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Abstract: Mean labeling was first introduced by S. Somasundram and R. Ponraj.  Heronian mean labeling was introduced by S. 
S. Sandhya, E. Ebin Raja Merly and S. D. Deepa. We have extended this notion to a labeling called k-Heronian mean labeling.   
In this paper, we introduce (k,d)-Heronian mean labeling of some graphs.  Here k and d are denoted as any positive integer 
greater than or equal to 1. 
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I. INTRODUCTION 
We begin with simple, finite, connected and undirected graph G (V, E) with p vertices and q edges. For a detailed survey of graph 
labeling we refer to Gallian [2]. Terms are not defined here are used in the sense of Harary [3].   S. Somasundram and R. Ponraj 
were introduced mean labeling of graphs in [6] [7].  The concept of Heronian mean labeling was introduced by S.S. Sandhya et.al 
[4] [5].   
We introduced the concept of k-Heronian mean labeling in [1].  In this paper, we introduce and investigate (k, d)-Heronian mean 
labeling of some graphs.  For brevity, we use (k,d)-HML for (k,d)-Heronian mean labeling and k and d are any positive integer 
greater than or equal to 1. 
 
A. Definiton 1.1 
A graph G=(V,E) with p vertices and q edges is said to be a (k,d)-Heronian Mean graph if it is possible to label the verticesx ∈
Vwith distinct labels 퐟(퐱) from k, k+d, k+2d,…,k+qd in such a way that when each edge 퐞=퐮퐯 is labeled with, f ∗(e) =

( ) ( ) ( ) ( ) or ( ) ( ) ( ) ( ) , then the resulting edge labels are distinct. In this case 퐟 is called a (k,d)-Heronian Mean 

labeling of G. 

B. Definition 1.2 
If G has order n, the corona of G with H, 퐺 ⊙퐻 is the graph obtained by taking one copy of G and n copies of H and joining the i th 
vertex of G with an edge to every vertex in the i th copy of H 

C. Definition 1.3 
A triangular snake (Tn) is obtained from a path by identifying each edge of the path with an edge of the cycle C3. 
 
D. Definition 1.4 
The H – graph of  a path Pn denoted by Hn is the graph obtained from two copies of Pn with vertices v1, v2, … , vn and u1, u2, … , un 
by joining the vertices v  and u ; if n is odd and the vertices v  and u ; if n is even. 

E. Definition 1.5 
A Triangular Ladder 푇(퐿 )is a graph obtained from 퐿 by adding the edges 푢 푣 , 1 ≤ 푖 ≤ 푛 − 1, where 1 ≤ 푖 ≤ 푛 are the vertices 
of  퐿  such that 푢 푢 푢 …푢 and푣 푣 푣 …푣  are two paths of length n in the graph 퐿 . 
 
F. Definition 1.6 
The ladder graph Ln , is obtained from the cartesian product of two path graphs. 
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II. MAIN RESULTS 
A. Theorem 2.1 
Any path  Pn is a (k, d)-Heronian mean graph, for all n ≥ 2. 
Proof: 
Let V(P ) = {u ; 1 ≤ i ≤ n} and E(P ) = {e = (u , u ); 1 ≤ i ≤ n− 1} be the vertices and edges of P  respectively. 
Define f: V(P ) → {k, k + d, k + 2d, … , k + (n − 1)d} by 
f(u ) = k + d(i− 1);   1 ≤ i ≤ n. 
Now the induced edge labels are 
f ∗(e ) = k + d(i − 1);  1 ≤ i ≤ n− 1. 
Here p = n and q = n-1. 
Clearly, f is (k, d)-Heronian mean labeling of P . 
Hence P  is a (k, d)-Heronian mean graph, for all n ≥ 2. 
1) Example 2.2: (50,2)-Heronian mean labeling of 푃  is given in the figure 2.1: 

 

B. Theorem 2.3 
The graph L ⊙ K  is a (k,d)- Heronian mean labeling, for all n ≥ 2. 
Proof; 
Let V(L ⊙ K ) = {u , u , v , v ; 1 ≤ i ≤ n} and 

E(L ⊙ K ) = {e = (u , u ), e = (u , v ), e = (v , v ); 1 ≤ i ≤ n} ∪ 
e = (u , u ), e = (v , v ); 1 ≤ i ≤ n− 1  be the vertices and edges of L ⊙ K  respectively. 

Define f: V(L ⊙ K ) → {k, k + d, … , k + (5n − 2)d} by 
f(u ) = k 

f(u ) = k + d(5i − 6);   2 ≤ i ≤ n 
f(u ) = k + d 

f(u ) = k + 5d(i − 1);  2 ≤ i ≤ n 
f(v ) = k + 2d 

f(v ) = k + d(5i − 4);  2 ≤ i ≤ n 
f(v ) = k + d(5i − 2);   1 ≤ i ≤ n 

Now the induced edge labels are 
f ∗(e ) = k + 5d(i − 1);  1 ≤ i ≤ n 
f ∗(e ) = k + d(5i − 4);  1 ≤ i ≤ n 
f ∗(e ) = k + d(5i − 3);  1 ≤ i ≤ n 

f ∗(e ) = k + d(5i − 2);  1 ≤ i ≤ n − 1 
f ∗ e = k + d(5i − 1);  1 ≤ i ≤ n − 1 

Here p = 4n and q = 5n-2. 
Clearly f is a (k,d)- Hernonian mean labeling.  
Hence L ⊙ K  is a (k,d)-Heronian mean graph for all n ≥ 2. 
 
1) Example 2.4 
(75,2) – Heronian mean labeling of �7 ⊙�1 is given in figure 2.2: 
 

50 52 54 56 58 
50 52 54 56 

Figure 2.1: (50,2)-HML of 푃  
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C. Theorem 2.5 
The graph T ⊙ K  is a (k,d)- Heronian mean labeling, for all n ≥ 2. 
Proof; 
Let V(T ⊙ K ) = {u , v ; 1 ≤ i ≤ n} ∪ {w  , x ; 1 ≤ i ≤ n− 1} and  

E(T ⊙ K ) = {e = (u , v ), 1 ≤ i ≤ n} ∪ 
{e = (v , w ), e = (w , x ), e = (v , v ), e = (w , x , ); 1 ≤ i ≤ n − 1 } 

be the vertices and edges of T ⊙ K  respectively. 
Define f: V(T ⊙ K ) → {k, k + d, … , k + (5n − 4)d} by 

f(u ) = k + 5d(i − 1);   1 ≤ i ≤ n 
f(v ) = k + d(5i − 4);  1 ≤ i ≤ n 

f(w ) = k + d(5i − 3);  1 ≤ i ≤ n − 1 
f(x ) = k + d(5i − 2);   1 ≤ i ≤ n − 1 

Now the induced edge labels are 
f ∗(e ) = k + 5d(i − 1);  1 ≤ i ≤ n 

f ∗(e ) = k + d(5i − 4);  1 ≤ i ≤ n − 1 
f ∗(e ) = k + d(5i − 3);  1 ≤ i ≤ n − 1 
f ∗(e ) = k + d(5i − 2);  1 ≤ i ≤ n − 1 
f ∗ e = k + d(5i − 1);  1 ≤ i ≤ n − 1 

Here p = 4n-2 and q = 5n-4. 
Clearly f is a (k,d)- Hernonian mean labeling.  
Hence T ⊙ K  is a (k,d)-Heronian mean graph for all n ≥ 2. 
1) Example 2.6: (150,3)-Heronian mean labeling of 푇 ⊙퐾  is given in figure 2.3: 
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Figure 2.2: (75, 2)-HML of 퐿 ⊙ 퐾  
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D. Theorem 2.7 
The graph Q ⊙ K  is a (k,d)- Heronian mean labeling, for all n ≥ 2. 
Proof; 
Let V(Q ⊙ K ) = {u , v ; 1 ≤ i ≤ n} ∪ {w  , x , w , x ; 1 ≤ i ≤ n − 1} andE(Q ⊙ K ) = {e = (u , v ), 1 ≤ i ≤ n} ∪ 
{e = (v , w ), e = (w , x ), e = (w , w ), e = (w , x ), e = (v , v ), e = (w , x ); 1 ≤ i ≤ n− 1 } be the vertices and edges 
of Q ⊙ K  respectively. 
Define f: V(Q ⊙ K ) → {k, k + d, … , k + (7n − 6)d} by 

f(u ) = k + 7d(i − 1);   1 ≤ i ≤ n 
f(v ) = k + d(7i − 6);  1 ≤ i ≤ n 

f(w ) = k + d(7i − 5);  1 ≤ i ≤ n − 1 
f(x ) = k + d(7i − 4);   1 ≤ i ≤ n − 1 
f(w ) = k + d(7i − 3);  1 ≤ i ≤ n − 1 
f(x ) = k + d(7i − 2);  1 ≤ i ≤ n − 1 

Now the induced edge labels are 
f ∗(e ) = k + 7d(i − 1);  1 ≤ i ≤ n 

f ∗(e ) = k + d(7i − 6);  1 ≤ i ≤ n − 1 
f ∗(e ) = k + d(7i − 5);  1 ≤ i ≤ n − 1 
f ∗(e ) = k + d(7i − 4);  1 ≤ i ≤ n − 1 
f ∗ e = k + d(7i − 3);  1 ≤ i ≤ n − 1 
f ∗(e ) = k + d(7i − 2);  1 ≤ i ≤ n − 1 
f ∗ e = k + d(7i − 1);  1 ≤ i ≤ n − 1 

Here p = 6n-4 and q = 7n-6. 
Clearly f is a (k,d)- Hernonian mean labeling.  
Hence 푄 ⊙퐾1 is a (k,d)-Heronian mean graph for all 푛 ≥ 2. 
1) Example 2.8: (200,6)-Heronian mean labeling of 푄 ⊙퐾  is given in figure 2.4: 
 

 

218 

200 

206 

212 
224 

230 

242 

248 

254 

260

266 

272 

284 

290 

296 

302 

308 

314 

326 

322 

Figure 2.4: (200, 6)-HML of 푄4 ⊙퐾1 

200 

206 

212 

218 

224 

230 
236 

242 

248 

254 

260

266 

272 
278 

284 

290 

296 

302 

308 

314 320 

326 

150 

153 

156 

159 

165 

168 

171 

174 

180 195 210 225

183 198 213 
228 

186 201 216 

189 204 219 

Figure 2.3: (150,3)-HML of 푇6 ⊙퐾1  
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E. Theorem 2.9 
The Total graph TL ⊙ K  is a (k,d)- Heronian mean labeling, for all n ≥ 2. 
Proof: 
Let V(TL ⊙ K ) = {u , v , w  , x ; 1 ≤ i ≤ n} and  

E(TL ⊙ K ) = {e = (u , v ), e = (v , w ), e = (w , x );  1 ≤ i ≤ n} ∪ 
{e = (v , v ), e = (v , w ), e = (w , w ); 1 ≤ i ≤ n− 1 } 

be the vertices and edges of TL ⊙ K  respectively. 
Define f: V(TL ⊙ K ) → {k, k + d, … , k + (6n− 3)d} by 

f(u ) = k + 6d(i − 1);   1 ≤ i ≤ n 
f(v ) = k + d(6i − 5);  1 ≤ i ≤ n 
f(w ) = k + d(6i − 4);  1 ≤ i ≤ n 
f(x ) = k + d(6i − 3);   1 ≤ i ≤ n 

Now the induced edge labels are 
f ∗(e ) = k + 6d(i − 1);  1 ≤ i ≤ n 
f ∗(e ) = k + d(6i − 5);  1 ≤ i ≤ n 
f ∗(e ) = k + d(6i − 4);  1 ≤ i ≤ n 

f ∗(e ) = k + d(6i − 3);  1 ≤ i ≤ n − 1 
f ∗ e = k + d(6i − 2);  1 ≤ i ≤ n − 1 
f ∗(e ) = k + d(6i − 1);  1 ≤ i ≤ n − 1 

Here p = 4n and q = 6n-3. 
Clearly f is a (k,d)- Hernonian mean labeling.  
Hence TL ⊙ K  is a (k,d)-Heronian mean graph for all n ≥ 2. 
1) Example 2.10 
(185,7)-Heronian mean labeling of 푇퐿7 ⊙퐾1 is given in figure 2.5: 

 

F. Theorem 2.11 
The graph Hn is a (k,d)-Heronian mean graph for all 푛 ≥ 2. 
Proof: 
Let V(H ) = {u , v ; 1 ≤ i ≤ n} and 

E(H ) = {e = (u , u ), e = (v , v );  1 ≤ i ≤ n− 1} ∪ {e} 
be the vertices and edges of H  respectively. 
Define f: V(H ) → {k, k + d, … , k + (2n− 1)d} by 

f(u ) = k + d(i− 1);   1 ≤ i ≤ n 
f(v ) = k + d(n + i− 1);  1 ≤ i ≤ n 

Now the induced edge labels are 
f ∗(e ) = k + d(i − 1);  1 ≤ i ≤ n − 1 

f ∗(e ) = k + d(n + i − 1);  1 ≤ i ≤ n− 1 
f ∗(e) = k + d(n− 1) 

Here p = 2n and q = 2n-1. 

185 

192 

199 

206 

227 

234 

Figure 2.5: (185,7)-HML of 푇퐿 ⊙퐾  
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Clearly f is a (k,d)- Hernonian mean labeling.  
Hence H  is a (k,d)-Heronian mean graph for all n ≥ 2. 
1) Example 2.12: (125,8)-Heronian mean labeling of H6 is given in figure 2.6: 

 

G. Theorem 2.13 
The Peterson graph  is a (k,d)-Heronian mean graph. 
Proof: 
Let G be Peterson Graph. 
Let V(G) = {u , v ; 1 ≤ i ≤ 5} andE(G) = {e = (u , u ), e = (u , u ), e = (u , u ), e = (u , u )} ∪ {e = (u , u )} ∪ {e =
(v , v ); 1 ≤ i ≤ 4} ∪ {e = (v , v )} ∪ {e = (v , u ) ; 1 ≤ i ≤ 5} be the vertices and edges of G. 
Define f: V(G) → {k, k + d, … , k + 15d} 

f(u ) = k + d(i − 1);   1 ≤ i ≤ 4 
f(u ) = k + 5d 

f(v ) = k + d(i + 9);  1 ≤ i ≤ 5 
Now the induced edge labels are 

f ∗(e ) = k + d(i − 1);  1 ≤ i ≤ 5 
f ∗(e ) = k + d(i + 9); 1 ≤ i ≤ 2 

f ∗(e ) = k + d(i + 10); 3 ≤ i ≤ 4 
f ∗(e ) = k + 12d 

f ∗(e ) = k + d(i + 4);  1 ≤ i ≤ 5 
Here p = 2n and q = 2n-1. 
Clearly f is a (k,d)- Hernonian mean labeling.  
Hence H  is a (k,d)-Heronian mean graph for all n ≥ 2. 
 
1) Example 2.14 
(10,9)-Heronian mean labeling of Peterson Graph. 
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Figure 2.6: (125, 8)-HML of 퐻  
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Figure 2.7: (k,d)-HML of Peterson Graph 



 


