On Ternary Quadratic Diophantine Equation

$15 x^{2}+15 y^{2}+24 x y=438 z^{2}$
G.Janaki ${ }^{1}$ R. Radha ${ }^{2}$
${ }^{1,2,}$ Department of Mathematics, Cauvery college for women, Trichy

Abstract: The ternary quadratic Diophantine equation $15 x^{2}+15 y^{2}+24 x y=438 z^{2}$ is analyzed for its non-trivial distinct
integral solutions. Six different patterns of integral solutions are obtained. A few interesting relations among the solutions and special polygonal numbers are presented.
Keywords: Ternary quadratic equation, Integral solutions.
Notations:
$T_{3, n}=\frac{n(n+1)}{2}=$ Triangular number of rank n .
$T_{7, n}=\frac{n(5 n-3)}{2}=$ Heptagonal number of rank n .
$T_{10, n}=n(4 n-3)=$ Decagonal number of rank n.
$T_{12, n}=n(5 n-4)=$ Dodecagonal number of rank n .
$T_{13, n}=\frac{n(11 n-9)}{2}=$ Tridecagonal number of rank n .
$T_{17, n}=\frac{n(15 n-13)}{2}=$ Heptadecagonal number of rank n .
$T_{18, n}=n(8 n-7)=$ Octadecagonal number of rank n.
$G n o_{n}=(2 n-1)=$ Gnomonic number of rank n.
Mathematical Classification: 11D09.

I. INTRODUCTION

Ternary quadratic equations are rich in variety. For more detailed understanding one can
see [1-7]. For the non-trivial integral solutions of ternary quadratic Diophantine equations [8-9] has been studied. [10-13] has been referred for various ternary quadratic Diophantine equations. In this communication, we consider yet another interesting ternary quadratic equation $15 x^{2}+15 y^{2}+24 x y=438 z^{2}$ and obtain different patterns of non-trivial integral solutions. Also, a few interesting relations among the solutions and special polygonal, Centered, Gnomonic, Star numbers are presented.

II. METHOD OF ANALYSIS

The Quadratic Diophantine equation with four unknowns under consideration is

$$
\begin{equation*}
15 x^{2}+15 y^{2}+24 x y=438 z^{2} \tag{1}
\end{equation*}
$$

The substitution of the linear transformations

$$
\begin{equation*}
x=u+v \text { and } y=u-v \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
9 u^{2}+v^{2}=73 z^{2} \tag{3}
\end{equation*}
$$

Four different choices of solutions to (3) are presented below. Once the values of u and v are known, using (2), the corresponding values of X and Y are obtained.

A.Pattern 1

In (3),

$$
9 u^{2}+v^{2}=73 z^{2}
$$

Assume that

$$
\begin{equation*}
z=9 a^{2}+b^{2}, \quad a, b \neq 0 \tag{4}
\end{equation*}
$$

We can write

$$
\begin{equation*}
73=(3+8 i)(3-8 i) \tag{5}
\end{equation*}
$$

Substituting (4) and (5) in (3), we get

$$
(3 u+i v)(3 u-i v)=(3+8 i)(3-8 i)(3 a+i b)^{2}(3 a-i b)^{2}
$$

Equating the positive and negative factors, we get

$$
\begin{align*}
& (3 u+i v)=(3+8 i)(3 a+i b)^{2} \tag{6}\\
& (3 u-i v)=(3-8 i)(3 a-i b)^{2} \tag{7}
\end{align*}
$$

Equating the real and imaginary parts in either (6) or (7), we get

$$
\begin{align*}
& u=9 a^{2}-b^{2}-16 a b \tag{8}\\
& v=72 a^{2}-8 b^{2}+18 a b \tag{9}
\end{align*}
$$

Substituting (8) and (9) in (2), we get

$$
\left.\begin{array}{l}
x=x(a, b)=81 a^{2}-9 b^{2}+2 a b \tag{10}\\
y=y(a, b)=-63 a^{2}+7 b^{2}-34 a b \\
z=z(a, b)=9 a^{2}+b^{2}
\end{array}\right\}
$$

Thus (10) represent non-zero distinct integer solution to (1) in two parameters.
B. Observations

1) $x(a, a)-74 T_{4, a}=0$
2) $y(a, a)+90 T_{4, a}=0$
3) $x(2 a, a)+y(2 a, a)=6 a^{2}$, a nasty number.
4) $z(a(a+1), b(b+1))-9 P_{a}^{2}-P_{b}^{2}=0$
5) $x(a, a+1)+y(a, a+1)+z(1,5 a)+29=(3 a-6)^{2}$, a perfect square.
6) $x(a, a)+y(a, a)+z(a, a)=-6 a^{2}$, a nasty number.
C. Pattern 2

In (3), $\quad 9 u^{2}+v^{2}=73 z^{2}$
Consider the linear transformations
or

$$
\left.\begin{array}{c}
z=X+9 T \\
u=X+73 T
\end{array}\right\}
$$

Substituting (11) or (12) in (3), we get

$$
\begin{equation*}
v^{2}=64\left(X^{2}-657 T^{2}\right) \tag{13}
\end{equation*}
$$

Write $\quad v=8 V$
Substituting (14) in (13), we get

$$
\begin{align*}
& V^{2}=X^{2}-657 T^{2} \\
& X^{2}=657 T^{2}+V^{2} \tag{15}
\end{align*}
$$

This is in the standard form $x^{2}=D y^{2}+z^{2}$
The corresponding solutions to (15) are

$$
\left.\begin{array}{l}
T=2 a b \tag{16}\\
V=657 a^{2}-b^{2} \\
X=657 a^{2}+b^{2}
\end{array}\right\}
$$

Substituting (16) in (11) and (14), we get

$$
\left.\begin{array}{rl}
z & =657 a^{2}+b^{2}+18 a b \\
u & =657 a^{2}+b^{2}+146 a b \tag{17}\\
v & =5256 a^{2}-8 b^{2}
\end{array}\right\}
$$

Substituting (17) in (2), we get

$$
\left.\begin{array}{l}
x=x(a, b)=5913 a^{2}-7 b^{2}+146 a b \\
y=y(a, b)=-4599 a^{2}+9 b^{2}+146 a b \tag{18}\\
z=z(a, b)=657 a^{2}+b^{2}+18 a b
\end{array}\right\}
$$

Thus (18) represent non-zero distinct integer solution to (1) in two parameters.
D. Observations

1) $x(a, a)-6052 T_{4, a}=0$
2) $y(a, a)+4444 T_{4, a}=0$
3) $z(a, a)$ is a perfect square.
4) $x(a, a+1)-y(a, a+1) \equiv 16(\bmod 32)$
5) $x(a, a+1)-y(a, a+1)-T_{68, a} \equiv-16(\bmod 10463)$
6) $y(1, B+3)=100 G n o_{B}+9 T_{4, B}-3980$
E. Pattern 3

The Ternary quadratic equation (3) can be written as
$9 u^{2}-9 z^{2}=64 z^{2}-v^{2}$
Factorizing (19) we have
$(3 u+3 z)(3 u-3 z)=(8 z+v)(8 z-v)$
$\frac{3 u+3 z}{8 z+v}=\frac{8 z-v}{3 u-3 z}=\frac{A}{B}, B \neq 0$
This is equivalent to the following two equations.
$A v-3 B u+z(8 A-3 B)=0$
$B v-3 u A-z(3 A+8 B)=0$
Applying the method of cross multiplication, we get
$z=z(A, B)=3 A^{2}+3 B^{2}$
$u=u(A, B)=3 A^{2}-3 B^{2}+16 A B$
$\left.v=v(A, B)=-24 A^{2}+24 B^{2}+18 A B\right\}$
Substituting (22) in (2), we get

$$
\left.\begin{array}{l}
x=x(A, B)=-21 A^{2}+21 B^{2}+34 A B \\
y=y(A, B)=27 A^{2}-27 B^{2}-2 A B \tag{25}
\end{array}\right\}
$$

Thus (23) and (25) represent non-zero distinct integer solution to (1) in two parameters.
F. Observations

1) $x(A, A)-y(A, A)=(6 A)^{2}, a$ perfect square.
2) $z(A, A)$ is a nasty number.
3) $x(A, A+1)+y(A, A+1)+T_{44, A} \equiv-6(\bmod 53)$
4) $z(A, A(A+1))=3 T_{4, A}^{2}+12 P_{A}^{5}$
5) $x(A, 1)+G n o_{13 n}+8=y(A, 1)+$ star $_{A}$
6) $x(A, A(4 A-3))+y(A, A(4 A-3))+96 T_{4, A}^{2}=T_{4, A}\left[G n o_{136 A}-143\right]$
G. Pattern 4
(15) can be written as
$X^{2}-V^{2}=657 T^{2}$
$(X+V)(X-V)=(657 T) T$
Equating the positive and negative factors we get

$$
\begin{align*}
& X+V=657 T \tag{26}\\
& X-V=T \tag{27}
\end{align*}
$$

Solving (26) and (27), we get

$$
\left.\begin{array}{l}
X=329 T \\
V=328 T \tag{28}
\end{array}\right\}
$$

Substitute (28) in (14) we get

$$
v=2624 T
$$

For $T=A, v=2624 A$
Substitute the value of v in (11), we get
$u=402 \mathrm{~A}$
Substituting u and v in (2)

$$
\left.\begin{array}{l}
x=3026 A \\
y=-2222 A \tag{29}\\
z=338 A
\end{array}\right\}
$$

Thus (29) represent non-zero distinct integer solution to (1) in one parameter.

H. Observations

1) $z\left(A^{2}\right)+z(A)-338 \operatorname{Pr}_{A}=0$
2) $2 x\left(A^{2}\right)+2 y\left(A^{2}\right)-4 z\left(A^{2}\right)=(16 A)^{2}$, is a perfect square.
3) $y\left(A^{3}\right)+y\left(A^{2}\right)+4444 P_{A}^{5}=0$
4) $3 x\left(A^{2}\right)+3 y\left(A^{2}\right)+z\left(A^{2}\right)-59 T_{4, A}=(53 A)^{2}$, is a perfect square.
5) $x\left(A^{2}\right)+x(A)-6052 P_{A}^{2}=0$

REFERENCE

[1] Dickson.L.E., "History of the Theory of Numbers", Chelsea Publishing Company, New York, Vol II, 1952.
[2] M.A.Gopalan, Manju Somanath and N. Vanitha, "one Quadratic Diophantine equation with four variables", Bulletin of pure applied Sciences, Vol.24E, No.2, pp.389-391 (2005).
[3] M.A. Gopalan, Manju Somanath and N. Vanitha, "Integral Solutions of $a x^{2}+b^{2}=w^{2}-z^{2}$ ", Advances in Theoretical and Applied Mathematics, Vol.l, No.3.pp.223-226(2006).
[4] M.A. Gopalan and S. Vidyalakshmi, "Integral solutions of $x^{2}+y^{2}=w^{2}+D z^{2} "$, Advances in Theoretical and Applied Mathematics, Vol.1, No.2,pp.115118(2006).
[5] M.A. Gopalan and S. Vidyalakshmi, "Integral solutions of $k x y-w(x+y)=z^{2}$ ",Advances in Theoretical and Applied Mathematics, Vol.1No.2,pp.167172(2006)
[6] Mordell.L.J., Diophantine equation, Academic Press, New York (1969)
[7] M.A. Gopalan and S. Vidyalakshmi, "On the Diophantine equation kxy +yz+zx=w" Pure and Applied Mathematika Sciences, Vol. LXVIII, No. 1-2, September 2008.
[8] M.A. Gopalan, Manju Somanath and N. Vanitha, "On a Quadratic Diophantine equation with four variables", Antartica J.math., 4(1), 41-45, (2007).
[9] M.A. Gopalan, Manju Somanath and N. Vanitha, "Homogeneous Quadratic equation with four unknowns", Acta ciencia Indica, Vol.XXXIIIM, No.3, 915(2007).
[10] M.A. Gopalan, Manju Somanath and N. Vanitha, "On Space Pythagorean equation $x^{2}+y^{2}+z^{2}=w^{2}$ ", International journal of Mathematics, Computer Sciences and Information Technology, Vol.1,No.1, January-June, pp.129-1332008.
[11] M.A. Gopalan and S.Vidyalakshmi, "Quadratic Diophantine equation with four variables $x^{2}+y^{2}+x y+y=u^{2}+v^{2} u v+u-v$ ". Impact J.Sci. Tech: Vol 2(3), 125127, 2008.
[12] M.A. Gopalan, Manju Somanath and N. Vanitha, " On Quadratic Diophantine equation with four unknowns $x^{2}+y^{2}=z^{2}+2 w^{2}-2 w+1$ Impact J.Sci. Tech: Vol 2(2), 97-103, 2008.
[13] G.Janaki and S. Vidyalakshmi, "Integral solutions of $x y+x+y+1=z^{2}-w^{2}$ ", Antartica J.math., 7(1), 31-37, (2010).

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

