IJRASET

International Journal For Research in
Applied Science and Engineering Technology

" INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGQGY

Volume: 6 Issue: | Month of publication: January 2018

DOIl: http://doi.org/10.22214/ijraset.2018.1391

www.ijraset.com
Call: (£)08813907089 | E-mail ID: ijraset@gmail.com




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887
Volume 6 Issue I, January 2018- Available at www.ijraset.com

Pseudo-Complete Color Critical Graphs

J. Suresh Kumar?*, D Satheesh E.N?
12post-Graduate Department of Mathematics, N.S.S. Hindu College, Changanacherry, Kottayam Dist., Kerala-686102

Abstract: A pseudo-complete coloring of a graph G is an assignment of colors to the vertices of G such that for any two distinct
colors, there exist adjacent vertices having those colors. The maximum number of colors used in a pseudo-complete coloring of
G is called the pseudo-achromatic number of G and is denoted byy,(G). A graph G is called edge critical if P (G —
e)<y.(G)for any edge e of G. A graph G is called vertex critical if ¥,(G — v) <. ¥ ,(G)for every vertex v of G. These graphs are
generally called as pseudo-achromatic number critical graphs (called shortly as PAN Critical graphs). In this paper, we in-
vestigate the properties of these critical graphs. We also investigate the locally critical elements of graphs.
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1. INTRODUCTION
By a graph we mean a finite undirected graph without loops, multiple edges or isolated vertices.
An assignment of colors to the vertices of a graph is called a proper coloring, if any two adjacent vertices receive distinct colors. An
assignment of colors to the vertices of a graph G is called a pseudo-complete coloring, if for any two distinct colors; there exist
adjacent vertices having those colors. A proper and pseudo-complete coloring of G is called a complete coloring of G.
The minimum number of colors used in a proper coloring of G is called the chromatic number of G and is denoted by y(G). The
maximum number of colors used in a complete coloring of Gis called the achromatic number of G and is denoted by ¥(G) [3]. The
maximum number of colors used in a pseudo-complete coloring of Gis called the pseudo-achromatic number of G and is denoted by
Y. (G) [5]. A graph which admits a pseudo-complete coloring by k colors is called a k- pseudo-complete colorable graph. Several
bounds for these coloring parameters were obtained in [3. 4, 5, 6] and a detailed study of this parameter and critical graphs with
respect to it were studied by Suresh Kumar in his doctoral dissertation [7].
The concept of critical graphs with respect to chromatic number was introduced and studied by Dirac [1, 2]. In this paper, we
introduce the concept of critical graphs with respect to pseudo-achromatic number, obtain characterizations of them and determine
the pseudo-achromatic number of several classes of graphs.
Let n be any positive real number. Then, [n] denote the greatest integer less than or equal to n and {n} denotes the smallest integer
greater than or equal to n.
For terms not defined explicitly here, reader can refer Harary [8].

1. CRITICAL PATHS AND CRITICAL CYCLES
A. Definition2.1. A graph G is called k-edge critical ify_(G)= k and v (G — &) <Kk, for every edge e E E(G). A graph G is called k-

vertex critical if y (G) = k and y_(G — v) < k for every vertex v of G. A graph G is called k-contraction critical (shortly, k-
con-critical) ify (G) = kand \us(G||e) < k for every edge e of G, where G|je denotes the graph obtained from G by contracting
the edge e. Following observations are quite useful later.

B. Proposition 2.2. A graph G is k-edge critical if f G is k-pseudo-complete colorable and |[E(G)| = (IZ()

9

Proposition 2.3. A k-edge critical graph is k--con-critical and a k-con-critical graph is k-vertex-critical.

D. Remark 2.4.None of the statements in Proposition 2.3can be reversed. For example, C8is 4-con-critical but not edge critical.
Also, C4is 3-vertex critical, but not con-critical.

E. Theorem2.5. Let G be a k-pseudo-complete colorable graph. Then, |V(G)| = k{%} where A is the maximum degree of a
vertex of G and {n} is the smallest integer less than or equal to n. Proof. Consider any k-pseudo-complete coloring of G. Then
for any color c, there exist k—1 edges in G such that one end vertex of each of these edges receive the color c. Hence there
must be at least k {%}vertices with color ¢, so that|V(G)| = k {%}

F. Corollary 2.6.9,(G) = max {k: k {%} < |V(G)|}for any graph G with the maximum degree, A.

G. Corollary 2.7. If G is the Petersen Graph, ¥,(G) = 5.
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1) Proof. Clearly, E(G) can be partitioned into a 2-factor, say { (v1lv2v3v4v5vl), (v6v7v8vIviove)} and a 1-factor, {v1v6, v2v9,
v3v7, v4v10, v5v8}. Now the function f:V(G) - {1,2,3,45}definedbyf(v;,) =i,1 <i<5
andf (v;) = 2i — 11(mod 5),6 < i < 10assigns a 5-pseudo-complete coloring for G Hence,ip,(G) = 5. Also, by Corollary
2.6, Y,(G) <5.

H. Corollary 2.8.1fG is the 3-cube, Q3,¥,(G) =4
1) Proof. By Corollary 2.6,3,(G) <4. The function f:V(G) - {1,2,3,4}defined below assigns a 4-pseudo-
complete coloring to Q3 so that the corollary follows.
£(0,0,0)=f(110)=1, f(001)=f(111)=2
f(0,1,1) =f(1,00)=3, f(010) =f(1,01) =4

I. Corollary 2.9.For the 4-cube Q4, ¥.(Q,) =8
1) Proof. By Corollary 2.6, ¥,(Q,) <8. The function f : V (Q4) 2{1,2,3,4, 5,6, 7, 8} defined below assigns a 8-
pseudo-complete coloring to Q4 so that the corollary follows.
£(0,1,1,0) = £(1,001) =1, f(1,1,1,0) = £(0,00,1) =2
f(0,1,00)=f(1010)=3,f(0010)=f(1,111)=4
f(100) =f(0111)=5, f(1,000)=f(0111)=6
f(©0101)=f(1011)=7, f(0,000)=f(1101)=8

J. Corollary 2.10.For the 5-cube Qs,,(Qs) = 11.

1) Proof. By Corollary 2.6, ¥,(Qs) < 11. An 11-pseudo complete coloring of Qs is shown below, so that the
corollary follows.

f(0,1,1,0,0) = f(1, 0, 0,1,0) =1, f(1,1,1,0,0) =f(1,1,1,0,1) = f(0,0,0,1,1) =2

f(0,1,0,0,0) = f(1,0,1,0,0) = 3, f(0,0,1,00) = f(1,1,11,0) = f(0,0,1,01) =4

£(1,1,0,00) = f(0,1,1,1,0) = f(0,1,1,1,1) =5, f(1,0,0,0,0) = f(0,0,1,1,0) = f(0,01,1,1) =6, f(1,01,10) =f(0,1,0,1,1) =

7, £(0,0,00,0) = f(1,1,0,10) = f(0,000,1) = f(1,1,0,11,) =8

£(1,0,0,0,1) = £(0,1,0,1,0) = £(0,1,1,0,1) =9

f(1,1,001) =f(1,0011) = £(1,0,1,0,1) = f(1,0,1,1,1) = 10

£(0,0,01,0)=£(01001)=f(11111)=11

Thesecorollaries motivate the following conjecture:

K. Conjecture 2.11.1,(Q,) = max {k: k {1} < 2n}

L. Corollary 2.12. For n = 2,¢,(K,,) =n+1 n+1.

1) Proof. By Corollary 2.6, {s(K,,) <n+1. Also if X ={x;,x;,....x,},Y ={y1,¥2 .. ¥, }is a bipartition of K,,,
then the functionf:V(K,,) — {12 ...n+1}defined by f(x)=1f(y)=2)and f(x))=f(y)=i+12<i<
ngives a pseudo complete coloring of G so that ¥, (K,,)=n+1 1

Now we proceed to characterize critical cycles and critical paths.

M. Theorem 2.13. Let n(k) denote the integer(lz() or (IZ() + 1, according askis odd or even. Then a cycle C,, is

k-con-critical if and only if n = n(k).
1) Proof. Let C, =(vy,v,, ... V. 1) and Z, ={1,2....n}
We first prove that C, is k-pseudo-complete colorable.
Case 1.kis even.
Define a function f:V(Cyxy) = Z, as follows:

(@ (ED)Mi/2D(mod k) if1<i<k
fv) = {({i/k} + (~1)™9{g,/2N(mod k) otherwise
Where g; = (i — {i/k}(k — 2) + k — 3)(mod k)
Let 1, jz € Zijy < Jjp SUPpPOSE j, —ji = k/2 let
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If ji = 1, f{vi, viesr D) = {1, J2}

If jy = va({vj1—2j1+Svvj1—2j1+4}) ={j1.J2}
(j1+j2)(mod k)}
2

Choose j to be the least positive integer such that f(v(n_l)kﬂ-):jl or j2. Then it can be easily verified that
F({Vneryisjs Voro1yksj+1}) = . jo}- Thus in all cases, f assigns a k-pseudo-complete coloring to Cn(k).

Case 2.kis odd.

Define a function f:V(Cyxy) — Zjas follows:

.k if i =1(mod k)
fw) = ({%} + (=1)9i [%]) (mod k —1) otherwise

Now, suppose j, — j; # k/2.Putn = {

whereg; = (i - {;}k +k— 1) (mod k)

Let j,,j, € Z, and j; < j,. Suppose j, = k.

Ifj, < {g},then f(v(jl—l)k+lvv(j1—k)k+2) ={j1.J2}
Ifj, > {E} then £ (V(,—ge/2nis VG~ /2nie1) = U jo}

(1+j2)(mod k—1)
2

Then’f(v(n—l)k+jvv(n—l)k+j+1) ={j1.J2}
Thus in all cases, f assigns a k-pseudo-complete coloring to C,,y. Hence it follows from Theorem 2.5 that C,,, is k-con-critical.
Conversely, suppose Cn is k-con-critical. Since Cy,,is k-pseudo-complete colorable, n<n(k) and by Theorem 2.5, n>n(k).

Now, suppose j; < k. Putn = { } Choose j to be the least positive integer such thatf(v(n_l)kﬂ-) =j, orj,

k

N. Corollary 2.14. Letn(k) denote the integer(g) or (2

n}

) + g according as k is odd or even. Then ¢, (C,) = max{k:n(k) <

O. Corollary 2.15. Letm(k) denote the integer (12‘) +1lor (]2‘)+§ according as k is odd or even. Then a path P, is

k-con-critical if and only if n = m(k).
If P, is k-pseudo-complete colorable, then n >m(k), by from Theorem 2.5. But since C,,is k-pseudo-complete
colorable, so is P, ,. Hence P, is k-con-critical if and only if n = m(k).
Corollary 2.16.Let m(k) denote the integer (k) +1lor (k) +§, according as k is odd or even. Then

2 2
Y (P,) = max{k: m(k) < n}
The following propositions can easily be deduced from Theorem 2.5, Theorem 2.13 and Corollary 2.15.

P. Proposition 2.17.A cycle, C,, is k-vertex critical iff

(12() +§ if kiseven
n=
(’;) or (’;) +1 ifkisodd

Q. Proposition 2.18. A Path, B, is k-vertex critical iff

3 (g) +§ if kiseven
- (’;)+1 if kis odd

R. Theorem 2.19.There is no k-edge critical cycle, if k is even

SupposeC,is a k-edge critical cycle and k is even. By Theorem 2.13,n=(§)+§. Now, for any edge e of
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C,,C,~e(a path on (12‘) +§vertices) is not k-pseudo-complete colorable, a contradiction.

S. Corollary 2.20. A cycle,C,, is k-edge critical if and only if k is odd andn = (12‘)

T. Theorem 2.21. There is no k-edge critical path, if k > 4is even.
k

Suppose P, is k-edge critical and k > 4is even. By Corollary 2.15, n=(2

)+§ so that, IE(Pn)|>(I;)’ a

contradiction toProposition.2.2.

U. Corollary. 2.22.A path P, is k-edge critical if and only if either k is odd and n = (g) + lor n=k=2

V. Remark 2.23. Corollaries 2.14, 2.7, 2.8, 2.9, 2.10 and 2.12 show that the regular graphs such as cycles,
Petersen graph, n-cubes for n = 3, 4, 5 and K,, ,are solutions of the equation:
V5 (G) = max{k: k{(k — 1)/A}} < |V(G)|
OS(G) = max{k tk [(k _ i)Ai c iV(G)|}.
This motivates us to propose the following conjecture for which Conjecture 2.11 is a special case.

W. Conjecture 2.24. For any n-regular graph G,
V5 (G) = max{k: k{(k — 1)/n}} < |V(G)]

I11. CHARACTERIZATION OF PAN CRITICAL GRAPHS
Let v be a vertex of G having degree d and let n be an integer such thatl < < . Then an n-splitting of v is the replacement of v
by a set S of n independent vertices such that N(S) = N({v}), degreeof > 1forall € and} sdegu = d, where N(S) denotes
the set of all neighbors of the vertices in S.

Clearly, the complete graph on k vertices and the graph consisting of (Z)disjoint copies of ,are k-edge critical. The following

theorem shows that any k-edge critical graph can be obtained from these graphs by simple operations, which preserve edge
criticality.

A. Theorem 3.1. The following statements are equivalent:

G is a k-edge critical graph.

G can be obtained from Kkby a sequence of n-splitting operations.

Let H be the graph consisting of disjoint copies of K2 and let C bea k-pseudo-complete coloring of H. Then G can be obtained from

H by a sequence of identifications of vertices of same color.

1) Proof. Let G be a k-edge critical graph and let c;,c, ..., ¢, be the colors used in a k-pseudo-complete coloring of G. Let
di1,djz, .. dim,denote the degreesof the vertices of G with colors ¢;,1 < i <k. Clearly Z}”:il d;j=. Now, letV(K;) =

{v1,v,,... v, }. Then G can be obtained from Kk by performing an mi-splitting operation on vi, for each i, 1 < i < k, such that

the mj vertices which replace vi have degrees d;;,d;,, ... di, . Hence (1) implies (2). Also, since an n-splitting operation

preserves the edge criticality and Kkis k-edge critical, (2) implies (1).
If G is k-edge critical, G is k-pseudo-complete colorable and G has exactly (g)edges. Now H can be obtained from G by recursively
performing 2-splitting operations and each of these operations can be reversed by an identification of a pair of vertices of same

color. Hence (1) implies (3). Also, since an identification of vertices of same color preserves the edge criticality and H is k-edge
critical, (3) implies (1).

B. Corollary 3.2. A graph G is 2-edge critical if and only if G = K2.
C. Corollary 3.3. A graph G is 3-edge critical if and only if G = K3, P4, 3K2 or K2UK1,2

D. Corollary 3.4. A necessary condition for a cycle,C,with a chord, to be kedge critical is that k is odd and n = (12‘) -1

If a cycle C,, with a chord is k-edge critical, then the path P, is also k-edge critical, because P, ,can be obtained from C,with a
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chord by a 2-splitting operation at each of the end vertices of the chord. So, by Corollary 2.22, k is odd and n = (g) -1

E. Corollary 3.5. A necessary condition for a 0-graph 6(a,b,c) consisting of 3 internally disjoint paths of
lengths a, b and ¢ where 2<a <b <c, to be

k-edge critical isthat k isodd anda + b + ¢ =(12‘)

The following theorem shows that there is no forbidden-subgraph characterization of any of the three types of critical
graphs.

F. Theorem 3.6. Any graph G is an induced subgraph of some connected edge critical graph.

1) Proof. Let V(G) = {v1, v2, ,vn}. For each i, 1 < i < n, such that degreeof vi is not equal to n—1, add a new vertex ui and
join ui to all the vertices v;with j >i and is not adjacent to vi. Let G' denote the resulting graph. Clearly G' is n-edge critical.
Also G' is connected, unless G is the disjoint union of two complete graphs. If G' is disconnected, we add a new vertex u0 to G'
and join u0 to all the vertices of G. The resulting graph is connected and (n+1)-edge critical.

Now, we investigate the local criticality concepts such as critical vertices, critical edges and non-contractible edges.

2) Local Criticality

Now, we investigate the local criticality concepts such as critical vertices, critical edges and non-contractible edges of

a graph.

G. Definition 3.7. Let G be a graph. A vertex v E V(G) is called a critical vertex of G. if 7/),(C — v)
<V),(G). An edge e EE(G) is called a critical edge of G, if O,(G e) < i./),(G). An edge e eE(G) is called a non-
contractible edge of G, if 05(Glie) < 0,(G).

H. Remark 3.8. We observe that e = uv is a critical edge of a graph G with 1/),(G) = k if and only if in any k-
pseudo-complete coloring of G, there exist two colors c1 and c2 such that u and v are the only adjacent
vertices, having the colors c¢; and c2 respectively. Hence the end vertices of a critical edge are critical. However,
critical vertices need not be the end vertices of critical edges. For example, in the graph P11 £ K1, the unique
vertex of degree 11 is critical, but none of the edges incident at it is critical.

I. Remark 3.9. Since G—e can be obtained from Glle, by a 2-splitting operation, any critical edge is non-
contractible. Again, a non-contractible edge need not be critical. For example in the graph Py any edge
incident at the unique vertex of degree 11 is non-contractible, but is not critical.

J. Remark 3.10. We observe that an edge e ={u, v} of Gis non-contractible if and only if in any k-pseudo-
complete coloring of G, u and v have distinct
colors where k =,(G). Hence, the end vertices of a non-contractible edge arecritical. Again, a critical vertex of
G need not be an end vertex of some non-contractible edge of G. For example, every vertex of the cycle Cy is
critical, but none of its edges is non-contractible. The next proposition gives a condition for a critical vertex to be
an end vertex of some non-contractible edge.

K. Proposition 3.11. Let G be a graph on p vertices and let v be a vertex of G with degree p —1. Then, any
vertex u # v is critical if and only if the edge e = uvis non-contractible.

1) Proof.If a graph G has p vertices and a vertex v of G has degree p-1, then clearly v is a critical vertex of G.
Suppose that a vertex u of G is critical, u# v and e = uv is not non-contractible. Then, y_(G) —1 < ,(G —
{u,v}) <, (G — v) < ¢Y,(G) — 1so that Y,(G —{u,v}) =¢¥,(G —v) Thus, u is not a critical vertex of G—v and
hence u is not a critical vertex of G, a contradiction. Converse follows from Remark 3.10.

L. Corollary 3.12. If G is k-con-critical, then G + is (k + n)-con-critical.
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M. Remark 3.13.1f G is a k-vertex critical graph, then G+Kis (k+n)-vertex critical. However, if G is k-edge
critical, then G+K,; need not be edge critical.
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