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Abstract: In this paper, we introduce a new class of closed sets via, soft semi #gα-closed sets in bi-topological spaces. And also 
we study the concepts of border and exterior of soft semi #gα-closed sets in bi-topological spaces which are denoted by(૚,૛)∗ soft 
semi #gα-bd (F,A) and (૚,૛)∗ soft semi #gα-ext (F,A), where (F,A)is any soft set of (X,E) and also investigate their basic 
properties. 
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I. INTRODUCTION 
In 1963, the concepts of bi-topological spaces was originally initiated by J.C. Kelly[3]. The theory of generalized closed sets in 
topological spaces which was found by Levine[8] in 1970. The concepts of generalized and semi  generalized closed sets was 
introduced and studied by Lellis[7] in classical topology. He defined a bi-topological space (X,߬ଵ ,߬ଶ) to be a set X with two 
topologies ߬ଵ ܽ݊݀ ߬ଶ on X and initiated the systematic study of bi-topological spaces. The soft  theory is rapidly processing in 
different field of  mathematics.  It was first proposed by Russian researcher Molodtsov[9] in 1999.Muhammad Shabir and Manazza 
Naz [10] introduced  soft topological spaces in 2011. It was defined over an initial universe with a fixed set of  parameters. N. 
Cagman and S. Karatas[2] introduced topology on a set called “soft topology” and initiated the theory of soft topological  spaces in 
2013.In this  paper  we defined and examined  the basic properties of  (1,2)∗ soft semi #gߙ-border and (1,2)∗ soft semi #gߙ-exterior 
in soft bi-topological spaces and study their properties. 

II. PRELIMINARIES 
In this section we have presented some of the basic definitions and results of soft set, soft topological space, bi-topological space to 
use in the sequel. Throughout this paper, X is an initial universe, E is the set of parameters, P(X) is the power set of  X, and  A⊆ X. 

A. Definition 2.1. 
     Let ߬̃ be the collection of soft sets over X, then  ߬̃  is called a soft topology on X  if߬̃  satisfies the following axioms: 

∅ , ෨ܺ belongs to ߬̃ . 
The union of any number of soft sets in ߬̃  belongs to ߬̃  . 
The intersection of any two soft sets in ߬̃   belongs to ߬̃  . 
The triplet (X,߬̃  ,E) is called a soft topological space over  X. For simplicity, we can take the soft topological  space (X,߬̃  ,E) as  X  
throughout  the work. 

B. Definition 2.2. 
A set X together with two different  topologies is called bi-topological space. It is denoted by (X,߬ଵ,߬ଶ ). 

C. Definition 2.3. 
A soft set (F,A) of a soft topological space (X,߬̃ ,E) is called 
1) soft ߙ − closed [4] if ݈̃ܿݏ(ݏ ෥݅݊ݐ (݈̃ܿݏ(F,A)))  ⊆෥  (F,A).  The complement of  soft α-closed set is called soft α-open. 
2) soft semi – closed [2] if  ̃ݐ݊݅ݏ(݈̃ܿݏ(F,A))  ⊆෥  (F,A). The complement of soft semi – closed set is called soft semi-open. 
3) soft g-closed [5] if  ݈̃ܿݏ(F,A)  ⊆෥  (U,E), whenever (F,A) ⊆෥  (U,E) and (U,E) is soft open in  (X , ߬̃ , E). The complement of                                

soft g-closed set is called soft g-open. 
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4) soft ݃# α- closed [6] if   ݏ ෥݈ܿߙ(F,A)  ⊆෥  (U,E), whenever (F,A) ⊆෥  (U,E) and  (U,E) is soft g-open in (X , ߬̃ , E). The complement 
of   soft ݃# α -closed set is called soft ݃# α -open.soft #gα- closed [8] if  ݏ ෥݈ܿߙ(F,A)  ⊆෥  (U,E), whenever  (F,A) ⊆෥  (U,E) and  
(U,E) is soft  ݃#α- open in (X , ߬̃ , E). The complement of   soft #gα -closed set is called soft #gα -open.   

5) soft semi  #gα-closed [9] if  ݏ ෥݈ܿݏ(F,A)  ⊆෥  (U,E), whenever  (F,A) ⊆෥  (U,E) and  (U,E) is soft #gα- open in (X , ߬̃ , E). The 
complement of   soft semi #gα -closed set is called soft semi  #gα –open 

6) The union of all soft semi #gα  open sets [10]  each contained  in a set (F,A) of    (X , ߬̃ , E)  is called soft semi  #gα interior of  
(F,A) which is denoted  by ̃ݏ semi  #gα-int(F,A) 

7) The intersection of all soft semi #gα- closed sets [10], each containing a set (F,A) of   (X , ߬̃ , E) is called soft semi #gα-closure 
of  (F,A), which is denoted  by   ݏ ෥semi  #gα-closure of  (F,A). 

 
D. Definition 2.4. 
Let X be a non-empty soft set on the universe X ,߬̃ଵ ,߬̃ଶ  are different soft topologies on ෨ܺ. Then ( ෨ܺ, ߬̃ଵ , ߬̃ଶ )is called a soft bi-
topological space. 
 
E. Definition 2.5. 
Let ܨ஺ ∈S(U). Power soft set of  ܨ஺ is defined by , ෨ܲ (ܨ஺) = {ܨ஺௜ ⊆෥  {஺: i ∈ Iܨ
And  its cardinality is defined  byหܲ ෩ ∑ ห = 2(஺ܨ ) | ஺݂(ݔ)|௫∈ா   where | ஺݂(ܺ)| is cardinality of   ஺݂(ܺ). 

F. Example  2.6. 
Let U = {ݑଵ,ݑଶ,ݑଷ} , E = {ݔଵ,ݔଶ} and  ܨா = X = {(ݔଵ ,{ݑଵ,ݑଶ,ݑଷ}), (ݔଶ ,{ݑଵ,ݑଶ,ݑଷ})}.  And  let  ( ෨ܺ , ߬̃ଵ , ߬̃ଶ )  be a soft  bi-
topological space ,  where  ߬̃ଵ  =  {∅, 2 , 3 , 5 , X }  ,  ෩ 2  =  { , 2 , 8 , 14 , X }  , then 1,2෪   soft  open  sets are 
{ , 2 3 , 5 , 8  , 14, 17 , 32 , X }and 1,2෪   soft  closed  sets are { , 4 6 , 7 , 12 , 31, 44 , 46  ,X }.  
Then , 

1=   

2 = {( 1, { 1})} 

3= {( 1, { 2})} 

4 = {( 1, { 3})} 

5 = {( 1, { 1 , 2})} 

6 = {( 1, { 2 , 3})} 

7= {( 1, { 3 , 1})} 

8=  {( 2, { 1})} 

9 = {( 2, { 2})} 

10= {( 2, { 3})} 

11=  {( 2, { 1 , 2})} 

12 = {( 2, { 2 , 3})} 

13=  {( 1, { 3 , 1})} 

14=  {( 1   , { 1}   , ( 2, { 1})} 

15= {( 1   , { 1}   , ( 2, { 2})} 

16= {( 1   , { 1}   , ( 2, { 1,
2  

})} 

17= {( 1   , { 2}   , ( 2, { 1})} 

18 = {( 1   , { 2}   , ( 2, { 2})} 

19= {( 1   , { 2}   , ( 2, { 1, 2})} 

20=  {( 1   , { 3}   , ( 2, { 1})} 

21=  {( 1   , { 3}   , ( 2, { 2})} 

22= {( 1   , { 3}   , ( 2, { 1 , 2
})} 
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23= {( 1   , { 3}   , ( 2, { 3 , 1
})} 

24= {( 1   , { 1}   , ( 2, { 3})} 

25= {( 1   , { 1}   , ( 2, { 2 , 3
})} 

26=  {( 1   , { 2}   , ( 2, { 3 , 1
})} 

27=  {( 1   , { 2}   , ( 2, { 3})} 

28=  {( 1   , { 2}   , ( 2, { 2, 3
})} 

29= {( 1   , { 1}   , ( 2, { 3, 1})} 

30= {( 1   , { 3}   , ( 2, 3})} 

31= {( 1   , { 3}   , ( 2, { 2 , 3
})} 

32= {( 1   , { 1 , 2
}   , ( 2, { 1})} 

33= {( 1   , { 1 , 2
}   , ( 2, { 2})} 

34= {( 1   , { 1 , 2
}   , ( 2, { 1, 2})} 

35 = {( 1   , { 2 , 3
}   , ( 2, { 1})} 

36=  {( 1   , { 2 , 3
}   , ( 2, { 2})} 

37= {( 1   , { 2 , 3
}   , ( 2, { 1, 2})} 

38= {( 1   , { 3 , 1
}   , ( 2, { 1})} 

39= {( 1   , { 3 , 1
}   , ( 2, { 2})} 

40= {( 1   , { 3 , 1
}   , ( 2, { 1, 2})} 

41= {( 1   , { 1 , 2
}   , ( 2, { 3})} 

42= {( 1   , { 1 , 2
}   , ( 2, { 2  , 3 })} 

43=  {( 1   , { 2 , 3
}   , ( 2, { 3})} 

44=  {( 1   , { 2 , 3
}   , ( 2, { 2, 3})} 

45=  {( 1   , { 3 , 1
}   , ( 2, { 3})} 

46={( 1   , { 3 , 1
}   , ( 2, { 2, 3} 

47= {( 1   , { 1  , 2  , 3} )} 

48= {( 1   , { 1 , 2  , 3}, ( 2, { 1})} 

49= {( 1   , { 1 , 2  , 3}, ( 2, { 2})} 

50= {( 1   , { 1 , 2  , 3}, ( 2, { 1, 2})} 

51= {( 1   , { 1 , 2  , 3}, ( 2, { 3})} 

52 = {( 1   , { 1 , 2  , 3}, ( 2, { 2, 3})} 

53= {( 1   , { 1 , 2  , 3}, ( 2, { 3, 1})} 

54= {( 1   , { 1}, ( 2, { 1, 2, 3})} 

55=  {( 1   , { 2}, ( 2, { 1, 2, 3})} 

56= {( 1   , { 1 , 2}, ( 2, { 1,  {({3ݑ,2

57=  {( 1   , { 3}, ( 2, { 1, 2, 3})} 

58=  {( 1   , { 2, 3}, ( 2, { 1, 2, 3})} 

59=  {( 1   , 1 , 3}, ( 2, { 1, 2, 3})} 

60= {( 1   { 1, 3}, ( 2, { 1, 3})} 

61={( 1   { 1, 2}, ( 2, { 1, 3})} 

62= {( 1   { 2, 3}, ( 2, { 1, 3})} 

63= { ( 2, { 1, 2, 3})} 
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64= {( 1   , { 1 , 2 , 3}, ( 2, { 1, 2, 3})} = X.  Are all soft subsets of . So |  ෪ ( )  | = 26 = 64 

G. Definition 2.7. 
A soft set (F,A) of a soft bi-topological space  (෩ , 1෪ , 2෪ ,E)  is called (1,2)∗soft semi #gα-closed if  ෩scl(F,A)⊆෥  (U,E), whenever  
(F,A) ⊆෥   (U,E)  and  (U,E) is (1,2)∗ soft  #gα-open in (෩ , 1෪ , 2෪ ,E).  The complement of  (1,2)∗ soft semi #gα-closed set is called 
(1,2)∗ soft semi #gα-open. 
H. Theorem 2.8. 
If  (F,A) and  1,2෪ (G,B) are soft subset of (X,E), then 
1) (F,A) is (1,2)∗ soft semi #gα-open  iff  (1,2)∗ soft semi #gα-int(F,A) =෥  (F,A). 
2) (1,2)∗ soft semi  #gα-int (F,A) is (1,2)∗ soft semi  #gα− open 
3) (F,A) is (1,2)∗ soft semi #gα-closed  iff(1,2)∗ soft semi #gα-cl(F,A) =෥  (F,A) 
4) (1,2)∗soft semi #gα-cl (F,A) is (1,2)∗ soft semi #gα-closed. 
5) (1,2)∗ soft semi #gα-cl ((X,E)\(F,A)) =෥  (X,E)\ (1,2)∗ soft semi #gα-int(F,A).  
6)  (1,2)∗ soft semi #gα-int((X,E)\(F,A)) =෥  (X,E)\ (1,2)∗ soft semi #gα-cl(F,A). 
7) If   (F,A) is  (1,2)∗ soft semi #gα-open in (෩ , 1෪ , 2෪ ,E)  and   1,2෪ (G,B) is (1,2)∗ soft semi #gα-open in (෩ , 1෪ , 2෪ ,E), then 

(F,A)∩෥ 1,2෪ (G,B) is (1,2)∗ soft semi #gα-open in (෩ , 1෪ , 2෪ ,E) 
8) A point x ∈෥ (1,2)∗ soft semi #gα-cl (F,A) iff every (1,2)∗ soft semi #gα-open set in (X,E) containing x intersects (F,A). 
9) Arbitary intersection of  (1,2)∗ soft semi #gα-closed sets in (෩ , 1෪ , 2෪ ,E) is also (1,2)∗ soft semi #gα-closed in  

(෩ , 1෪ , 2෪ ,E).                       
Proof We know that ,(1,2)∗ soft union of all (1,2)∗ soft open sets contained in (F,A) is called  ෩  int(F,A). So  (1,2)∗ soft semi #gα-
open sets also is in (F,A). 
Since (1,2)∗ soft semi #gα-int (F,A)  are(1,2)∗ soft  open  sets. Therefore (1,2)∗ soft semi #gα-int(F,A)  is (1,2)∗ soft semi #gα-open 
sets. 
Let the (1,2)∗ soft intersection of all (1,2)∗ soft closed sets containing (F,A) is called ෩  cl(F,A). So  (1,2)∗ soft semi #gα-closed sets 
is in (F,A). (iv) is similar to (iii). 
(1,2)∗ soft  complement of  (X,E) and (F,A) is equal to (1,2)∗ soft  complement  of   (X,E) and(1,2)∗ soft semi #gα-int (F,A). 

Similarly (vi) can  be  proved. (vii)  and  (viii) are follow from the definition of   (1,2)∗ soft interior.  (ix) obivious from the 
definition of  (1,2)∗ soft  closure.   

I. Definition 2.9. 
For any  soft subset (F,A) of 1,2෪ (X,E), 
The soft border of (F,A) is defined  by  soft bd (F,A)  =෥   (F,A)\ (1,2)∗ soft int(F,A). 
The soft exterior of  (F,A) is defined  by soft ext (F,A) =෥ (1,2)∗ soft int((X,E) \ (F,A)). 

III. SOFT SEMI #G-ALPHA BORDER AND EXTERIOR OF A SET IN BI-TOPOLOGICAL SPACES 
In this section, we introduce  and  study the concepts of  border and exterior of soft semi #gα-closed sets in soft bi-topological 
spaces. 

A. Definition 3.1. 
For any soft subset (F,A) of   1,2෪ (X,E) , (1,2)∗ soft semi #gα-border of (F,A) is defined by  

(1,2)∗soft semi #gα-bd (F,A) =෥   (F,A)\ (1,2)∗ soft semi #gα- int(F,A). 

B. Theorem 3.2. 
In a soft  bi-topological space (X, 1,2෪ ,E), for any soft subset (F,A) of (X,E), the following statements hold. 
(1,2)∗soft  semi  #gα-bd (�)=෥ (1,2)∗ soft  semi  #gα-bd (X,E) =෥�. 
(1,2)∗soft  semi  #gα-bd (F,A) ⊆෥   (F,A). 
(F,A)=෥ (1,2)∗ soft semi  #gα- int (F,A) ∪෥ (1,2)∗ soft  semi  #gα-bd (F,A). 
(1,2)∗soft  semi  #gα-int (F,A)∩෥ (1,2)∗ soft  semi  #gα-bd (F,A) =෥�. 
soft  semi  #gα-int (F,A) =෥  (F,A) \(1,2)∗ soft  semi  #gα-bd (F,A). 
Proof Let us take (1,2)∗soft  semi  #gα-bd (�) is in (1,2)∗ soft  semi  #gα-bd (X,E) and is an empty set. 
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(1,2)∗soft  semi  #gα-bd (F,A) it should be any subset of (F,A). 
Since soft union of (1,2)∗ soft  semi  #gα-bd (F,A) and (1,2)∗ soft  semi  #gα-int(F,A)  are for any subset of  (F,A). 
The soft intersection of  (1,2)∗soft  semi  #gα-bd (F,A) and  (1,2)∗ soft  semi  #gα-int (F,A) are empty set. 
The soft complement of  (1,2)∗soft  semi  #gα-bd (F,A)  is  (1,2)∗ soft  semi  #gα-int (F,A). 

C. Theorem 3.3. 
(1,2)∗ soft  semi  #gα-int((1,2)∗ soft  semi  #gα-bd (F,A)) =෥�.(F,A) is (1,2)∗ soft  semi  #gα-open if and only if (1,2)∗ soft  semi  
#gα-bd (F,A) =෥�. 
soft  semi  #gα-bd ((1,2)∗ soft  semi  #gα-int(F,A))=෥�. 
(1,2)∗ soft  semi  #gα-bd ((1,2)∗ soft  semi  #gα-bd(F,A)) =෥ (1,2)∗ soft  semi  #gα-bd (F,A). 
  soft  semi  #gα-bd (F,A) =෥  (F,A) ∩෥ (1,2)∗ soft  semi  #gα-cl((X,E) \ (F,A)). 
Proof:Let x ∈ ෥ (1,2)∗soft  semi  #gα-int ((1,2)∗ soft  semi  #gα-bd (F,A)).  Then x ∈ ෥ (1,2)∗ soft  semi  #gα-bd(F,A), since (1,2)∗ soft  
semi  #gα-bd (F,A) ⊆෥   (F,A),  x ∈ ෥ (1,2)∗ soft  semi  #gα-int ((1,2)∗ soft  semi  #gα-bd (F,A)) ⊆෥ (1,2)∗ soft  semi  #gα-int (F,A). 
Therefore x  ∈ ෥ (1,2)∗ soft  semi  #gα-int (F,A) ∩෥ (1,2)∗ soft  semi  #gα-bd(F,A) which is contradiction to the above  theorem  (iv). 
Thus (i) is proved. 
(F,A) is (1,2)∗ soft  semi  #gα-open iff (1,2)∗ soft  semi  #gα-int(F,A) =෥  (F,A)  [Theorem 2.8(i)].  But  (1,2)∗ soft  semi  #gα-bd 
(F,A) =෥   (F,A) \  (1,2)∗ soft  semi  #gα-int (F,A) implies  (1,2)∗ soft  semi  #gα-bd (F,A)=෥�. This proves (ii) and (iii). 
And when (F,A) =෥ (1,2)∗ soft  semi  #gα-bd (F,A) Definition 3.1 becomes (1,2)∗ soft  semi  #gα-bd ((1,2)∗ soft  semi    #gα-bd 
(F,A)) =෥ (1,2)∗ soft  semi  #gα-bd (F,A) \ (1,2)∗ soft  semi  #gα-int ((1,2)∗ soft  semi  #gα-bd(F,A)). Using (iii), we will get (iv). 
(v) (1,2)∗ soft  semi  #gα-bd (F,A) =෥  (F,A) \ (1,2)∗ soft  semi  #gα-int (F,A) =෥   (F,A) ∩෥ ( 1,2෪ (X,E) \ (1,2)∗ soft  semi  #gα-int (F,A)) 
=෥  (F,A) ∩෥ (1,2)∗ soft  semi  #gα-cl((X,E) \ (F,A)) [Theorem 2.8 (v)]. Hence (v) is also proved. 

D. Definition.3.4. 
For any soft  subset (F,A) of  1,2෪ (X,E) , its  (1,2)∗ soft semi #gα-exterior is defined by, (1,2)∗ soft semi #gα-ext (F,A) =෥ (1,2)∗ soft  
semi  #gα-int((X,E)\(F,A)). 

E. Theorem 3.5. 
For any =෥ (1,2)∗soft  subets (F,A) and    1,2෪ (G,B) of   1,2෪ (X,E), in soft bi-topological space (X, 1,2෪ ,E), the following statements  
hold. 
(1,2)∗soft  semi  #gα-ext (�) =෥ (1,2)∗ soft  semi  #gα-ext (X,E) =෥ ෩ . 
If  (F,A) ⊆෥ 1,2෪ (G,B), then (1,2)∗ soft  semi  #gα-ext (G,B) ⊆෥ (1,2)∗ soft  semi  #gα-ext (F,A). 
(1,2)∗soft  semi  #gα-ext (F,A) is (1,2)∗ soft  semi  #gα-open. 
 (F,A) is (1,2)∗ soft  semi  #gα-closed if and only if  (1,2)∗ soft  semi  #gα-ext (F,A) =෥ 1,2෪ (X,E) \ (F,A). 
(1,2)∗ soft  semi  #gα-ext (F,A) =෥(X,E)\ (1,2)∗ soft  semi  #gα-cl(F,A). 
Proof:Let us take (i) (1,2)∗soft  semi  #gα-ext (�)  is in (1,2)∗ soft  semi  #gα-ext (X,E) and is an empty set. 
And (ii) if  any  soft  subset of  (F,A) is contained in   1,2෪ (G,B) then, (1,2)∗ soft  semi  #gα-ext (F,A) is always contained in (1,2)∗ 
soft  semi  #gα-ext (G,B). 
Since (1,2)∗soft  semi  #gα-int (F,A) is (1,2)∗ soft  semi  #gα-open,  proof of (iii) is follow  from the definition 3.4.  
is(1,2)∗ soft  semi  #gα-cl (F,A) is (1,2)∗ soft  semi  #gα-closed. 
Since (1,2)∗ soft  semi  #gα-int((X,E) \ (F,A))=෥  (X,E) \ (1,2)∗ soft  semi  #gα-cl(F,A), (v) follows from definition 3.4. 

F. Theorem  3.6. 
(1,2)∗ soft  semi  #gα-ext ((1,2)∗soft semi  #gα-ext (F,A)) =෥ (1,2)∗ soft  semi  #gα-int((1,2)∗soft  semi #gα-cl(F,A)). 
 (F,A) is (1,2)∗ soft semi #gα-regular, then (1,2)∗ soft semi #gα-ext((1,2)∗soft semi  #gα-ext (F,A))=෥   (F,A). 
(1,2)∗soft semi  #gα-ext (F,A) =෥ (1,2)∗soft semi  #gα-ext ((X,E) \((1,2)∗soft semi  #gα-ext (F,A)). 
(1,2)∗soft semi  #gα-int (F,A) ⊆෥ (1,2)∗ soft  semi  #gα-ext ((1,2)∗ soft  semi  #gα-ext (F,A)). 
Proof:Since  (1,2)∗  soft  semi  #gα- int (X,E)\(F,A)) =෥  (X,E)\ (1,2)∗  soft  semi  #gα-ext(F,A), (i) follows from definition 
3.4.Similarly (ii) can be proved.  If  (F,A) is (1,2)∗ soft  semi  #gα-regular, from the above theorem (iv), we have (1,2)∗ soft  semi  
#gα-ext (F,A) =෥ (X,E)\(F,A) which is also  (1,2)∗ soft  semi  #gα-regular. 
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Thus (1,2)∗soft  semi  #gα-ext( soft semi #gα-ext (F,A)) =෥ (F,A), (ii) is proved. (iii)  (1,2)∗ soft  semi  #gα-ext((X,E) \ (1,2)∗ soft 
semi #gα-ext (F,A)) =෥ (1,2)∗  soft semi #gα-ext ((X,E)\ (1,2)∗  soft semi #gα-int ((X,E)\(F,A))) =෥ (1,2)∗  soft semi #gα-int 
((X,E)\((X,E)\ (1,2)∗ soft semi #gα-int((X,E)\(F,A)))) =෥ (1,2)∗ soft semi #gα-int((1,2)∗ soft semi #gα-int(X,E)\(F,A)=෥ ((1,2)∗ soft 
semi #gα-int (X,E)\(F,A)) =෥ (1,2)∗ soft semi #gα-ext(F,A).  Hence (iii) is proved. 
Since (F,A) ⊆෥ (1,2)∗ soft  semi  #gα-cl(F,A), using (i) (iv) can be proved. 

G.  Theorem 3.7. 
(X,E) =෥ (1,2)∗ soft semi #gα-int(F,A) ∪෥ (1,2)∗ soft  semi  #gα-ext (F,A) ∪෥ (1,2)∗ soft  semi  #gα-fr (B,E). 
(1,2)∗ soft  semi  #gα-ext ((F,A) ∪෥ 1,2෪ (G,B)) ⊆෥ (1,2)∗ soft  semi  #gα-ext(F,A) ∩෥ (1,2)∗ soft  semi  #gα-ext (B,E). 
(1,2)∗ soft  semi  #gα-ext ((F,A) ∩෥ 1,2෪ (G,B) ⊆෥ (1,2)∗ soft  semi  #gα-ext(F,A) ∪෥ (1,2)∗ soft  semi  #gα-ext (B,E). 
Proof If we know that complement of   (1,2)∗soft  semi  #gα-int (X,E) is in (F,A) and union of   (1,2)∗ soft semi #gα-int(F,A) is    

1,2෪ (X,E).  
And then any subset of  (F,A) of  1,2෪ ( , ) , its exterior is complement of  1,2෪ (X,E) , its exterior  is complement of   1,2෪ (X,E) 
and (F,A). So union of  all(1,2)∗ soft semi #gα-interior , exterior and frontier is in 1,2෪ (X,E). Hrence (i) is proved. 
Proof of (ii) union of all exterior of (F,A) and  1,2෪ (G,B) is contained in intersection of  (1,2)∗ soft  semi  #gα-ext(F,A) and (1,2)∗ 
soft  semi  #gα-ext (B,E). Hence (ii) is proved. 
And next , proof of  (iii) intersection of  all  exterior of  (F,A) and   1,2෪ (G,B) is contained in union of all (1,2)∗ soft  semi  #gα-
ext(F,A) and (1,2)∗ soft  semi  #gα-ext (B,E). Hence (ii) is proved. 
Example 3.8. 
Let U = { 1, 2, 3} , E = { 1, 2} and   = X = {( 1 ,{ 1, 2, 3}), ( 2 ,{ 1, 2, 3})}.  And  let  (X , ෩ 1 , ෩ 2 )  be a soft  bi-
topological space ,  where  ෩ 1  =  { , 2  , 3  , 5  , X }  ,  ෩ 2  =  { , 2  , 8  , 14  , X } , 
then  1,2෪   soft  open  sets are ൛ , 2 3  , 5  , 8 , 14 , 17 , 32 , X ൟ  and 1,2෪   soft  closed  sets are { , 4 6  , 7  , 

12 , 31, 44 , 46 , X }.  Consider a (1,2)∗soft  semi  #gα-closed set  ෩  = {( 1 ,{ 1, 2, 3}), ( 2 ,{ 1})} 
(1,2)∗soft  semi  #gα-border  : 
{ {( 1 ,{ 1, 2, 3}), ( 2 ,{ 1})} } 

(1,2)∗soft  semi  #gα-exterior : 
{ {( 1 ,{ 1, 2, 3}), ( 2 ,{ 1})}  

IV. CONCLUSIONS 
In this paper ,Border and Exterior of  soft semi gα-closed sets in soft bi-topological spaces  were introduced and studied with 
already existing sets in soft bi-topological spaces. The scope for further research can be focused on the applications of soft bi-
topological spaces. 
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