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Abstract: Social foraging behavior of a Escherichia–colibacteria has been explored to develop a novel algorithm for distributed 
optimization and control. Recently hybrid approach developed, involving PSO and BFOA (bacterial foraging optimization 
algorithm) algorithm for optimizing multi-model and high dimensional function. 
This paper presents the optimal design of PID controller based on a Bacterial foraging particle swarm optimization (BF-PSO) 
approach for continuous stirred tank reactor (CSTR). The mathematical model of experimental system had been approximated 
near the operating point for the PSO algorithm to adjust PID parameters for the objective function. The results show the 
adjustment of PID parameters converting into the optimal point. The good control response is obtained based on the optimal 
values by the BF-PSO technique. 
Index Terms: PSO (Particle swarm optimization),BF-PSO, optimal control, simulation. 

I. INTRODUCTION 
The process control techniques in the industry have made great advances during the past decades. A no of control methods such as 
adaptive control, neural control, and fuzzy control have been studied. Among them, the best known is the proportional-integral-
derivative (PID) controller, which has been widely used in the industry because of its simple structure and robust performance in a 
wide range of operating conditions. Unfortunately, it has been quite difficult to tune properly the gains of PID controllers because 
many industrial plants are often burdened with problems such as high order, time delays, and nonlinearities. It is hard to determine 
optimal or near optimal PID parameters with the classic tuning method (Ziegler-Nichol’s method for instance). For these reasons, it 
is highly desirable to increase the capabilities of PID controllers by adding new features.  
Many artificial intelligence (AI) techniques have been employed to improve the controller performances for a wide range of plants 
while retaining their basic characteristics. AI techniques such as neural network, fuzzy system, and neural-fuzzy logic have been 
widely applied to proper tuning of PID controller parameters.  
Particle swarm optimization (PSO) [1], first introduced by Kennedy and Eberhart, is one of the modern heuristic algorithms. It was 
developed through simulation of a simplified social system, and has been found to be robust in solving continuous nonlinear 
optimization problems. The PSO technique can generate a high-quality solution within shorter calculation time and stable 
convergence characteristic than other stochastic methods. PSO method is an excellent optimization methodology and a promising 
approach for solving the optimal PID controller parameters. Therefore, this study develops the PSO-PID controller to search optimal 
PID parameters. This controller is called the PSO-PID controller. In this paper, we propose a particle swarm optimization approach 
for optimal design of PID controller for continuous stirred tank reactor. 
The Bacterial Foraging Optimization Algorithm (BFOA) is currently gaining popularity in the community of researchers, for its 
effectiveness in solving certain difficult real-world optimization problems. BFOA is based on the foraging strategies of Ecoli 
bacterium cells and was proposed by Prof. K. M. Passino in 2001 [19]. PSO and DE are excellent heuristics like other evolutionary 
algorithms 
[17]. Practical experiences suggest that they reach stagnation after certain number of generations as the population is not converged 
locally, so they will stop proceeding towards global optimal solutions. The stochastic search methods are proven in reaching global 
solutions for certain difficult real world optimization problems [18]. Hence this article comes up with a hybrid approach involving 
PSO-DE and BFOA algorithm for solving non-convex DED problem considering valve-point loading effects, ramp-rate limits, 
prohibited operating regions and spinning reserve capacity. 
The new method is shown to be statistically significantly better on a test systems consisting of ten generating units. The results 
obtained through the proposed method are compared with those reported in the literature. 
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II. FUNDAMENTALS OF PID CONTROLLERS 
Widely applied in industry to solve various control problems. PID controllers have been used for decades. During this time, many 
modifications have been presented in the literatures [2]-[6]. As modeled in this paper, the transfer function of PID controller is 
described by the following equation in the continuous s-domain (Laplace operator). 

( )
( )

= Kc + + sKd + 푏                                                                    (1) 

Where U(s) and E(s) are the control (controller output) and tracking error signals in s-domain, respectively; kp is the proportional 
gain, ki is the integration gain, and kd is the derivative gain. Ti is the integral action time or reset time and Td is referred to as the 
derivation action time or rate time. In this context, output of the PID controller in time domain is given by  

u(t) = Kpe(t) + Ki∫ 푒(휆) 푑(휆) + Kd
( ) + b                                                            (2) 

Where u(t) and e(t) are the control and tracking error signals in time domain, respectively. The proportional part of the PID 
controller reduces error responses to disturbances. The integral term of the error eliminates steady state error and the derivative term 
of error dampens the dynamic response and thereby improves stability of the system. The parameter settings of a PID controller for 
optimal control of a plant depend on the plant’s behavior. To design the PID controller the engineer can appropriately choose the 
combination of and to simultaneously take care of the transient response as well as the steady-state error. In the design of a PID 
controller, the three gains of PID must be selected in such a way that the closed loop system has to give the desired response. The 
desired response should have minimal settling time with a small or no overshoot in the step response of the closed loop system. A 
performance index is a quantitative  measure of the performance of the system. A system is considered an optimal control system 
when the system parameters are adjusted so that the index reaches an extreme value, commonly a minimum value [7]. A suitable 
performance index taken for the CSTR system 

F=e2 * β+sys _ overshoot *α 
α = 10 
β = 10 

e = error 

III. CSTR PROCESS DESCRIPTION 
In this paper, we consider the control problem of an ideal jacketed Continuously Stirred Tank Reactor (CSTR) system (Fig.1), 
where the following exothermic and irreversible first-order reaction is taking place: 
                                          A→B                                                                                        (3) 
the kinetics  rate law  
                                     − rA=KT (CA ) = K0 exp (−  E* CA / RT )                                  (4)                                                    
Under the assumptions of constant volume, perfect mixing inside the reactor and constant reacting mixture heat capacity, one may 
write down the following mass balance for species A, as well as an overall energy balance for the reactor: 
dCA/dt =F(CA,in)/V-k(T)CA (5) 
dT/dt=F(Tin-T)/V-hr(kT)CA/ρcp-UAr(T-Tj)/Vρcp(6) 
Under the assumptions of uniform temperature of the jacket fluid inside the circulation tubes and constant water heat capacity, an 
energy balance for the jacket may also be written down: 
dTj/dt=Fcw*ρw*(Tcw-Tj)/mo+P/Cwmo+ UAr (T-Tj)/ Cwmo                        (7) 
In equations (5) – (7) t is the time, c are concentrations, T represents temperatures, Tj is the jacket temperature, cp is used for specific 
heat capacities, F represents Volumetric flow rate, m0 is overall effective mass of the heating/cooling system, V is reactor volume, ρ 
represents densities, Ar is the heat exchange surface, cw is heat capacity of water, P is power input to the heater, Tcw is temperature of 
cooling water and U is the heat transfer coefficient. The numerical values taken from [5] (see, [6] for more details on CSTR). A 
linear model will be developed around the steady-state operating point. The linearization will be respect to CA and T,CA,in .in and Tin 
. The goal is to control the reactor composition by manipulating the cool rate through the control signal u. Without getting into more 
details, the transfer function of the system has the form: 
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Hyu=
. ∗ .

( . )( . )
                                              (8) 

 

 

 

 

 

 

 

Fig.1. A CSTR Control System 

IV. BF-PSO ALGORITHM 
Particle swarm optimization (PSO) [1] is a stochastic optimization technique that draws inspiration from the behavior of a flock of 
birds or the collective intelligence of a group of social insects with limited individual capabilities. In PSO a population of particles is 
initialized with random positions  Xi  and velocities Vi  , and a fitness function, f, is evaluated, using the particle’s positional 
coordinates as input 
values. In an n-dimensional search Xi = (Xi1, Xi2, Xi3,.…..,Xin) and Vi= (Vi1, Vi2, Vi3,…….,Vin ). 
Positions and velocities are adjusted, and the function is evaluated with the new coordinates at each time- step. The velocity and 
positions and update equation for the dth dimension of the ith particle in the swarm may be given as follows: 
                 Vid (t+1) = wVid (t) + c1Φ1(P1id–Xid(t)) + c2 Φ2(Pgd – Xid(t))  (9) 
Xid(t+1) = Xid(t) + Vid (t+1)(10) 
The BFOA is on the other hand is based upon search and optimal foraging decision making capabilities of the E. Colibacteria [16]. 
The coordinates of a bacterium here represent an individual solution of the optimization problem. Such a set of trial solutions 
converges towards the optimal solution 
following the foraging group dynamics of the bacteria population. Chemo-tactic movement is continued until a bacterium goes in 
the direction of positive nutrient gradient (i.e. increasing fitness). After a certain number of complete swims the best half of the 
population undergoes reproduction, eliminating the rest of the population. In order to escape local optima, an elimination-dispersion 
event is carried out where, some bacteria are liquidated at random with a very small probability and the new replacements are 
initialized at random locations of the search space. A detailed description of the complete algorithm can be traced 
in [1].In the proposed approach, after undergoing a chemo-tactic In the proposed approach, after undergoing a chemo-tactic step, 
each bacterium also gets mutated by a PSO operator. In this phase, the bacterium is stochastically attracted towards the globally best 
position found so far in the entire population at Synergy of PSO and Bacterial Foraging Optimization 257 current time and also 
towards its previous heading direction. The PSO operator uses only the ‘social’ component and eliminates the ‘cognitive’ 
component as the local search in different regions of the search space is already taken care of by the chemo tactic steps of the BFO 
Aalgorithm. In what follows we briefly outline the new BSO algorithm step by step.  
 [Step 1]Initialize parameter n,N,Nc,Ns,Ned,Nrc,Pef,C(i) 
where, 
n = dimension of the search space 
N = The no of bacteria in the population 
Nc = no of chomo-tactic steps 
Nrc = The no of reproduction steps 
Ned = The no of elimination dispersal events 
Pef = elimination dispersal with probability 
w = The inertia factor 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

   Volume 6 Issue II, February 2018- Available at www.ijraset.com 
     

 
 

471 ©IJRASET (UGC Approved Journal): All Rights are Reserved 

C(i) = swarm confidence 
Vi = velocity vector of ith bacteria 
[Step 2] Update the following: 
J (i, j, k): Cost or fitness value of the i-th bacterium in the jthchemo-taxis, and k-th reproduction loop. 
Өgbest: Position vector of the best position found by all bacteria. 
Jbest (i, j, k): Fitness of the best position found so far. 
[step 3] reproduction loop k=k+1 
[step 4] chemotaxix loop j=j+1 
[substep a] For i= 1,2,3…..N take a chemotactic bacteria I as follows 
[substep b] compute fitness function J (i, j, k) 
[substep c] let J least= J (i, j, k)to same this value since weman find a better cost via a run 
[substep d] Tumble : generate a random vector 
∆(i) ∈R with each element Dm(i) ,m=(1,2,…p)A random no on[-1,1] 
[substep e] Move: 
Let 
θ(i, j+1, k) =  θ(j, j, k) + C (i) Δ(i)/{∆푇(푖)∆(푖)} 

[substep f] complete q (i, j +1, k) 
[substep g] swim: we consider i-th bacteria is swimming while other are not moving then Let m = m+1 
If J(i, j + k)<Jlast(if doing better) 
Let J last= J (i, j + 1, k)and let 
θi(j+1, k, l) = θi (j, k, l) + C (i) Δ(i)/√{∆푇(푖)∆(푖)} 
And use this J (i, j +1, k) to complete the new J (i, j +1, k) 
as we did in [substep a] 
Else let s m = N this is the end of the control statement 
[step 5] mutation with PSO operator 
For i= (1,2,3,4……….S) 
Update the q g _ best&J best( i j k) 
Update the position and velocity of the d-th coordinate of thei-th bacterium according the following rule 
Vid

new = w Vid
new + c1Φ1(q g _ best – qd

old(i, j +1, k)) 
qd

new(i, j +1, k)) = qd
old(i, j +1, k) + Vid

new 
[step 6] LetS_r = S/2 
The S_rbacteria with highest cost function (J)values die and the other half of bacteria population with the best values split (and the 
copies that are made are placed atthe same location as their parent). 
[step 7] If k<Nre, go to step 1. We have not reached the specified number of reproduction steps. So we start the next generation in 
the chemo-taxis loop. 

V. OPTIMAL PID CONTROLLERS With BF-PSO 
The control system with a set of optimal PID parameters can obtain an excellent response output show in Fig.2. The value of fitness 
function defined by optimization algorithm would be the minimum. Performance characteristic of evaluation function includes 
overshoot, rise time, settling time and static error time. The evaluation function as in (6), to compute the evaluation value of each 
particle in swarm according to control performance. 

 
Fig.2 Block dig of optimal PID controller with BF-PSO for CSTR 
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  p =3; Dimension of search space 
  s=10; The number of bacteria 
Nc=15;   Number of chemotactic steps 
Ns=4; Limits the length of a swim 
Nre=4The number of reproduction steps 
Ned =2The number of elimination- dispersal events 
Sr = S/2;  The number of bacteria reproductions (splits) per generation 
ped=0.25; The probabilty that each bacteria will be eliminated/dispersed 

c (:,1)=0.5*ones(s,1); the run length The single loop  PID parameter tuning for CSTR system is accomplished by Ziegler 
Nichols[15] , PSO algorithm and BF-PSO Algorithm,. The desired parameters are obtained according to Table 1 

Table 1 
Obtained Parameters by Proposed Methods 

 Kp Ki Kd 

Ziegler-Nichols -1.4702 -0.0601 0 

    

PSO Algorithm -.43278 -.030605 0.23803 

    

BF-PSO Algorithm -2.1638 -0.0587 -11.2071 

    

A. Simulation Result 
Step response of the proposed method; 
(a) Ziegler-Nichols      (b) PSO Algorithm    (c) BF-PSO Algorithm 
 
 
 

 

 

 

 

 

 
 
 
 

Comparision of all three methods used 
Comparison of time domain specifications for CSTR System 
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VI. CONCLUSION 
The essence of our work is that we managed to combine two major paradigms PSO and BFA in order to create a robust clustering 
algorithm. The resulting hybrid method showed improved result. This work explains a design of PID controller by using the BF- 
PSO algorithm to search for optimal parameters of PID controller ( kp , ki , kd ) in off linemode. Experiment with CSTR system 
shows that the parameter obtained from the hybrid-PSO (BF-PSO) method gives better response and tracking to the optimal value. 
Finally, this experiment is flexible to apply for adaptive control. 
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 Raise time(in 
sec) 

peak 
overshoot 

Settling time system 

Open loop 25 - - unstable 

Closed loop(Z-N method) 18.3 27 80 stable 

Closed loop(PSO-PID method) 45 1 60 stable 

Closed loop(BF-PSO-PID method) 19 .01 45 stable 



 


