Studies on Structural Analysis of Automotive Door Using Conventional, Present and Proposed Materials

Irayya Shikkerimath 1, Mayur D Pawar 2, Dr Raghavendra Joshi 3
1,2,3 Department of Mechanical engineering, Bitm, Ballari

Abstract: In this work the explicit structural Finite Element Analysis of automotive door of a vehicle is carried out by considering Conventional Galvanized iron material, Present Aluminium material and Proposed PEEK and Carbon 10% with Polypropylene 90% composite. The main objective of the work is to develop a suitable model of car door for TATA Indica V2 car; to conduct a explicit dynamic structural analysis (stress and displacement analysis) of car door by Finite element method, to compare the performance of Conventional, Present and Proposed material. The door for TATA Indica V2 vehicle was used to develop the geometric model of the door by SOLID EDGE V.15 modelling software. This 3-D geometric model was imported to ANSYS Workbench 18.0/12.0. The explicit dynamic structural FEA was done after assigning speed and boundary conditions. The equivalent stress and the displacement are noted and investigated to compare with three different beam material such as Stainless steel beam, Stainless steel Bike handle and concrete beam.

Keywords: PEEK, Carbon reinforced polypropylene composite, Stainless Steel bike handle as (Beam), Concrete beam, Stainless Steel beam.

I. INTRODUCTION

Automotives play an important role in the transportation of people both individual and in groups, as well as goods. Large-scale manufacture of these automobiles, operation of the transportation (road) network system, and construction of the required infrastructure has dominant impacts on economic growth of the country. There exists a substantial need for fabricated materials in this entire sector. Continuous efforts are on developing newer or alternative materials to achieve cost effectiveness, fuel efficiency, reduced emissions, increased safety, and always with a target on future ability to recycle or biodegrade. However, today’s rising cost of fuel is a major factor in the move to utilize composites for all transport vehicles, and thereby to achieve a lightweight construction with an ultimate goal of reduction in fuel consumption and emissions. Side impacts are one of the awfully hazardous crashes causing death and injuries annually around the world. Many of these injuries occur when one car runs into the side of another or into a fixed narrow object such as a trees lamp posts, or poles. Over the last few decades, critical steps have been taken that increase vehicle occupant safety for frontal impacts: mandatory driver and front-passenger airbags; improved front and rear crumple zones; improved headrest designs; gas tank redesigns; mandatory seat-belt laws; mandatory under ride beams on commercial trucks, and so on. Unfortunately, they do not provide similar protection for side-impact collisions. A good structure behaviour is necessary to absorb most of the kinetic energy. Automotive vehicle door is a type of door, typically hinged, but sometimes attached by other mechanisms such as tracks, in front of an opening which is used for entering and exiting a vehicle. A vehicle door can be opened to provide access to the opening, or closed to secure it. These doors can be opened manually, or powered electronically. Powered doors are usually found on minivans, high-end cars, or modified cars.

A. Carbon Fiber Reinforced Polypropylene Composite

Addition of reinforcement materials like carbon fibers with an organic compound like maleic anhydride improves the strength of polypropylene. The improvement in mechanical properties of pure polypropylene by introducing small percentages of carbon fibers. Compositions of 2, 4, 6 and 8 percent of carbon fiber and 1 percent of maleic anhydride were added to pure polypropylene. It was observed that increasing the carbon fiber content increased the strength of pure polypropylene. The composite can find its applications in battery housings, automotive parts requiring high impact and bending strength etc.

B. Thermoplastics

Thermoplastics are simplest atomic structure, with artificially free macro molecules. The advantages of using thermoplastic composites include short cycle times, quick installation, recyclability, weldability and elimination of freezer storage. PEEK is a
colourless organic thermoplastic polymer in the polyaryletherketone (PAEK) family, used in engineering applications, and is characterized by excellent mechanical properties to high temperatures. And it has following Properties like High mechanical force (strength), High working temperature about 260 degree Celsius, High stiff, High creep stability during high temperature operation, Good sliding property, High abrasion resistance and high dimensional strength, conflict hydrolysis

II. METHODOLOGY

Physical Measurement of automotive door

- 2D-Modelling of door using solid edge V.15 software
- 3D-Modelling of door by solid edge V.15 software

Import 3D-modelling to ANSYS work bench.18/12

Apply door and beam materials

Apply boundary condition (beam as fixed support)

Various Speed condition applied to door

Carry the analysis and obtained Von-misses stress and...

III. PROPERTIES OF MATERIALS USED

<table>
<thead>
<tr>
<th>SL NO</th>
<th>DOOR MATERIALS</th>
<th>DENSITY IN Kg/m3</th>
<th>YOUNG'S MODULUS IN GPA</th>
<th>POISSON'S RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GALVONIZED IRON</td>
<td>1362</td>
<td>6.7</td>
<td>0.3</td>
</tr>
<tr>
<td>2.</td>
<td>STAINLESS STEEL</td>
<td>1450</td>
<td>35</td>
<td>0.221</td>
</tr>
<tr>
<td>3.</td>
<td>ALUMINIUM ALLOY</td>
<td>1720</td>
<td>4.6</td>
<td>0.33</td>
</tr>
<tr>
<td>4.</td>
<td>PEEK</td>
<td>1320</td>
<td>3.6</td>
<td>0.377</td>
</tr>
<tr>
<td>5.</td>
<td>CARBON 10% & POLYPROPYLENE 90% COMPOSITE</td>
<td>1221</td>
<td>84.61</td>
<td>0.385</td>
</tr>
</tbody>
</table>

Table1: Properties of the materials
IV. GEOMETRICAL MODELING OF AUTOMOTIVE CAR DOOR

V. DATA INPUT AND ANALYSIS

A. Analysis of Automotive car door with aluminium alloy door with SS beam

1) Maximum Von-misses stress and displacement for 30 m/s speed condition:

B. Analysis of Automotive car door with PEEK and SS Beam

1) Maximum Von-misses stress and displacement for 30 m/s speed condition
2) Maximum Von-misses stress and displacement for 90 m/s speed condition

VI. RESULT TABLE

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Door Material</th>
<th>Speed Condition</th>
<th>SS Beam</th>
<th>SS Bike Handle</th>
<th>Concrete Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Max stress (Mpa)</td>
<td>TD (mm)</td>
<td>Max stress (Mpa)</td>
</tr>
<tr>
<td>1</td>
<td>GI</td>
<td>30</td>
<td>2175.7</td>
<td>3.51</td>
<td>2190.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>6492.1</td>
<td>10.53</td>
<td>6572.1</td>
</tr>
<tr>
<td>2</td>
<td>Al-Alloy</td>
<td>30</td>
<td>738.8</td>
<td>21.58</td>
<td>2220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>2214</td>
<td>65.04</td>
<td>6372.6</td>
</tr>
<tr>
<td>3</td>
<td>PEEK</td>
<td>30</td>
<td>286.4</td>
<td>0.14</td>
<td>1461</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>938.57</td>
<td>0.45</td>
<td>1514.4</td>
</tr>
<tr>
<td>4</td>
<td>Carbon+ polypropylene</td>
<td>30</td>
<td>1064</td>
<td>0.12</td>
<td>585.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>3108</td>
<td>0.39</td>
<td>2586.1</td>
</tr>
</tbody>
</table>
A. Graphical Results

Graph 1. Stress Vs Speed condition for SS beam

Graph 2. Total deformations Vs Speed condition for SS beam

Graph 3. Stress Vs Speed condition for SS Bike handle

Graph 4. Total deformations Vs Speed condition for SS bike handle (as beam)
VII. CONCLUSION

The present work deals with structural analysis of automotive door for TATA Indica V2 vehicle subjected to explicit dynamic analysis of car door. The analysis shows the stress and Total deformation of car door when subjected to a given speed condition and it also enhances the crashworthiness against different beam materials. Based on the structural analysis of automotive door, we can conclude that our proposed PEEK material provides better stress properties and total deformation properties than compared to Existing materials such as galvanized iron and aluminium alloys which are used for automotive door of vehicles.

REFERENCES

[5] Tawanda Mushiri, and Charles Mbohwa; “Design of a Vehicle Door Structure Based on Finite Element Method”; 6th International Conference on Mechanical, Production & Automobile Engineering (ICMPAE); Cape Town (South Africa); 2014

[9] Enrico Mangino, Joe Carruthers and Giuseppe Pitarresi; “The future use of structural composite materials in the automotive industry”; NewRail, School of Mechanical and Systems Engineering, University of Newcastle upon Tyne, NE1 7RU, UK

[10] Tsuyoshi Watanabe, Satoru Moritomi, Susumu Kanzaki, Polypropylene Compounds for Automotive Applications