 m$ vertices have degree 2 . Hence, $V\left(P_{m} \odot\right.$ $\left.P_{n}, x\right)=(m-2) x^{2(n+2)}+(m-2) x^{n+2}+2 x^{2(n+1)}+2 x^{n+1}+(m n-2 m) x^{6}+(m n-2 m) x^{3}+2 m x^{4}+2 m x^{2}$.

I. Theorem: 2.9

The graph $D S\left(P_{m} \odot P_{n}\right)$ has the vertex polynomial $V\left(D S\left(P_{m} \odot P_{n}\right), x\right)=(m-2) x^{n+3}+2 x^{n+2}+x^{m n-2 m}+x^{2 m}+x^{m-2}+$ $(m n-2 m) x^{4}+2 m x^{3}+x^{2}$.

1) Proof: The graph $S\left(P_{m} \odot P_{n}\right)$ has order $2 m(n+1)$. Among this $2 m(n+1)$ vertices, $m-2$ vertices have degree $n+3,2$ vertices have degree $n+2$, one vertex has degree $m n-2 m$, one vertex has degree $2 m$, one vertex has degree $m-2, m n-$ $2 m$ vertices have degree $4,2 m$ vertices have degree 3 and one vertex have degree 2 . Therefore, $V\left(D S\left(P_{m} \odot P_{n}\right), x\right)=$ $(m-2) x^{n+3}+2 x^{n+2}+x^{m n-2 m}+x^{2 m}+x^{m-2}+(m n-2 m) x^{4}+2 m x^{3}+x^{2}$.

REFERENCES

[1] E.Sampathkumar and H.B.Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci., (25-26) (1980-81), 13-16.
[2] Frank Harary, 1872,"Graph Theory", Addition - Wesley Publishing Company.
[3] Gary Chartrant and Ping Znank, "Introduction to Graph Theory", Tata McGraw-Hill Edition.
[4] J.Devaraj, E.Sukumaran "On Vertex Polynomial", International J. of Math.sci \& Engg Appls(IJMESA) Vol. 6 No. 1 (January, 2012), pp. 371-380.
[5] S. S. Sandhya, C. Jeyasekaran, C. D. Raj (2013), "Harmonic Mean Labelling Of Degree Splitting Graphs" Bulletin of Pure and Applied Sciences, 32E, 99-112.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

