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Hydrodynamic Approximation a Three Layer 
Model is which both the Surface Layer and the 

Bulk Metal can Sustain Longitudinal Fields, within 
the LWL One Present Explicit Analytical Results 

for ࢊ┴ (૑),ࢊ|| (૑) and for the Ellipsometry 
Parameters 

T M Ehteshamul Haque1 

Abstract: One considers the simple local three layer model, which has been discussed by McIntyre and ASPNES11 and its 
frequently used to express the surface parameters ࢊ┴ (࣓) and ࢊ|| (࣓) in terms of the thickness d of the surface layer and the 
dielectric constants of surface layer and metal substrate. 
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I. INTRODUCTION 
One considers the simple local three layer model, which has been discussed by McIntyre andASPNES11 and its frequently used to 
express the surface parameters ݀┴ (ω) and ݀|| (ω) in terms of the thickness d of the surface layer and the dielectric constants of 
surface layer and metal substrate, provided the surface layer has a reduced symmetry(ߝ୶୶ୱ = ୷୷ୱߝ ≠ ୸୸ୱߝ ). But it is not possible to 
determine these optical constants and the thickness d of the surface layer uniquely from the values of ݀┴ (ω) and ݀|| (ω) or from 
optical measurements, as has been emphasized by PLIETH and NAEGLE8. Moreover, the nonlocal calculation of shows that it does 
in general not increase the insight into the physics of the problem, if one expresses the surface response functions ݀┴ (ω) and 
݀||  (ω) in terms of parameters of a local model, even if this is formally possible. A simple example is illustrative: The decay length 
of plasma waves (for ω < ω୮) and thereby, the effective width of the surface region depends on the frequency. To simulate this 
effect in a local three layer model one needs a surface layer with an artificial frequency dependence of either the layer thickness or 
the dielectric functions. Furthermore, it turns out that only within the LWL nonlocal effects can be simulated by a local three layer 
model so that there is no good reason to express experimental data in terms of dielectric functions of such a model. 
One considers within the hydrodynamic approximation a three layer model is which both the surface layer and the bulk metal can 
sustain longitudinal fields, within the LWL one present explicit analytical results for ݀┴ (ω),݀|| (ω) and for the ellipsometry 
parameters, which contain previous results of ABELES and LOPEZRIOS as special cases and may be useful for the interpretation 
of experimental data on metal films absorbed on metallic substrates. One discuss surface plasmons in terms of the response 
functions ݀┴ (ω),݀|| (ω), Especially the treatment of “multipole” surface plasmons yields some understanding of the frequency 
dependence of ݀┴ (ω). 

A.  Mathematial formalism used in the evaluation. Boundary Conditions for the Asymptotic Fields 
One assume that far from the surface the exact electromagnetic fields reduce to transverse fields and compare the exact solution E 
(r) = E  (z) exp [ikxx- ωt)] of Maxwell’s equations in the whole space with a reference field defined by 
E0(z;a) = E<(z)ɵ(a-z) + E>(z)ɵ(z-a)     (4.1) 

Where the transverse fields E<(z) and E>(z) are the extrapolations of the asymptotic limits of E(z) on the vacuum side and on the 
metal side, respectively, towards a plane z = a in the surface region. The reference field (4.1) together with the corresponding B0-
field and the displacement field. 
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D0(z;a) = εୟE
<(z)ɵ(a-z) + ε୲E

>(z)ɵ(z-a)       (4.2)   is assumed to solve Maxwell’s 
equations with the local dielectric constants εୟ in the halfspace z < a and ε୲ in the metallic halfspace Z > a. Here and in the following 
we assume the local approximation ε୲(k, ω) = ε୲(0, ω) = ε୲ to be sufficient for the bulk response of the metal to transverse waves. 
Furthermore we consider the slightly more general case that to the left of the surface we have a dielectric described by εୟ, rather 
than vacuum. 
Since the reference fields are determined by the asymptotic values of the exact field, the reference fields will in general not satisfy 
the standard matching conditions at the plane z=a. That means, the reference field is not the solution of the classical Fresnel problem 
with dielectric constants εୟand ε୲ in z <a and z > a, respectively. On the contrary, the reference field contains by definition the full 
information about the reflection and transmission properties of the nonlocal surface problem. Following APELL2, and more closely, 
recent work by KMPA and GERHARDTS we now derive the exact matching conditions for the reference field. 
To be specific, we consider first the case of p polarization and write the field in the dielectric in the form 

E୶ழ(z) = −  ୡ୔౗
ω

E଴ (e୧୸୔౗ − r୮eି୧୸୔౗)   (4.3a) 

E୸ழ(z) = −  ୡ୩౮
ω

E଴ (e୧୸୔౗ − r୮eି୧୸୔౗)   (4.3b) 

With E0 the amplitude of the incident field, r୮ the reflection amptitude andk୶ଶ + pୟଶ = εୟωଶ/cଶ. The asymptotic transverse field 
inside the metal is written as  
E୶வ(z) = E୶୲e୧୸୔౪)       (4.4a) 

E୶வ(z) = − ୩౮
୔౪

E୶୲e୧୸୔౪)      (4.4b) 

With k୶ଶ + p୲ଶ = ε୲ωଶ/cଶ. By construction of the reference field there exist ≥ values ߦଵ < a and ߦଶ < a (slightly) outside the surface 
region, so that the exact field agree practically with the reference fields, e.g. D(z) ≈ D0 (z;a), for z <ߦଵ < and z <ߦଶ. Since both the 
exact fields and the reference fields satisfy in the half space z > a and z < a Maxwell’s equations, although with different 
constitution equations, we can use ܸ.ܦ. =  ik୶D୶ + D୸

ଵ = 0 for both D(r) and D0 (r;a) to evaluate 

න dz (D୸
ଵ(z)−

ξଶ

ୟ
D୸
଴ଵ(z; a)] = [D୸(a)− D୶

வ(a)] 

= ik୶∫ dz [D୶(z)− D୶
଴(z; a)] ξଶ

ୟ    (4.5) 

Whereܦ௭(ߦଶ) =  D୸
଴(ߦଶ; a) =  D୸

வ(ߦଶ) has been taken into account. Adding the corresmenting integral over the interval ξଵ < ݖ < ܽ, 
we obtain, since ܦ௭(ݖ) is continuous at z=a, 

D୸
வ(a)− D୸

ழ(z)= -ik୶ ∫ dz ܦ௫(ݖ)  − ξଶ
ξଵ D୶

଴(z; a)]     (4.6) 

This matching condition for the asymptotic fields replaces the standard boundary condition "ܦ௭(ݖ) continuous”. 
A second matching condition for the asymptotic fields, corresponding to the standard boundary condition "E୶(ݖ)  continuous”, is 
obtained from Faraday’s Law ∇ x E =  −cିଵ ∂B/ ∂t i.e. ik୶E୸ − E୶ଵ = iωB୷/c which yields for instance 

න −(ݖ)E୶ଵݖ݀
కଶ

௔
E୶൫ξଶ൯ − E୶(a) 

ik୶ ∫ dzE୸(z) + ξଶ
ୟ i ω

ୡ
ൣξଶB୷൫ξଶ൯ − aB୷(aା)൧+ ωమ

ୡమ
∫ dz (zD୶(z)ξమ
ୟ                           (4.7)       

Here we have integrated by parts, using 
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B୷
ଵ = iωD୶/c, The x component of Ampere’slaw ∇ x H =  −cିଵ ∂B/ ∂t. We now substract from (4.7) the corresponding expression 

for the reference fields and add the results to that obtained in the same way by integrating over the interval ξଵ < ݖ < ܽ.thisyield the 
matching condition.  
Where the explicit boundary terms at z = ξଵ and z = ξଶ have cancelled according to the definition of the reference fields. The 
boundary terms ~a[B୷

வ(a)− B୷
ழ(a)] have term included in the integral of (4.8) using ik୶B୷ = iωD୷/c and (4.6). 

For a compact notation we define the following moments of “surface solutions” LWL 
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